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Abstract
Older adults residing in long term care (LTC) settings commonly experience apathy, a neuropsychiatric condition with 
adverse consequences of increased morbidity and mortality. Activities that combine social, physical and cognitive stimuli 
are most effective in engaging older adults with apathy but are time consuming and require significant staff resources. We 
present the results from an initial pilot field study of our socially assistive robotic (SAR) system, Ro-Tri, capable of multi-
modal interventions to foster social interaction between pairs of older adults. Seven paired participants attended two sessions 
a week for three weeks. Sessions consisted of robot-mediated triadic interactions with three types of activities repeated once 
over the 3 weeks. Ro-Tri gathered quantitative interaction data, head pose, vocal sound, and physiological signals to auto-
matically evaluate older adults’ activity and social engagement. Ro-Tri functioned smoothly without any technical issues. 
Older adults had > 90% attendance and 100% completion rate and remained engaged with the system throughout the study 
duration. Participants’ visual attention toward the SAR system and their partners increased 7.2% and 4.7%, respectively, with 
their interaction effort showing an increase of 2.9%. Older adults and LTC staff had positive perceptions with the system. 
These initial results demonstrate Ro-Tri’s ability to engage older adults, encourage social human-to-human interaction, and 
assess the changes using quantitative metrics. Future studies will determine SAR’s impact on apathy in LTC older adults.

Keywords  Socially assistive robotics · Multi-user human–robot interaction · Virtual reality · Field study · Older adults · 
Cognitive impairment · Long term care · Assisted living

1  Introduction

In the US older adults are projected to represent nearly 21 
percent of the total population by 2030 [1]. With aging, older 
adults experience chronic health conditions, functional limi-
tations, and dementia [1–3]. The prevalence of dementia, 
including Alzheimer’s disease and other related disorders, 

increases with age, from 16% of those 65–74 years to 36% 
of those 85 and older [2]. Dementia impacts communication, 
interaction ability, judgement, and memory as well as abil-
ity to perform basic activities of daily living. These deficits 
often result in the need for long-term care (LTC), either in 
assisted living or in nursing home settings [2, 4].
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Up to 72% of persons with Alzheimer Disease and related 
dementias suffer from apathy; it is associated with further 
cognitive decline, functional deficits, reduced quality of life, 
social isolation, and increased mortality [5–10]. Moreover, it 
produces increased stress, burden and frustration for formal 
and informal caregivers [11–13]. Since few pharmacologic 
options exist [14], a major strategy is to foster older adults’ 
engagement in activities [14, 15]. Indeed, the US Centers 
for Medicare & Medicaid mandates LTC settings include 
activities as part of the individual’s plan of care.

Although neither pharmacologic or non-pharmacologic 
therapies can treat dementia or slow or stop the progression 
at present, reviews and meta-analyses indicate that cogni-
tive intervention, exercise and physical activity intervention 
are beneficial to people with Alzheimer’s disease and have 
positive effects on cognitive function [13–15]. The treatment 
of apathy in these individuals also remains primarily non-
pharmacological. Multimodal strategies that combine social, 
cognitive and physical domains, tailored to the individual, 
appear most successful; those activities that highlight social 
engagement in the multimodal intervention appear most 
effective [16–18]. Unfortunately, delivering these activities 
requires significant personnel resources. Many LTC facilities 
have inadequate staffing, either in labor quantity and/or skill 
mix [19]. As a result, leaders in health care and nursing have 
called for the use of advanced technology, including robot-
ics, as a strategy to deal with nursing shortages [20, 21].

SAR systems have been developed to provide inter-
ventions focused mainly on either physical or cognitive 
domains. Recently, a few studies, mainly tested in the labo-
ratory, have used SARs to administer physical and cognitive 
based interventions. [22–24]. We added a social component 
to these interventions and tested our SAR system in the labo-
ratory setting; the SAR system provided multimodal inter-
vention and received positive feedback from participants. 
[25, 26] Although these multimodal SAR systems show 
promising results in laboratory settings, there is a need to 
determine how older adults would react to these types of 
interventions in LTC settings and over multiple exposures. 
The real-world environment is more unstructured compared 
to a laboratory setting, where the researchers have control 
over many important factors that impact the smooth func-
tioning of the SAR. For example, lighting, noise level, and 
room setup are less controllable in the field. In addition, a 
laboratory-based study cannot accurately gauge participants’ 
enthusiasm and engagement as participants who already 
have spent time travelling to the laboratory are less likely 
to drop out. The laboratory studies [22–26] often included 
relatively healthy older adults. However, in LTC settings, 
participants will have multiple chronic conditions and com-
monly need ambulatory (such as wheelchairs) or medical 
devices (such as oxygen supplement). These factors make 
SAR-based interventions in LTC settings more challenging.

Before evaluating the efficacy of multimodal SAR inter-
ventions on apathy among older adults with dementia, we 
needed to determine whether the SAR system would oper-
ate successfully in the natural setting, whether older adults 
would continue to use the system past the first one or two 
sessions, whether they would enjoy interacting with the 
robotic system, and whether they would enjoy working with 
their partners over time. These issues are critical to ensure 
successful and sustainable robotic intervention with older 
adults in LTC settings. The main objective of the current 
study was to explore the feasibility, acceptability, and effect 
of the Ro-Tri SAR system on engagement and social inter-
action of older adults residing in LTC settings and whether 
Ro-Tri SAR was capable of delivering multimodal stimuli 
involving physical, cognitive and social stimuli to older 
adults in LTC settings over a longer duration.

Over a 3-month period, we recruited 7 pairs of older 
adults at two local LTC facilities to participate in a 3 week 
pilot field study to examine (1) feasibility and acceptance, 
(2) whether older adults remain engaged over time with 
SAR-based activities; (3) the robot’s ability to encourage 
communication and social engagement between two older 
adults; and (4) the feasibility of gathering quantitative data 
on older adults’ task performance, physiological indicators 
of stress, and engagement in activities. The primary contri-
butions of this work are: (1) demonstration of the capabil-
ity of the Ro-Tri SAR system in LTC settings where a pair 
of older adults participated in many-to-one human–robot 
interaction (HRI) over 6 sessions; and (2) data analysis of 
the results to show how the HRI influenced human–human 
interaction (HHI) between the paired participants based on 
Cohen-Mansfield’s engagement model for group activities 
[27]. Although preliminary, findings from this study can pro-
vide insight for design, implementation and testing of SAR 
system interventions that are feasible and effective in LTC 
systems. The remainder of the paper is organized as follows. 
Section II presents literature relevant to our work. Section 
III describes the model of engagement used in our work, 
rationale for the data collection and robot behaviors, and the 
protocol of the field study. Finally, in Section IV and V, we 
present the results of the field study and discuss the impli-
cations and future directions of this research, respectively.

