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Abstract
Taking advice from others requires confidence in their competence. This is important for interaction with peers, but also
for collaboration with social robots and artificial agents. Nonetheless, we do not always have access to information about
others’ competence or performance. In these uncertain environments, do our prior beliefs about the nature and the competence
of our interacting partners modulate our willingness to rely on their judgments? In a joint perceptual decision making task,
participants made perceptual judgments and observed the simulated estimates of either a human participant, a social humanoid
robot or a computer. Then they could modify their estimates based on this feedback. Results show participants’ belief about
the nature of their partner biased their compliance with its judgments: participants were more influenced by the social robot
than human and computer partners. This difference emerged strongly at the very beginning of the task and decreased with
repeated exposure to empirical feedback on the partner’s responses, disclosing the role of prior beliefs in social influence
under uncertainty. Furthermore, the results of our functional task suggest an important difference between human–human and
human–robot interaction in the absence of overt socially relevant signal from the partner: the former is modulated by social
normative mechanisms, whereas the latter is guided by purely informational mechanisms linked to the perceived competence
of the partner.
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1 Introduction

In our everyday life, we are often influenced by our peers.
This process is not blind: we need to choose when relying
on others and whom we should trust [1, 2]. However, this
is not a straightforward task: indeed, we often implement
suboptimal strategies in the processing and use of informa-
tion provided by others. In this regard, extensive research
on social cognition and decision making has shown that, in
social contexts, human judgment is distorted by peculiar cog-
nitive biases (e.g., [3–5]) and social normative mechanisms
(e.g., [6–8]).
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Nowadays, the theme of social influence is not only
important in the context of interaction with peers, but also in
interaction with other types of autonomous agents, including
social robots. Research in fields such as Human–Robot Inter-
action (HRI) and social robotics aims at developing robots
that could assist humans in their activities [9–12]. Robots
are already utilized to deliver a vast range of services to
workers, patients and customers. For instance, they provide
information to guests and customers in hotels, restaurant and
stores [13–15], assist older people at home [16, 17], support
diabetes self-management in children [18], provide financial
advice [19] and participate in education programs [20, 21]. In
all these contexts, robots should be designed with the goal of
leading humans to accept help from robots and follow their
advice in collaborative scenarios. In this respect, research
in HRI has shown that the main factor determining reliance
on robots is its performance [22–26]. Precise feedback
on robots’ performance in the current task is fundamental
to drive the formation of well-informed beliefs on their
functional capabilities and reliability. On the contrary, in the
presence of uncertainty about robots’ competence, humans
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may over-trust or under-trust robots, resulting in suboptimal
or even harmful behavior [27–31]. This is not a minor
issue, since we can think of several real-life contexts in
which human–robot interactions do (or might) not produce
factual, exogenous feedback about robots’ performance. For
instance, robots may be used to convince customers to invest
their money in a certain way, or apply healthy behavioral
practices. In these circumstances, individuals should decide
whether to trust their robotic informants before obtaining
a factual feedback on the result of their actions (e.g., the
investment has been profitable; the advice has improved my
health). In these contexts, it might be extremely difficult
to determine the reliability of our interacting partner and
choose whether to follow or not the robot’s advice. This
task may be more difficult than in interaction with human
peers (e.g., financial advisors, doctors). Indeed, humans have
rather sophisticated beliefs on the competence and the ability
of their peers in a vast series of task, but their “a priori”
knowledge of robots and their skills is much less precise. In
this sense, our prior beliefs about the relational and infor-
mational characteristics of our robotic partner may distort
our process of weighting of information by its reliability,
leading to over- or under-use of the robot itself [32, 33].