2 � Literature survey

We summarize the published literature in two broad areas 
that are relevant for our current work – the state of HRI 
focusing on older adults and the deployment of robotic 
technologies in LTC facilities. Therapeutic robotic systems 
can be broadly categorized as animal robots to provide 
companionship [28], telepresence robots to facilitate social 
connections with families and caregivers [29], and socially 



1713International Journal of Social Robotics (2021) 13:1711–1727	

1 3

assistive robotic (SAR) systems to provide activity-ori-
ented therapies, such as physical exercise and memory 
games [30]. SAR systems, including animal robots, are 
designed specifically for social interactions with the inten-
tion of detecting and meaningfully responding to older 
adults’ attention and behavior, and thus have significant 
potential for addressing physical, cognitive, and social 
conditions. However, early studies of SAR either used the 
Wizard of Oz (WoZ) experimental paradigm [31, 32] that 
required a human operator to control the robot or used 
open-loop robotic platforms [33–37] with pre-programmed 
robotic behaviors. WoZ design places interaction burden 
on a human operator whereas open-loop robotic platforms 
are limited in their capacity for HRI and lack real-time 
dynamic adaption based on interaction. More advanced 
closed-loop robotic systems allow the robot to dynami-
cally alter its interaction based on real-time human interac-
tion. A number of closed-loop SAR platforms have been 
designed in recent years to engage older adults in eating 
[30, 38], cognitive stimulation [30, 38–40], and chair exer-
cises [41]. Commercially available robots NAO, Robo-
Philo, and Manoi-PF01 have been programmed to instruct 
older adults and correct their gestures during physical 
exercise routines [41–45]. The majority of these closed-
loop SAR systems were developed for one-to-one HRI to 
engage older adults in physical and cognitive activities.

Group activities are essential to promote an enriched 
social environment with opportunities for older adults to 
have social contact and reduce the risk of social isolation 
[16, 18, 46]. By adding other human participants in the 
SAR-based activities, many-to-one (i.e., multiple humans 
interacting with one robot) interaction will likely lead to 
human-to-human interaction among the HRI participants. 
Cruz et  al. found that activities within a group setting 
engaged older adults not only in the stimuli provided by the 
activity, but also by the simultaneous social contact [46]. 
In [47], a social robot was used to provide multi-sensory 
behavioral therapy to a group of 2–3 dementia patients. It 
was found that in addition to the increase in engagement 
between the social robot and the primary interactor, there 
was a significant increase in interactions among participants 
not directly interacting with the social robot. Similarly in 
[48], a SAR system intervention was used to understand 
social interactions between intergenerational groups where 
each group consisted of a child, an adult, and an older adult. 
It was observed that the robot in combination with the child 
increased older adult’s interactions. A similar observation 
was noticed in a larger study [49], which included a single-
blind, randomized controlled trial (RCT) of 40 older adults 
receiving an intervention from a socially assistive pet robot 
PARO. Other studies have also made similar inferences [50, 
51], including our own previous laboratory-based triadic 
HRI study [25], where we observed an increase in both 

verbal and non-verbal communication between the two older 
adults when the robot provided prompts to elicit HHI.

Technology assisted social interaction among older adults 
can help alleviate their social isolation and/or loneliness 
and in turn increase their motivation and engagement in 
activity-oriented therapies [16]. In this context, multimodal 
therapies that combine cognitive, physical, and social activi-
ties are more effective than a single modality intervention 
[16]. Realizing the importance of many-to-one HRI, several 
studies have recently emerged to facilitate group cognitive 
stimulation, chair exercises, and conversation [35, 37, 39, 
52, 53] with promising results in engaging older adults. The 
majority of these SAR systems were not designed with an 
intent to promote interpersonal social interaction among 
older adults; instead they focused on interacting with the 
group as a whole. In addition, these systems were developed 
based on a single class of activity—either physical, cogni-
tive, or conversation.

We believe that the next generation of SAR-based activ-
ity-oriented therapies should not only engage older adults 
in physical and cognitive exercises, but also foster interper-
sonal social interaction with multimodal stimuli embedded 
into the system. Collectively, laboratory-based user studies 
[22–26] indicated the potential for SAR-based interaction 
to involve more than one older adult, to administer multi-
modal activities with the aid of the robot, and to quantita-
tively measure older adults’ social interaction and activity 
engagement.

Several clinical trials have been conducted in LTC set-
tings involving residents with dementia that examined the 
effect of a SAR on engagement and various neuropsychi-
atric symptoms [51, 54]. The most frequently used SAR 
has been the seal robot PARO, an animal SAR designed 
specifically for those with dementia [55]. Clinical trials of 
PARO have been conducted in LTC settings in Japan, Aus-
tralia, New Zealand, Norway, and the US [56–61]. Studies 
varied in sample size (10–415), research design (pre-post, 
cross-over, nonrandomized and randomized clinical trials, 
cluster randomized trials), intervention design (individual 
versus group, facilitated versus non-facilitated sessions), 
length of sessions (10–45 min), frequency of sessions (1–3 
sessions/week), duration of intervention (1–12 weeks), and 
outcomes (depression, apathy, quality of life, sleep, agita-
tion, and psychoactive medications). Studies yielded mixed 
results, but with enough evidence of efficacy for an animal 
SAR to aid some older adults with various neuropsychiatric 
symptoms. However, animal robots are limited in their abil-
ity to actively engage older adults in cognitive and physical 
activities since its sole intent is to provide social or emo-
tional connectedness.

A limited number of studies have evaluated the perfor-
mance and user acceptance of more advanced SAR systems 
in the field. Robot Brian 2.1 was placed at a LTC facility 
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for two days and interacted with 40 older adults to play a 
memory card game or monitor a meal-eating activity [30]. 
Robot Tangy scheduled and played Bingo games with seven 
residents at a LTC facility [62]. Each resident participated 
in at least two sessions out of the six total group sessions. 
Field trial of robot Matilda, an assistive companion robot 
designed to improve emotional wellbeing of older adults, 
was conducted with 70 residents from three residential care 
facilities over a three-day period [52]. Field studies using 
a social robot for a duration of 3–4 weeks [63] and a life 
sized robotic platform for a duration of 7–8 weeks [51] as 
dyadic companions have also been conducted to increase the 
level of user engagement by providing contextual interac-
tions with a responsive augmented reality environment. In 
another study [64], a robotic exercise tutor was tested with 
6 residents in a nursing home for a single-session HRI and 
tested with 12 visitors at a day care center for multi-session 
HRI (1–5 sessions, mean: 2.58 sessions). Overall, the major-
ity of the participants in these studies were engaged and 
participated with the SAR systems. However, participants 
had limited exposure to the SAR systems; most only inter-
acted with the system once. In addition, few of these sys-
tems were developed to facilitate human–human interaction 
(HHI) and social interaction among older adults were either 
not observed or not discussed in field studies conducted in 
group settings.

3 � Method

3.1 � Engagement Model and Types of Data 
Collection

The effect of a dementia-related intervention activity for 
older adults can be measured by their interest or involvement 
in the activity. This is most commonly measured by engage-
ment, defined as the act of being involved or occupied with 
an external stimulus [27, 64]. One of the most well-known 
models of engagement for older adults with dementia is the 
Comprehensive Process Model of Engagement (CPME) 
[64], which focuses on the attributes that influence engage-
ment and the factors that are influenced by engagement. The 
model was expanded to the Comprehensive Process Model 
of Group Engagement (CPMGE) to involve additional fac-
tors that affect engagement in a group setting. The dimen-
sions used in the CPMGE model to assess engagement 
is measured with Group Observational Measurement of 
Engagement (GOME) instrument [27]. Other metrics such 
as Revised Index for Social Engagement (ISE) [65], Social 
Observations Behaviors Residents Index (SOBRI) [66], 
Ethnographic-Labian-Inspired Coding system of Engage-
ment (ELICSE) and Evidence-based Model of Engage-
ment-related Behavior (EMODEB) [67] have been used to 

measure engagement in field studies. Although these met-
rics have detailed components, they require a human experi-
menter monitoring continuously to obtain them. The field 
studies in which these engagement metrics were used were 
also of a relatively longer time frame (6 months–2 years) 
compared to the GOME model which can be used for short 
group activities. We used (GOME) as a guide to measure 
engagement in our study since the Ro-Tri SAR system is 
also designed as a multi-participant system to promote social 
interaction in a group setting. The CPME has been used in 
other studies [25, 26], including as the basis of the group 
engagement model in [68] that specifically focused on the 
physiological substrate of engagement measured through the 
electrodermal activity (EDA) of the participants.

GOME describes mainly two dimensions in measuring 
engagement: individual and group related attributes. The 
individual attributes consist of 4 components, i.e., activ-
ity attendance, level of engagement to the activity, attitude 
towards the activity, and active participation in the group 
activity. The group attributes consist of 3 components, which 
are group size, the negative and the positive reactions among 
the group members.

In our study, we collected data from a variety of sources: 
SAR system, staff ratings, individual’s behavioral and con-
versational data, and older adults’ attitudes and perceptions. 
Measures included activity attendance, game performance 
score, physical effort across sessions, activity and social 
engagement measured by head pose angles, the duration 
measure of each head turn towards partner and the num-
ber of times one is speaking. These measures correspond 
to various dimensions of GOME. For example, the activ-
ity attendance maps to participant attendance, game per-
formance maps to active participation, physical effort maps 
to level of engagement, head pose towards the system maps 
to attention level and to a smaller extent active participa-
tion, head pose towards partner and number of times one is 
speaking maps to active participation regarding collabora-
tive aspects of the game. With regard to participants’ atti-
tudes towards the activity, the SAR system, and towards 
other group members we used 3 investigator-developed 
instruments: Robot Acceptance Survey (RAS) [69], a staff-
completed visual analog scale (VAS), and a post experiment 
feedback survey. RAS gathers the attitude and perception of 
the participants towards the interaction with the SAR sys-
tem. Their responses indicate positive and negative reac-
tions. For example, “ I enjoyed playing the game with the 
robot “ or “I found the robotic interaction similar to a real 
person” can be considered as positive reactions, whereas “I 
found the robot boring” or “I found the robot intimidating” 
can be considered as negative reactions. The 5-item VAS 
survey was completed by the staff caregivers based on their 
observations of the participants’ interactions with each other 
and interest in the robot activities. Hence it contributes to the 
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determination of positive and negative interactions that the 
group participants have with each other from the perspective 
of the staff.

In our earlier laboratory study, the emotive EEG set 
(www.emoti​v.com) was used in conjunction with an EEG 
index developed in [25] to estimate older adults’ engage-
ment with the activity. In the field setting the use of the EEG 
was not considered due to practical considerations. Rather, 
we measured physiological responses of the participants by 
using the wearable physiological sensor, E4 (www.empat​ica.
com). This provided an implicit mechanism to monitor the 
participants’ stress during the SAR multimodal intervention. 
E4 sensors have been used in previous studies as a measure 
of engagement [68]. E4 sensor measures one’s skin conduct-
ance and heart rate and from these two signals stress can be 
inferred using affective computing [70]. Besides assessing 
stress response, we were also interested in the accuracy of 
the E4 sensor when used in activities that involved physical 
motion.

3.2 � Robotic System

The Ro-Tri architecture used for the field study was similar 
to the architecture presented in our previous publications 
[25, 26] with the following changes: (1) removal of the EEG 
acquisition module and use of E4 wristbands to collect phys-
iological signals to infer older adults’ implicit mental states, 
stress in particular; (2) extension of the interaction dura-
tion of the Simon Says activity to match with the interaction 
duration of the Book Sorting task (tasks are described in the 
next section); and (3) modification of the quantitative data 
acquisition modules for the Simon Says activity to match 
with that of the Book Sorting task.

3.2.1 � Multimodal Activities

Ro-Tri, as shown in Fig. 1, was capable of administering 
four activities: Simon Says, Book Sorting taking turns (take 
turns mode), Book Sorting together (simultaneous mode), 
and Book Sorting with additional rules (post-test). Our sys-
tems engaged two older adults simultaneously in physical, 
cognitive, and social activities with the robot. Simon Says 
was based on an imitation game where each older adult and 
the robot took turns to direct a gesture and expected that oth-
ers would follow only if the gesture was introduced with the 
utterance “Simon says”. For this activity, we used a Kinect 
v1 for gesture recognition and the computer monitor was 
turned off. There were five rounds of group interaction. The 
first round was introduction, during which the robot and 
older adults took turns to introduce their names and greet 
each other. The second to fourth rounds were “Simon says” 
play. In each session, the robot first acted as a leader to dem-
onstrate an arm movement, initially vocalizing “Simon says” 
that required older adults to copy the movement and the sec-
ond time without vocalizing “Simon says” in the instruction. 
Then the robot asked one older adult to be the leader and 
the robot and the other older adult would be the followers. 
This round ended with the other older adult also having the 
chance to play as the leader. Algorithms were designed for 
the robot to demonstrate and recognize three gestures, which 
were wave, raise arms up, and extend arms to the side. When 
older adults demonstrated a gesture, the robot had the ability 
to mirror their upper arm movements. The last round was 
when the robot thanked the older adults and asked them to 
wave goodbye to each other. The Simon Says activity has an 
embedded physical component through arm movements, a 
cognitive component through registering whether to follow 

Fig. 1   a Ro-Tri System configuration used in the study; b Ro-Tri Setup at a Retirement Community

http://www.emotiv.com
http://www.empatica.com
http://www.empatica.com
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the leader’s command, and a social component in requiring 
older adults to take turns as leader.

The virtual Book Sorting task was an activity with two 
triadic interaction modes, ‘take turns’ interactions and 
‘simultaneous’ interactions. Here the triadic interaction 
refers to the situation where one robot interacts with two 
older adults. This task allows older adults to collect books 
into color matched bins in a virtual environment with natu-
ral grasp and arm movement. In take turns mode, only one 
older adult interacts with the virtual environment at a time, 
the other older adult cannot move virtual books but is free to 
help his/her partner. In simultaneous mode, both older adults 
can interact with the virtual environment at the same time. 
The Book Sorting activity used a Kinect v2 for motion-based 
interaction with a virtual reality (VR)-based book sorting 
game displayed on the computer monitor. The VR-based 
book sorting game consisted of different colored books and 
color matched bins to deposit the books (Fig. 2 left). Each 
older adult had a color-coded hand cursor displayed on the 
monitor that they could manipulate through large range arm 
movements and open/close hand gestures. For example, 
when older adults moved their arms to the left, the hand 
cursor would move to the left of the monitor until it reached 
the left boundary of the workspace. When older adults’ hand 
cursors overlapped with books, they could grab the books 
by closing their hands. We defined the rules in the game to 
reward collaborative behaviors that occurred for the purpose 
of fostering HHI.

In take turns and simultaneous interactions, collaboration 
occurred when older adults helped each other by moving 
books closer to each other’s bins, whereas in the additional 
rules post-test interaction, collaboration occurred when 
older adults moved the same book in the same direction. In 
the take turns interaction, there was only one hand cursor 
displayed on the monitor, and older adults were required 
to wait for their partners to finish before they could control 
the hand cursor. In the simultaneous interaction, two hand 
cursors were allowed and older adults could play at the same 
time. The robot facilitated the older adults both in take turns 
and simultaneous interactions with the purpose of maintain-
ing and enhancing task engagement and HHI. This was real-
ized by continuously evaluating older adults’ interactions 
and providing feedback to engage them in motion-based 

interaction, encouraging them to help one another, and cel-
ebrating their accomplishments in the game. In the post-test, 
older adults were not told to move the same book together. 
Yellow books were used in this task and the goal of the 
task was for the older adults to figure out the unknown col-
laborative rule through social interaction (Fig. 2 right). We 
expected them to explore different ways to interact with the 
system and gradually figure out that they needed to collabo-
rate to move books. The robot would provide a hint half way 
through the session if older adults were not able to move 
books at all. These activities have an embedded physical 
component through arm and hand movements, a cognitive 
component through a matching and sorting exercise, and 
a social component through the need to communicate and 
collaborate in order to successfully complete the task. The 
SAR systems provided feedback to engage older adults in 
the activity as well as in HHI.