The present study aims at investigating how humans
perceive and use information on other agents’ behavior in
the presence of uncertainty about their performance. In par-
ticular, our goal is to understand whether and how our prior
beliefs on human peers and social robots may distort our esti-
mates of their performance and, consequently, our reliance
on them. In this regard, no study to our knowledge compared
directly ourwillingness to follow theopinions of humanpeers
and social robots in judgment under uncertainty. Indeed,
it would be extremely important to analyze individuals’
behavior during interaction with agents of different natures
(e.g., human or robot) that produce identical functional per-
formances in the same social influence scenario. This would
allow us to test directly the role of prior beliefs and a priori
biases about human and robotic agents in the interpretation
of their functional and social normative properties. Impor-
tantly, our study will provide novel insights on how robots,
when compared to humans, can be perceived and trusted
in the absence of precise feedback about their reliability
and performance. These findings will shed new light on the
mechanisms driving the acceptance of information delivered
by robots, which will be useful in several real-life contexts
in which robots should help, assist and inform humans.

2 RelatedWork

2.1 Social Influence in Human–Human Interaction

Humans take advice from other human beings to obtain novel
knowledge and optimize their decisions. This form of social

influence reduces behavioral uncertainty [2, 34] and the costs
and the risks associated with individual learning based on
trial and error [1, 35, 36]. Extensive research has shown that
humans use information provided by peers when they evalu-
ate it as reliable, whereas they discard it otherwise [37–40].
In order to evaluate the reliability of information provided by
others and choose the best sources of advice, humans extract
information about others’ confidence [41, 42] and expertise
[43–46]. Nonetheless, in many situations humans use subop-
timal informational criteria in the process of evaluation and
use of information acquired through the social channel.

One the one hand, suboptimality can emerge due to cogni-
tive biases: for instance, people tend to over-discount socially
acquired information [47–49], over-estimate their own abil-
ities [50, 51] and under-estimate own responsibility in the
case of negative outcomes in collaborative scenarios [5, 52].
Moreover, people assign an excessive weight to opinions
confirming their own original beliefs and ignore contradic-
tory ones in the presence of different information sources
[53]. These egocentric distortions lead to a relatively low
(and often suboptimal) reliance on others’ opinions, even
if they are more competent than us [54]. Importantly, these
biases seem to be inherently linked to the social nature of the
information source: indeed, the same piece of information is
trusted more if acquired though individual exploration than
social transmission [3, 55].

On the other hand, distortions in the integration of infor-
mation provided by others can be linked to relational and
social normative dynamics. In social environments, humans
are willing to sacrifice accuracy to modulate reputation,
social status and affective rewards. For instance, humans are
inclined to conform to the opinion of their peers in order to
control their reputation in the group and affiliate with them
[6, 7, 56–58].Moreover, the individual willingness to change
idea in favor of that of others is modulated by reciprocity
in adult dyads [8, 59] and triads [60], and also in dyadic
child–adult interactions [61]. In other words, we are more
prone to change our ideas in favor of others if they have
endorsed our opinions in the past.

These findings highlight the emergence of peculiar
mechanisms underlying sharing and use of information in
human–human interaction, which are modulated by cogni-
tive distortions and social norms.

2.2 Social Influence in Human–Robot Interaction

Previous research in HRI has investigated when and how
humans accept help and advice from a robot. In this respect,
we highlight that, in the HRI literature, the concept of social
influence often overlaps with the concept of “trust”: in this
sense, if a human being “trusts” a robot is willing to rely
on it (for a discussion on the different conceptualizations of
trust in HRI, see [62]). In most of the cases, researchers have
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been focusing on investigating what robots’ characteristics
affect humans’ reliance on robots. Numerous studies have
shown that the main factor modulating reliance on robots
is its performance [22–26]. Humans tend to “trust” robots
as long as they show reliable behavior, but they rapidly
lose confidence in its competence in in presence of failures
[63–65], potentially leading to disuse of the robotic system
[32, 33]. However, people sometimes trust robots more than
they should. For instance, several studies have shown that
people tend to over-comply with the instructions of robots,
even if they have previously show faulty or unreliable behav-
ior [27–31].