3.2.2 � Robot Behaviors

The activities for triadic interaction were carefully designed 
to encourage communication the older adults. The Simon 
Says activity required older adults to copy each other’s ges-
tures, whereas the Book Sorting activities had collaborative 
rules embedded specifically for HHI through team work. 
Most importantly, the robot behaviors were designed to 
engage older adults in the activity as well as to elicit HHI.

The robot behaviors were governed by a hierarchical 
state machine (HSM) with different robot states for HRI and 
interaction events to trigger the transitions from one state to 
another. Since system development is not the focus of this 
work and given the complexity of the HSM, we provide a 
brief description of robot behaviors for social HRI and to 
elicit HHI. Details of the HSM and the design rational are 
in [25, 26].

The robot interacts with older adults socially through 
social gaze, gestures, and utterance. Example robot ges-
tures are clap, celebrate, wave, point towards human, and 
interact with the VR activity. There is no physical contact 
between the robot and the older adults. Based on older 
adults’ real time interaction with the activities, Ro-Tri sys-
tem automatically computes performance metrics and these 
metrics trigger robot behaviors to facilitate HRI and HHI. 
For example, in the Simon Says activity, if only one older 
adult correctly followed the robot’s demonstrated gesture, 
the robot encouraged them to pay attention to each other’s 
gestures by saying “Did everyone get this right?” For the 
Book Sorting activity, if both older adults struggled to move 
virtual books, the robot helped them by pointing out how 
to complete the task. If only one older adult had difficulty, 
the robot would direct the other older adult to offer help by 
saying “[Name 0], can you help [Name 1] with how to [area 
to improve]?”. We designed the robot behaviors to induce 

Fig. 2   Book sorting activity interface (left); Post test—yellow book 
task interface (right). (Color figure online)
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social communication between older adults as much as pos-
sible, either by referring to their names such as “[Name 0], 
remember that [Name 1] cannot move the hand cursor pass 
the green vertical line. If you move the book further away, 
[Name 1] cannot grab the book”, by directly asking one 
older adult to help another, or by prompting them to col-
laborate in the task.

3.3 � Field Study

3.3.1 � Experimental Setup

With approval from the Vanderbilt University Institutional 
Review Board, the Ro-Tri system was sequentially placed 
at two local retirement communities and used by older 
residents. Eligibility criteria for participants included: 
(1) age 70 years or older; (2) ability to hear as screened 
by the Whisper Test [71, 72] with or without hearing aids; 
iii) ability to see as screened by ability to read newspaper 
print with or without eyeglasses; iv) ability to move arms as 
screened by the ability to raise arms up, forward and to the 
side; and v) ability to cognitively participate in the various 
robotic activities. The experimental setup and materials are 
shown in Fig. 1. Participants sat in front of and facing the 
system. NAO was positioned to the side of the computer 
monitor. The Kinect was placed on the edge of the table 
facing the two participants. An administrator operated the 
experimental workstation in a separated space. The primary 
robot-mediated activities for the paired older adults were 
the Book Sorting activity alternated with the Simon Says 
activity (Table 1). Each pair interacted with Ro-Tri twice per 
week for three weeks within a month. Two types of activities 
were presented each week, and the activities were arranged 
in such a way that the participants did not take part in the 
same activity in two successive sessions. This was done to 
reduce habituation effect, to keep the older adults interested, 
and also to reflect activities in LTC settings where, in gen-
eral, activity options vary each week [18, 73]. Before the 

triadic interaction, each participant went through an ori-
entation to become familiar with the virtual Book Sorting 
activity as well as the robot movements and speech. The 
estimated interaction duration, which was10 minutes, only 
included the time needed to interact with Ro-Tri. The whole 
session also involved putting on E4 sensors, calibration 
and baseline data recording, adjusting the robot’s speaking 
volume, adjusting software parameters, as well as collect-
ing data from older adults; thus the complete session lasted 
approximately 40 min each.

3.3.2 � Procedure and Participants

We conducted the field study first at Sycamores Terrace 
Retirement Community (www.sycam​orest​errac​e.com) with 
9 older adults and then at Elmcroft Senior Living (www.
elmcr​oft.com/commu​nity/elmcr​oft-of-brent​wood-tenne​ssee) 
with 6 older adults. At Sycamores Terrace Retirement Com-
munity, Ro-Tri was set up in a vacant apartment. Participants 
interacted with Ro-Tri in the living room and the administra-
tor operated the experimental workstation in the bedroom. 
At Elmcroft Senior Living, Ro-Tri was set up in the corner 
of a library with a room divider to separate the experimental 
workstation from participants (Fig. 1). A total of 14 older 
adults (7 pairs, mean age: 82.7, 3 had normal cognition, 10 
had mild cognitive impairment (MCI), and 1 had Alzhei-
mer’s dementia) completed the field study. One older adult 
dropped out after the second session due to her hearing aid 
issue and her peer was paired with another older adult and 
restarted from session one. At the start of each session, we 
placed E4 sensors on participants’ non-dominant wrists and 
recorded three minutes of baseline physiological responses 
while the participants were asked to sit quietly. We then 
reminded them how to interact with the system.

In Simon Says sessions, we told them only arm move-
ments were recognized by the robot and reminded them to 
pull the trigger button of the Razer Hydra controller after 
they answered robot’s questions. In Book Sorting sessions, 

Table 1   Experimental protocol and timeline used for each pair of participants

Session (Week) Activity description Estimated duration Comment

Orientation One-to-one HRI & task orientation 9 min Older adults get familiar with interacting with the 
system and the robot

Session 1 (Week 1) Simon Says 9 min –
Session 2 (Week 1) Book Sorting (take turns) 9 min Allow older adults to practice in the virtual envi-

ronment for 3–5 min before HRI
Session 3 (Week 2) Book Sorting (simultaneous) & Book Sorting 

(post-test)
12 min Allow older adults to practice in the virtual envi-

ronment for 3–5 min before HRI
Session 4 (Week 2) Simon Says 9 min Repeat Session 1
Session 5 (Week 3) Book Sorting (take turns) 9 min Repeat Session 2
Session 6 (Week 3) Book Sorting (simultaneous) & Book Sorting 

(post-test)
12 min Repeat Session 3

http://www.sycamoresterrace.com
http://www.elmcroft.com/community/elmcroft-of-brentwood-tennessee
http://www.elmcroft.com/community/elmcroft-of-brentwood-tennessee
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we asked them to practice moving their hand cursors and 
grabbing books for a few minutes. Practice was followed by 
a short calibration that recorded Kinect’s head pose angles 
when we asked older adults to look at the robot, the com-
puter monitor, and their partners as well as Kinect’s sound 
source angles when we asked each older adult to read a sen-
tence. The experimenters then started the robotic interac-
tion and stayed out of sight of the participants during the 
interaction. Finally, participants filled out a post experiment 
evaluation questionnaire at the end of each week, i.e., after 
sessions 2, 4, and 6.

3.4 � Data Collection and Analysis

Two types of data were collected during the study, which 
were data logged automatically by Ro-Tri and data forms 
filled out by the participants and the caregivers. Human pro-
vided data included surveys for participants’ acceptance of 
the system and a Visual Analog Scale (VAS) for caregivers’ 
opinion about the participants engagement behaviors. Prior 
to implementation and conclusion of the study, the partici-
pants completed the Robot Acceptance Scale (RAS, 7-point 
scale, 1 most positive to 7 most negative response) that we 
developed previously [69]. The staff completed a VAS 
(0–10 continuous scale, 0 most negative to 10 most positive 
response) for assessment of the extent to which participants 
interacted with others and were interested in the robot ses-
sions. At the end of each week, participants completed a post 
experiment evaluation questionnaire (7- point scale, 1 most 
negative to 7 most positive response) that elicited opinions 
about the activities and robot sessions.

Data collected by Ro-Tri were participants’ interaction 
data and activity states, participants’ head pose angles, 
Kinect’s sound source angles as an indicator of sound source 
direction, participants’ physiological responses from the E4 
sensor, and the robot’s behaviors. Interaction data logged 
participants’ interaction with the Book Sorting task as well 
as their upper body skeleton position data. From interac-
tion data and activity states, we computed an effort metric 
representing the amount of effort exerted by the partici-
pants during HRI. For Book Sorting tasks, the effort was 
the amount of book movements to collect one’s own book 
or to help others. For Simon Says activity, the effort was the 
accumulated elbow and wrist movements. Participants’ head 
pose yaw angles served as a coarse estimation of their gaze 
directions; a measure used previously where approximate 
gaze direction is adequate for the task [74]. Head pose yaw 
angles were zero when participants looked straight ahead, 
decreased when they looked to the right, and increased when 
they looked to the left. From the calibration data, which 
logged participants’ head poses when they looked at the 
computer monitor, the robot, and their partners, we calcu-
lated head pose yaw angle ranges for head towards the robot, 

head towards the computer monitor, and head towards the 
other person (Fig. 3). These ranges allowed us to compute 
automatically the amount of times older adults’ paid visual 
attention to the computer monitor or the robot, as well as the 
amount of times and the number of times older adults moved 
their heads towards their partners. We classified visual atten-
tion to the system as activity engagement and visual attention 
to the other older adult as social engagement.

To compute activity engagement based on head pose yaw 
angles, the ranges of head pose towards the computer moni-
tor and robot and the thresholds for head pose yaw angles 
towards human were used first to segment raw head pose 
data into intervals of data that belonged to activity engage-
ment (i.e., head posed towards the computer monitor or 
robot), social engagement (i.e., head posed towards part-
ners), or neither. Intervals belonging to activity engagement 
were summed together to calculate the total activity engage-
ment duration. For social engagement, we first generated 
candidates for start timestamps when older adults potentially 
initiated a looking behavior. These candidates were selected 
from the intervals belonging to social engagement. In order 
to reduce accidental count of head turns due to noisy data, 
we set a 1 s threshold so that the start time of the next head 

Fig. 3   Raw Sound  Source Angle and Head Pose Yaw Angle Data for 
One Session of the Field Study
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turn must be at least 1 s later than the end time of the previ-
ous head turn. The end timestamp for a selected candidate 
was calculated by merging the intervals associated with the 
candidate and outputting the end time of the merged interval. 
Each candidate represented a potential head turn. All the 
candidates were passed through three thresholds to filter out 
artifacts, such as very short durations, older adults’ hands 
in front of their faces, or head pose data interpolation. From 
the remaining candidates, we calculated the social engage-
ment duration and the number of times older adults looked 
towards their partners.

Sound source angles data were used to estimate the start 
and end of vocal sounds made by the older adults. From 
calibration data, we were able to compute ranges of sound 
source angles that captured each older adult’s vocal sounds. 
In Fig. 3, the green band indicates when the right person was 
talking and the blue band indicates when the left person was 
talking in one HRI session. To compute automatically the 
amount of time older adults were talking and the number of 
times they spoke, we first segmented the raw sound source 
angles into intervals of data that belonged to the left speaker, 
right speaker, or neither based on the ranges and confidence 
levels of the detection algorithm. Second, the start times and 
the end times of these intervals were mapped to their closest 
integers in seconds, respectively, by applying the floor and 
ceiling functions. After this mapping, some intervals might 
overlap. We then merged all the overlapped intervals and 
finally summed the duration of these intervals to calculate 
the total amount of time older adults made vocal sounds 
during the triadic HRI. We also computed the number of 
times they were speaking as the count of these intervals after 
merging.

E4 sensor recorded peripheral physiological data includ-
ing photoplethysmogram (PPG) and electrodermal activities 
(EDA). The sampling rates for PPG and EDA were 64 Hz 
and 4 Hz, respectively. The data were examined and three 
classes of features were used. PPG related features included 
heart rate and heart rate variability. EDA related features 
included mean skin conductance level (SCL), standard devi-
ation of SCL, mean amplitude of skin conductance response 
(SCR), standard deviation of SCR, maximum amplitude 
of SCR, and rate of SCR. Finally, the temperature related 
features included mean and standard deviation of skin 
temperature. Heart rate (HR), which was used as a proxy 
measure of positive or negative emotions, was computed 
by detecting peaks in the PPG signal. Heart rate variability 
(HRV) measures the specific changes in time (or variability) 
between successive heart beats; it refers to the oscillation of 
the interval between consecutive heartbeats. HRV has been 
used as an indication of mental effort and stress [75]. EDA 
provides a measure of the resistance of the skin. This resist-
ance decreases due to an increase of sudation, which usually 
occurs when one is experiencing emotions such as stress or 

surprise. Tonic and phasic components of EDA were decom-
posed separately from the original signal [76]. The tonic 
component is the baseline level of EDA and is referred to as 
skin conductance level (SCL). The phasic component is the 
part of the signal that changes when stimuli are presented 
and is known as skin conductance response (SCR). Lang 
et al. discovered that the mean value of the SCR is related 
to the level of arousal [77]. EDA is a strong indicator of 
affective arousal in general [76]. Gjoreski et al. has used 
skin temperature data from a E4 wristband to predict stress 
level [70]. From the physiological data, we were interested 
in seeing whether it was possible to detect occurrences when 
the participants were stressed and when they were relatively 
at ease during HRI and HHI. The three-minute baseline data 
were used to remove feature variations due to time and indi-
vidual differences. Specifically, the heart rate, heart rate 
variability, mean SCL, mean amplitude of SCR, and mean 
skin temperature features were subtracted by their respec-
tive baseline values and divided by their respective baseline 
standard deviation values. For the remaining features, the 
baseline values were subtracted from the features.