In the last years, research in HRI have been focusing on
“social” features of robots. Themain idea is that the introduc-
tion of a humane dimension in robots (i.e., social robots) can
be beneficial for human–robot interaction [10, 11]. In line
with this approach, extensive evidence has shown the emer-
gence of pro-social attitudes towards social robots [66–69]
and improvements in human–robot collaboration [70–73].
In some cases, robots with human-like traits can increase
humans’ trust towards them [74]. For instance, robots show-
ing empathic behavior can be more persuasive [75] and
convince people to reduce unhealthy behavior (e.g., alcohol
consumption, [76]).

Nevertheless, evidence on the emergence of relational
and social normative mechanisms modulating human–robot
interaction is rather limited and context-dependent. Compli-
ance towards robots tends to emerge primarily on functional
tasks (i.e., tasks in which the robot has to fulfill a concrete
goal through actions or quantitative judgment) rather than
social ones (i.e., judgments or decisions on social issues),
as shown in recent studies [77, 78]. Some experiments tried
to replicate classical effects of normative conformity with
mixed results [79–84]. In particular, the effect of social
norms and relational dynamics on social influence seems
to be unable to overcome the functional effects linked to
uncertainty and performance. In this sense, compliance is
intrinsically tied with the difficulty of the task solution: indi-
viduals typically conform to robots only if they are unsure
about the action to take [85] and tend to resist their influence
otherwise.

3 Present Study

Independent streams of research on human–human and
human–robot interaction have been investigating whether
and how individuals choose to rely on peers or robots to
optimize their decisions. Most of the studies (especially in
HRI) employ factual feedback about the robot’s performance,
which, not surprisingly, has been shown to be the most deci-
sive factor explaining reliance on robots. However, many
of the real-life scenarios using robots to provide services to

customers and patients require humans to take decisions (i.e.,
follow or not a robot’s advice) well before obtaining feed-
back on the relative outcomes. In these uncertain contexts, it
is important to understand how prior beliefs on robots shape
human decisions in human–robot social influence settings
and how these decisions compare to those taken in the pres-
ence of human advice.

The present study aims at designing an experimental pro-
tocol that allows a direct comparison between decisions taken
during interaction with different types of partner (human
peer, humanoid robot, computer algorithm) in the presence
of uncertainty about the interacting agents’ performance.
To achieve this goal, in the current work we gather data
from two recent studies (originally) investigating reciprocity
of social influence in two different interactive contexts:
human–human [60] and human–robot [79] interaction. For
the purposes of the current study, wewill focus on a joint per-
ceptual task (Social influence task) that has been used in the
above-mentioned studies to assess participants’ willingness
to follow the advice of a partner. To date, the task has been
usedonly in independent interactive contexts (human–human
or human–robot interaction) and only as baseline measure in
conjunction with other joint tasks, in order to assess the role
of reciprocity in social influence. Instead, the current study
aims at directly comparing social influence across different
interactive contexts (human–human, human–robot and also
human–computer interaction) to investigate the role of prior
beliefs on the nature of our interacting partners in determin-
ing our susceptibility to their judgments. Nevertheless, we
acknowledge that a set of results reported in [60] and [79]
have been used in the current manuscript (See the paragraph
“6.2.1 Estimation error: perceived vs. actual performance”
in the Results section). We believe that reporting these find-
ings in the current manuscript will help the reader in the
understanding of important aspects of participants’ behavior
that are relevant for the interpretation of the following novel
results on the role of prior beliefs in social influence under
uncertainty.

The advantage of investigating social influence mecha-
nisms using a joint perceptual task lies in the opportunity
to characterize participants’ and partners’ behavior through
extremely controlled and precise responses, which could be
transparently and unambiguously tracked by the interacting
partners along the task though online feedback. The use of
perceptual tasks to investigate social influence processes goes
back to a long tradition of research in psychology and cog-
nitive science starting with the classical Asch conformity
experiment [6]. In our experimental paradigm, participants
believed to interact with one of three different partners: a
human participant, a humanoid social robot iCub [40, 41] or
a computer. The last scenario represents a control condition
in which the interacting agent does not have a social value
and does not possess a perceptual system, but produces the
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same judgments. Participants performed a perceptual infer-
ence task by estimating the length of visual stimuli without
any feedback and received trial-by-trial feedback revealing
the judgment made by their partner. The partner’s estimates
in all the conditions were generated by the same algorithm,
which produced rather accurate (but not perfect) responses.
Then, in each trial, after observing the partner’s response,
participants could modify their own judgment by selecting
any position between their own and their partner’s estimate
(final decision). The participants’ shift from their own origi-
nal estimate towards that of the partner in their final decision
has been used as an index of influence from the partner’
response. To guarantee that themanipulationmodulated only
prior beliefs about the interacting partner, we did not provide
any feedback about the participant’s or the partner’s accuracy.

4 Hypotheses

H1 Prior beliefs play a crucial role in the interpretation and
use of feedback coming from an interacting partner. Indeed,
we predict that the exact same response produced by different
partners (human, robot or computer) will lead participants to
trust and therefore use such feedback to different extents.
Specifically, we hypothesize that the effect of prior beliefs
will lead to a higher level of susceptibility to the advices of
the robotic partner compared to human and computer ones,
given the high “a priori” confidence that humans generally
attribute to robots [27, 65, 74] and growing evidence high-
lighting the emergence of over-trust towards robots [28–31].
Moreover, we expect this effect to emerge strongly at the very
beginning of the task, before exposure to repetitive feed-
back on the partner’s behavior, when prior beliefs should
have a higher impact on the interpretation of feedback on the
partner’s estimates. In this regard, we also predict that the
interaction between prior beliefs and early factual feedback
on the partner’s behavior modulate participants’ willingness
to use the partner’s advice in the following interactions.

H2 Interaction with human peers is underlined by peculiar
relational and social normative dynamics, which are much
less pervasive during interaction with non-human agents
(humanoid social robots and computers). Specifically, we
expect that in the Human condition participants’ susceptibil-
ity to the partners opinionmaybe explained by a lower degree
by the perceived reliability of their partner’s responses. In
contrast, we predict that participants’ willingness to follow
the opinion of their partner in Robot and Computer condi-
tions will be explained largely by the participants’ estimated
competence of the partner, without distortions arising from
normative principles.

5 Materials andMethods

5.1 Participants and Procedure

5.1.1 Overview

We analyze data of 75 participants (42 females, 33 males,
mean age: 32.96, SD: 12.30). All participants completed
two different tasks in this exact order: Perceptual inference
task and Social influence task. Participants belong to three
between-subject groups of 25 participants each: Human,
Robot and Computer. In all the conditions, participants per-
formed the Perceptual inference task alone and then they
performed the Social influence task with a partner. The dif-
ference between the three conditions lied in the participants’
belief about the nature of the interacting partner: a humanpar-
ticipant (Human condition), a humanoid robot iCub (Robot
condition), or a computer (Computer condition). However,
the partner’s choices in all conditions was controlled by the
same algorithm. All the participants performed the task using
a touch screen tablet through which the participant and the
(alleged) partner (human, robot or computer) could (1) make
choices and (2) receive online feedback on the choices of the
partner.

Participants in all the conditions, including the Robot one,
could not see their partner while performing the tasks. We
chose not to design a task consisting in an on-site physical
interaction between participants and their partner to guaran-
tee the comparability of our experimental conditions from
a functional perspective. For instance, participants in the
Human condition would likely be biased by the individual
characteristics of the partner. Moreover, in the Robot condi-
tion, we did not want that participants could infer the robot’s
ability in the task by observing the characteristics and kine-
matics of its movements. In all the conditions, we wanted
participants to acquire knowledge about their partner’s abil-
ity just by observing its responses, in order to understand the
role of prior beliefs about the nature of the interacting agent
in the perception and use of its functional feedback. Nonethe-
less, participants in the Robot condition, before starting the
experimental tasks, had the possibility tomeet their partner in
the experiment (a humanoid robot iCub). This was important
since all the participants in the Robot conditions were naïve
about robots and their functioning. In this way, they could
get an idea of the type of agent they would have interacted
with, although they did not receive any information about the
factual accuracy of the robot in its perceptual estimates, to
allow the comparability with the other two conditions. For
a complete description of the participants’ encounter with
the robot, see the next paragraph “Introducing the humanoid
robot iCub”.