4 � Results

4.1 � Ro‑Tri Algorithm Validation

The abovementioned algorithms for automatically com-
puting the amount of times and the number of times older 
adults talked to and looked towards the other person were 
validated using data recorded during previous laboratory 
tests. In our previous laboratory experiments, paired older 
adults performed Book Sorting tasks (take turns and simul-
taneous) under the guidance of a robot. A trained research 
assistant manually analyzed the video and audio recordings 
and logged the start and end timestamps for each talking 
and looking behavior as the ground truth. The start and end 
timestamps were automatically generated by the algorithms 
and were validated against the ground truth. We validated 
the algorithms based on data from 8 older adults. The vali-
dation results are shown in Table 2. In general, the head 
pose analysis algorithm could detect with high accuracy 
the amount of time and the number of times older adults 
looked towards their partners. The start time deviation for 
correctly detected looks had a mean value of 0.25 s and 
a standard deviation of 0.14 s. The end time deviation for 
correctly detected looks had a mean value of 0.30 s and a 
standard deviation of 0.21 s. The sound source angle analy-
sis algorithm could detect with high accuracy the number of 
times older adults spoke. For the duration of speaking, the 
algorithm had high precision but many missed detections. 
Therefore, the speaking duration was excluded in our field 
study data analysis.
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4.2 � Ro‑Tri Logged Data Analysis Results

The system worked as designed. Fourteen participants 
completed all 6 sessions. One participant dropped out after 
completion of session 2 due to issues with her hearing aids. 
Her peer was paired with another newly recruited participant 
and the pair restarted from session 1. For the post-test task, 
older adults were able to figure out the unknown collabora-
tive rule and move yellow books together through commu-
nication with their partners for 10 out of 14 sessions. The 
robot provided hints to help them for the other 4 sessions. 
Table 3 lists the participants’ engagement across 6 sessions 
as measured by their interaction effort, head pose, and sound 
source angle. On average, participants spent 77.7% of the 
time looking at Ro-Tri and 2.3% of the time looking towards 
their partners. The total average engagement including both 
system and social was 83.5% for the participants. The num-
ber of times looking towards their partners and the number 
of times talking across 6 sessions were 0.41 times per min-
ute and 3.72 times per minute, respectively. The duration of 
each looking behavior towards their partners had an average 
value of 2.94 s. Since participants’ interaction effort, visual 
attention and communication varied for different activities, 
we normalized the engagement results in order to compare 
results and demonstrate changes over 6 sessions.

For each activity, Simon Says, Book Sorting take 
turns, and Book Sorting simultaneous, we computed the 
best engagement values by taking the average of the top 
three values for that activity. The worst engagement values 
were derived based on the nature of the engagement meas-
ure and the activity. For effort, visual attention towards 

partners, and verbal communication, the worst values were 
zero. Whereas for visual attention towards the system, the 
worst value was the head pose range towards the system 
divided by 180 assuming that participants looked at dif-
ferent directions randomly. Because the data were not nor-
mally distributed, we used min–max normalization where 
the engagement results were first subtracted by the worst 
engagement value, and then divided by the absolute differ-
ence between the best and worst engagement values. After 
normalization, the higher the value, the greater the engage-
ment. Figure 4 shows changes in interaction effort, visual 
attention, and verbal communication over 6 sessions. The 
group results were the mean values of the 14 participants. 
In addition to group results, we plotted changes of engage-
ment for some individual older adults as examples. Older 
adults’ interaction efforts were maintained throughout the 
HRI sessions with slight improvement towards the end, 
2.9% at session 6. Eight out of 14 participants’ efforts 
increased from session 1 to session 6. For head pose data, 
participants’ activity engagement represented by percent-
age of time they looked at the system increased slightly, 
by 7.2% at session 6. The change of visual attention over 
6 sessions varied among individuals, as illustrated by two 
participants’ results (S211 and S305). From session 1 to 
session 6, nine participants paid more visual attention to 
Ro-Tri and five of them paid less attention. Seven out of 
8 participants who paid more attention to the system also 
had increased interaction effort. We combined HHI and 
HRI engaging metric from head pose data and the overall 
engagement (Fig. 4f) showed an increase of 5.1% from 
session 1 to session 6.

Table 2   Validation results of 
Ro-Tri automatic evaluation 
algorithms

Data Type Measure Precision (%) Recall (%)

Head Pose Amount of times looking towards partners 98.30 91.52
Number of times looking towards partners 95.65 86.27

Sound Source Angle Amount of times talking 99.40 65.41
Number of times talking 97.92 87.04

Table 3   Participants’ engagement across six sessions (M—Mean, SD—standard deviation)

a Session 1 and Session 4 are Simon Says, hence the Effort/min values are not directly comparable to other sessions

Data Type Session1a

M (SD)
Session2
M (SD)

Session3
M (SD)

Session4a

M (SD)
Session5
M (SD)

Session6
M (SD)

Interaction Data Effort/min 1.08 (0.77) 13.19 (5.45) 14.64 (8.18) 1.08 (0.73) 13.33 (6.34) 13.74 (5.12)

Head pose activity 
engagement

Duration—% of total 
session time

71.0% (14.6%) 87.6% (6.9%) 76.1% (15.5%) 70.7% (19.2%) 84.1% (9.8%) 76.4% (14.1%)

Head pose social 
engagement

Duration—% of total 
session time

1.3% (1.5%) 1.7% (3.0%) 3.1% (6.0%) 3.2% (4.7%) 2.0% (3.7%) 2.4% (3.1%)

Count/min 0.29 (0.32) 0.48 (0.51) 0.50 (0.56) 0.35 (0.41) 0.37 (0.41) 0.47 (0.54)
Duration (sec) /count 2.82 (1.75) 1.71 (0.87) 2.57 (2.46) 4.89 (3.45) 2.61 (1.88) 3.04 (1.33)

Sound source angle Count/min 2.48 (2.29) 3.67 (4.17) 5.35 (5.64) 3.41 (1.71) 3.80 (4.52) 3.59 (3.59)
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The percentage of time the participants looked at their 
partners continued increasing from session 1 to session 4. 
Eventually, participants’ visual attention in terms of duration 
towards their partners increased by 4.7%, which was slightly 
less than the increase of their visual attention towards the 
system. Seven participants paid more visual attention to their 
partners from session 1 to session 6. Only 2 participants’ 
visual attention to both Ro-Tri and their partners decreased 

from session 1 to session 6. The rest of the participants 
either paid more visual attention to both HRI and HHI (4 out 
of 12) or paid more attention to the system and less attention 
to their partners or vice versa. The number of times partici-
pants looked towards their partners also increased slightly, 
by 4.7% at session 6. Overall, participants looked towards 
their partners at a frequency similar to session 1 during the 
experiment. However, they spent longer duration for each 

(a) (b)

(c)                                                                            (d)

(e)                                                                                 (f)
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Fig. 4   Changes of various engagement metrics across sessions. X 
axis is session id. Y axis is the normalized engagement metric. a 
physical effort (Book Sorting—amount of book movements to collect 
one’s own book or to help others. Simon Says—accumulated elbow 

and wrist movements); b head pose towards the Ro-Tri system; c 
head pose towards the other older adults in terms of duration; d head 
pose towards the other older adults in terms of count and duration per 
count; e speaking frequency; and f total engagement value ((b) + (c))
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looking behavior, increased by 8.8%. Finally, for verbal com-
munication results, participants talked more during week 2 
as compared to week 1. During week 3, their verbal com-
munication results reduced, falling below that of week 1.

By observing the video recordings of the experiment, we 
selected 20 instances of data where the participants were 
stressed and 19 instances where the participants were rela-
tively calm. Each instance was one and half minute in dura-
tion and labeled by a research assistant, either as “calm” or 
“stressed”. Waikato Environment for Knowledge Analysis 
(WEKA) was used for feature selection and model train-
ing. The wrapper subset evaluation method using the best 
attribute technique (forward direction) was used to select 
the best features and four machine learning algorithms were 
used to predict the stress level. The machine learning algo-
rithms were evaluated with five-fold cross validation. The 
best performing features were found to be the mean SCL, 
mean SCR, mean heart rate variability, and mean skin tem-
perature. The machine learning algorithms applied as well as 
the corresponding classification results are shown in Table 4. 
When compared with the baseline, we found that when the 
participants were stressed, three features showed noticeable 
changes; mean SCL when stressed was found to be 1.38 
times higher than the baseline mean SCL. Mean SCR when 
stressed was found to be 5.36 times higher than the baseline 
mean SCR. Maximum SCR when stressed was found to be 
3.11 times higher than the baseline maximum SCR value. 
Mean SCL and maximum SCR results were found to be sta-
tistically significant at 0.05 level with p-values of 0.010 and 
0.042, respectively. Mean SCL was found not to be signifi-
cant with p-value of 0.065. A total of 39 data points for each 
of 1.5 min were used.

4.3 � Human Provided Data Analysis Results

The RAS survey was conducted to determine participants’ 
acceptance and anticipated use of the robotic system based 
on performance expectancy, effort expectancy, and attitude 
towards using the system. All participants completed the pre 
RAS and 13 completed the post RAS. Participants’ percep-
tions became more positive for all the subscales and RAS 
after the experiment (Table 5). Wilcoxon signed-rank test 

results are shown in the table, including the standard score 
of the Wilcoxon signed ranks, p value, and effect size. Effort 
expectancy subscale, attitude subscale, and RAS were more 
positive with a medium effect size. VAS was completed by 
caregivers or staff who were familiar with the participants. 
The five questions used for VAS and their results are shown 
in Table 6. After six HRI sessions, staff rated participants 
social interaction during daily activities improved by 6.2%. 
Participants were observed to be more interested with Ro-
Tri, 8.2% improvement on anticipation of robot session and 
2.3% decrease on complaints about robot session. Partici-
pants’ engagement on daily activities decreased by 1.6%.

Post experiment evaluation gathered participants’ inter-
ests and acceptability on robot sessions after each week of 
HRI. Examples of questions were “Enjoyed attending the 
robot sessions” (interest on robot session), “Looked forward 
to interacting with another resident for the robot sessions” 
(interest on triadic interaction), “The robot was able to keep 
your attention” (acceptability of robot), “Doing the Book 
Sorting activity for future studies” (acceptability of activity), 
and “How interesting or boring were the Simon Says activ-
ity” (interest on activity). In general, participants’ interests 
and acceptability on the robot, triadic interaction with part-
ners, and the activity were positive and maintained over the 
3 weeks (Table 7).

5 � Discussion and Conclusion

In this small field study, we found the Ro-Tri SAR system to 
be feasible and acceptable to older adults residing in LTC. 
Importantly, the system was able to deliver multimodal 
stimuli involving physical, cognitive and social domains to 
more than one person at a time. The study provided valuable 
lessons with regard to using SAR systems in LTC. First, the 
completed field study took 6 months. We needed to find 
and recruit a second site to provide sufficient pairs of par-
ticipants. The physical set up at these settings posed chal-
lenges that took some additional time (e.g., lack of internet). 
Fifteen participants were recruited to take part in the study. 
Eight participants (4 pairs) completed all 6 sessions at the 

Table 4   Classification results between stress/stress-free instances 
from the E4 sensor

Machine learning 
algorithm

Accuracy (%) Precision Recall F-1 score

Random forest 75.0 0.75 0.75 0.75
Decision stump 71.4 0.76 0.71 0.70
Decision tree (J48) 71.4 0.71 0.71 0.71
Logistic regression 67.8 0.74 0.68 0.66

Table 5   Older adults’ attitudes and perceptions toward robots (RAS)

a Lower values are more positive, 7-point scale

Prea

M (SD)
Posta

M (SD)
Z p r

Performance Expec-
tancy

2.84 (0.57) 2.69 (0.78) 0.36 0.749 0.07

Effort Expectancy 2.83 (0.77) 2.52 (0.70) 1.55 0.133 0.30
Attitude 2.57 (0.55) 2.12 (0.66) 1.81 0.075 0.35
RAS 2.70 (0.57) 2.36 (0.67) 1.75 0.084 0.34



1723International Journal of Social Robotics (2021) 13:1711–1727	

1 3

first retirement community and 6 participants (3 pairs) com-
pleted the study at the second retirement community. We had 
91.7% attendance over a 100% activity completion rate per 
session, demonstrating acceptability. Additional data from 
older adults and staff confirmed acceptability, tolerance, and 
interest in Ro-Tri system. Participants’ perceptions on Ro-
Tri were more positive after the three-week experiment and 
their interest and acceptability were high for both the robot 
and the activities. Importantly, they enjoyed interacting with 
another resident for the robot sessions. Some of the outcome 
measures had a medium effect size, which suggests more 
pairs of participants or longer study might lead to significant 
results. There was a decrease in the acceptability of and the 
interest in activity components of the post experiment sur-
vey at week 3. We speculate this may have been a result of 
the similar types of activities offered during Week 3 (both 
Book Sorting activities). There may have not been enough 
variability in the activities that resulted in a slight decrease 
in interest. Alternatively, this was the final week of the study 
that may have resulted in some habituation.

Ro-Tri logged several types of data during HRI to evalu-
ate older adults’ engagement in terms of interaction effort, 
visual attention to the system and to another older adult 
and verbal communication during HRI. In general, par-
ticipants’ engagement levels were maintained throughout 
the study. Quantitative data analysis results indicated an 
increase of 7.2% and 4.7% between session 1 and 6 in visual 

attention of the participants towards the SAR system and 
their partners, respectively. Similarly, observational rating 
scale data as measured by the VAS scale showed an increase 
of 8.2% and 6.2% (for the questions “To what extent would 
you say the participant looks forward to attend the robot ses-
sions?” and “To what extent would you say the participant 
likes to talk to other residents, staffs, or family?” of the VAS 
scale), respectively. Results indicated that the participants 
became more collaborative as the sessions progressed. They 
also demonstrate agreement between the SAR measured and 
human rated metrics. A slight decrease in social engagement 
and number of times speaking can be observed after session 
4, which we believe is caused due to the change in activity.

Simon Says activity (session 1 and 4) differs from the 
Book Sorting activity (sessions 2–3 and 5–6) in that it 
encourages both HRI and HHI through direct participation 
of the robot throughout the task. The robot encourages HRI 
with the participants (in addition to conducting the game) by 
asking their names and engaging in small conversations such 
as “I am glad to meet you participant name” and “I guess 
this is the first time you have seen a robot”. In this activity, 
the robot is directly involved in the task, either by following 
a leader participant or acting as a leader itself. It also encour-
ages HHI by asking participants to meet and greet each other 
and discuss with each other when either participant makes 
an error during the game. The robot had an average collabo-
ration prompt of 5 per session and the participants had an 
average head pose social engagement of 2.2% per session. 
In comparison, in the “Book Sorting” activity, the robot is 
mainly focused on HHI and acts more like a coach; the robot 
reminds the participants to engage with each other during 
the activity. Here the interaction with the robot is not as a 
copartner as the robot is not directly involved in the game. 
The robot only intervenes if the participants are not already 
collaborating compared to “Simon Says” activity where the 
robot is engaged throughout. If there is no need for the robot 
to engage older adults in the book sorting activity, the robot 
will fade into the background. This can be seen from the 
collected data on robot behaviors during the Book Sorting 

Table 6   Staff’s ratings of older adults’ social engagement (VAS results)

a Higher values are more positive, 0–10 continuous scale

Question Prea

M (SD)
Posta

M (SD)
Change (%) Z p r

How social would you rate the participant? 7.97 (2.05) 7.97 (1.69) 0 – – –
To what extent would you say the participant likes to come out and do activities? 7.21 (3.05) 7.05 (2.91) − 1.6 0.71 0.518 0.14
To what extent would you day the participant likes to talk to other residents, staffs, or 

family?
8.08 (1.85) 8.71 (1.44) 6.2 1.54 0.132 0.29

To what extent would you say the participant looks forward to attend the robot ses-
sions?