Participants in the Human and Computer conditions
underwent the same experimental paradigm as the ones
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assigned to the Robot condition, but they did not meet
the robot before the start of the experimental protocol. In
the Human condition, participants were told that their part-
ner had been recruited with the same modalities and was
performing the task in a neighboring experimental room. Par-
ticipants in the Human condition were explicitly told that this
aspect of the experimental procedure was necessary to pre-
vent participants from knowing the actual characteristics of
their human partner, which could bias their behavior. Par-
ticipants in the Computer condition were informed that the
partner’s responses were generated by a computer, without
any additional information on how these responses would be
generated.

For all participants, the experimental paradigm was car-
ried out in a dimly lit room, to ensure an optimal visibility of
the stimuli on the screen. Participants were seated in front of
a wide touch screen (43.69 × 24.07 cm), at a distance that
allowed participants to see the visual stimuli and reach the
screen with a touch-pen with an ultrathin tip, which allowed
participants to respond with high spatial accuracy. Before
beginning the experimental tasks, written instructions were
given and participants were allowed to ask questions.

Participants were told that their reimbursement would
have been calculated based on their performance and, in par-
ticular, on the accuracy of both their initial and final estimates
in both tasks. The accuracy of the partner was not supposed
to have an impact on participants’ outcomes, and vice versa.
Anyway, everyone received a fixed amount at the end of
the experiment, following the guidelines of the Italian Insti-
tute of Technology and the local ethics committee (Azienda
Sanitaria Locale Genovese N.3, protocol: IIT_wHiSPER)
concerning the application of a fair reimbursement for vol-
untary participation in experimental research.

At the end of the experiment, participants were asked indi-
rect questions about the experiment and the hypothesized
characteristics and abilities of their partner, in order to assess
whether they have believed the cover story and the reim-
bursement procedure. All participants have shown to believe
the cover story and that their final reimbursement would be
affected by their performance. Eventually, we extensively
debriefed participants about the experimental procedures,
the reasons underlying the modality of the experiment, the
reimbursement procedure and the goals of our research, in
accordance with the relevant ethical guidelines.

5.1.2 Introducing the Humanoid Robot iCub

Before starting the experiment, participants in the Robot con-
dition, had a brief meeting with iCub [86, 87], which acted
as their partner in the Social influence task. iCub is an open
source humanoid robot designed for research in embodied
cognition and artificial intelligence. It is characterized by 53

actuated degrees of freedom that allow fine-grained move-
ments of head, arms, hands,waist and legs. It is endowedwith
sensors and actuators enabling the generation of controlled
and precise actions and the direction of its gaze towards
objects and individuals. The robot possesses lines of LEDs
representing mouth and eyebrows mounted behind the face
panel to produce facial expressions and simulate speech. All
these characteristics allow iCub to showhuman-like behavior
and appearance [86, 88] and to be perceived as an intentional
agent [89–93], capable of generating autonomous actions
to accomplish specific goals. In the current study, the robot
should appear to participants as (1) a social and intentional
agent, which was aware of the presence of the participant
and knew about the upcoming joint experiment and (2) an
embodied agent that could physically perform the same task
that participants would face in their experimental session.