8.62 (1.42) 9.44 (0.71) 8.2 1.68 0.102 0.36

To what extent would you say you observed the participant complained about the 
robot sessions?

9.41 (1.33) 9.64 (0.65) 2.3 0.31 0.844 0.07

Table 7   Older adults’ post experiment evaluations

a Higher values are more positive, 7-point scale

Week 1a

M (SD)
Week 2a

M (SD)
Week 3a

M (SD)

Interest on robot session 6.33 (0.94) 6.33 (1.26) 6.52 (0.61)
Interest on triadic interaction 6.19 (1.03) 5.88 (1.70) 6.33 (0.91)
Acceptability of robot 6.21 (1.01) 6.33 (0.81) 6.54 (0.55)
Acceptability of activity 6.15 (0.95) 6.40 (0.83) 5.80 (1.10)
Interest on activity 6.19 (1.01) 6.30 (0.78) 5.96 (1.13)
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task; when the average head pose social engagement % of 
the participants had been low, 1.7% and 2.3%, the robot’s 
average collaboration prompts had been higher, 3.28 and 
3.42 for session 2 and session 6 respectively. Similarly, when 
the average head pose social engagement % of the partici-
pants had been comparatively higher, 1.9% and 3.1%, the 
robot’s average collaboration prompts had been lower, 2.57 
and 2.42 for session 5 and session 3 respectively. Thus, the 
robot responded to the decrease in social engagement from 
the participants by increasing its collaborative prompts. This 
does create variation for the metrics, but the variation of 
activity is one factor we considered when designing multi-
modal activities for older adults (e.g., in the case for Book 
Sorting, the robot was encouraging collaboration and hence 
the higher social engagement).

We have also noted that as the sessions progressed the 
quality of the interactions increased, i.e., the participants 
gave appreciative feedbacks, made funny comments, 
etc. This can be seen in Fig. 4d where the duration/count 
increases for the head pose. The number of times speaking 
metric also decreased due to the same reason, that in the ini-
tial sessions, the participants used to only query each other 
for game relevant information. There were slight improve-
ments for visual attention towards the system and partners 
from session 1 to session 6. The learning effect is an issue, 
which guided our experiment design and protocol in terms 
of the number and the manner in which the sessions were 
conducted during the field study. Increasing the number of 
sessions without introducing more variety either in terms of 
different games or partners may lead to boredom and lack 
of engagement by the participants. Solutions to offset this 
problem include having more than 2 players participate in 
a single activity session (our system architecture has the 
capability) or introducing randomization in partner selection 
after a fixed number of sessions.

E4 sensors were used to collect physiological signals 
from older adults. It was easy to apply the sensor and none of 
the participants complained about wearing a wristband. We 
extracted 10 features from the physiological data to estimate 
the stress level of participants during HRI. The ability to 
monitor the stress level will enable a future stress-sensitive 
robotic system. This way Ro-Tri could provide more person-
alized feedback to engage older adults in activity-oriented 
therapies. We obtained the highest accuracy using Random 
forest classifier (75%—Table 4). In general, higher classi-
fication rates were obtained using tree-based classification 
methods. It is important to note that the activities in this 
study were not specifically designed to induce stress or have 
stress free intervals during the interaction, which we believe 
is the reason for not obtaining higher accuracies. From the 
observations in the field study, participants were stressed 
in mainly two cases. First, a participant was stressed when 
the participant was having difficulty during the activity but 

the robot, without recognizing this, kept giving instructions 
about the following steps. For example, initially many older 
adults had difficulty in moving their hands in 3D, which 
was mapped to a 2D screen for the Book Sorting task. How-
ever, the robot did not recognize this difficulty and it kept 
on reminding them to collaborate. Second, when one of the 
participants performed well and the other person was having 
difficulty, the poorly performing participant received advice 
from both the robot and his/her partner, which caused con-
fusion and stress. Participants were also stressed during the 
yellow book task if they could not figure out the rule and the 
robot purposefully did not offer help.

To the best of our knowledge, only a small number of 
studies have shown the effectiveness of multimodal interac-
tive intervention in a real world setting and measured activ-
ity and social interaction of older adults over time. The Ro-
Tri system worked flawlessly in the field. The key findings 
of this study are: (1) the Ro-Tri based intervention was well 
tolerated by the older adults; (2) they stayed engaged over 
several weeks of robotic intervention with no drop out; (3) 
the LTC management was excited to test the robotic inter-
vention in their facilities, which is essential for its adop-
tion; and (4) most importantly, we observed HHI during the 
intervention, which has the potential to address apathy and 
social engagement in older adults. Our measures are sensi-
tive to measuring change over time and will be useful in 
future studies of older adults residing in retirement settings.

Although the current study was successful in establishing 
the feasibility of SAR-based intervention in LTC settings and 
demonstrating potentially useful results in terms of engage-
ment and HHI, it had several limitations. First, the sample 
size and session duration were not large enough to provide 
evidence on the efficacy or impact of Ro-Tri on older adults’ 
activity and/or social engagement in daily life. Although 6 
sessions were relatively longer exposure to the SAR sys-
tem as compared to several other works in this field, more 
exposure to the SAR will likely provide important insight 
regarding how older adults’ engagement changes over time. 
Randomization of older adults to each session was consid-
ered but determined to be not practical to implement for this 
small pilot study. Larger clinical trials are planned with this 
additional methodology. The current results focus on the 
changes of group engagement. Each individual older adult’s 
interaction effort, visual attention, and verbal communica-
tion over 6 sessions changed differently; thus future studies 
will need to determine those activities and individual charac-
teristics that are most effective in engaging older adults. We 
observed situations where one older adult performed very 
well whereas the other performed poorly. Some older adults 
were sensitive to their performance as compared to their 
partners and this might change their response to the sys-
tem. In the future, we will add more robot behaviors to help 
reduce the gap between two older adults’ task performance. 



1725International Journal of Social Robotics (2021) 13:1711–1727	

1 3

We will also conduct more in-depth analysis of the data, 
including analysis of experimental videos and looking into 
each individual’s change of engagement and physiological 
response. We did not examine apathy, our long-term goal 
for this system. The staff-completed scale on older adults’ 
social interactions and responses to the robot experiments 
was investigator-developed. In future studies, a validated and 
reliable tool to examine the effect on apathy will be utilized. 
Finally, we will continue the development of more robot-
mediated activities and testing of SAR systems based on 
results and knowledge gained from this field study.

Overall, notwithstanding the above-mentioned limita-
tions, the Ro-Tri system was able to provide older adults 
with technology assisted intervention in a safe and user-
friendly manner. It could quantitatively measure the par-
ticipants’ engagement and was effective in engaging older 
adults in activities and increasing their collaborative social 
behavior. Seven pairs of participants were involved in the 6 
session long study, and their impressions of the system were 
positive. The modular architecture of the system allows it 
to be expanded to include more participants with a more 
complex layered interaction module with various combina-
tions of multimodal physical, cognitive, and social strate-
gies, The current system interaction module uses a Hierar-
chical State Machine (HSM), but it can be easily changed to 
incorporate newer machine learning based algorithms with 
minimal changes to the other components of the system. The 
physiological indicator of stress could potentially be added 
to make the system stress-sensitive. We are encouraged by 
the acceptability and tolerability results, flawless functioning 
of the Ro-Tri system in real world, and the enthusiasm from 
the LTC management and staff to include robotic interac-
tion in their workflow. We believe that this work validates 
the robustness of the Ro-Tri system and provides important 
field testing results on the potential of robotic intervention 
of older adults in LTC settings.
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