For these reasons, participants in the Robot group met
iCub before starting the experimental tasks. Before the par-
ticipants’ arrival, iCub was placed in front of a touch-screen
tablet, which was identical to the one that participants would
use during their experimental session. Once the participant
had arrived at the research center, one experimenter accom-
panied them in a dedicated room with iCub, while another
experimenter controlled the robot from the sidelines. The
robotmade a series of predetermined actions (identical for all
participants) by a custom-made script running in the YARP
environment [94]. The researcher controlling the robot man-
aged the timing of the robot’s actions in order to simulate
a natural interaction with the participant. Once the partici-
pant had entered in the room, iCub turned towards them and
said hello with both its voice and hand. The participant was
accompanied in front of the robot, in order to allow iCub to
track their face and direct its head and gaze towards them.The
robot introduced itself and told the participant that theywould
play a game together; meanwhile, iCub continued to look at
the participant and follow their head movements. Through
these actions, we aimed at signaling to the participant that
iCub was aware of their presence and knew that it would
interact with them in the upcoming experiment. Then iCub
said goodbye to the participant, turned towards the tablet
and announced that it was ready to start the experiment. To
give the impression that iCub could observe stimuli on the
touch-screen tablet and interact with it to perform the task,
the robot also leaned forward and directed its right arm and
hand towards the tablet, pointing in the direction of the screen
with its right index, as if it was ready to touch it. Eventually,
the participant was guided in another room to start the experi-
ment.We highlight that participants did not receive any direct
or indirect information about the robot’s accuracy in the task
(see the paragraph “5.2.3. Agents’ behavior in the Social
influence task”), in order to guarantee the comparability of
the three experimental conditions.
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5.2 Tasks Description

5.2.1 Perceptual Inference Task

The perceptual inference task was identical for all partic-
ipants in the three experimental conditions. In each trial
(Fig. 1), two red disks (diameter = 0.57 cm) appeared
one after the other on a visible horizontal white line. The
first disk appeared at a variable distance from the left bor-
der of the screen (0.6–6.6 cm) and remained on screen for
200 ms before disappearing. After an inter-stimulus inter-
val of 200 ms, a second disk appeared at a variable distance
to the right of the first disk. This distance has been defined
as the target stimulus length (s) and was randomly selected
from 11 different sample lengths (min: 8 cm, max: 16 cm,
step: 0.8 cm). The second disk disappeared after 200 ms, as
the first disk. Then participants had to touch a point on the
horizontal line, to the right of the second disk, in order to
reproduce a segment (connecting the second and the third
disk) that matched the target stimulus length. Right after the
participant’s screen touch, a third red disk appeared in the
selected location. We did not provide any feedback about the
accuracy of the response. The task consisted of 66 trials. At
the end of the task, participants were asked to evaluate from
1 to 10 their accuracy in perceptual estimation.

5.2.2 Social Influence Task

In each trial, participants performed length estimation of a
visual stimulus as in the Perceptual inference task. Partic-
ipants were told that, during this interval, the very same
stimuli would have been presented also to their interacting
partner (computer in the Computer condition, iCub in the
Robot condition, human participant in theHuman condition),

that would havemade its own perceptual estimate. Right after
their estimate, a vertical red linewith thewordYOUappeared
at the exact response location. After the participants’ esti-
mate, the other agent’s estimate was shown, marked with the
word PC (Computer condition), ICUB (Robot condition) or
BP (Blue Player, Human condition) in blue (Fig. 1). More-
over, participants were told that also their response would be
shown to their interacting partner. Importantly, the partner’s
response was always shown after the participant’s estimate,
with a jittered delay, so that this information could not be used
by participants in their perceptual estimation process. The
partner’s feedback was shown 1.50–2.75 s after the partici-
pant’s response. Themagnitude of the delay was increased in
the Robot and Computer conditions (2.50–2.75 s), compared
to the Human condition (1.50–1.75), to be more credible:
indeed, a robot requires some seconds to make a spatially-
precise response on a delicate surface like a touch-screen
tablet, as also visible in the meeting with the robot before the
experiment (see the paragraph “Introducing the humanoid
robot iCub”). The delay in the Computer condition was set
to match that of the Robot condition. The delay in the Human
condition was shorter since participants would likely assume
similar reaction times for another humanparticipant,whereas
long delays would have casted doubts for the credibility of
the cover story.

Anyway, it is very unlikely that the delay in the part-
ner’s response had an impact on the perceived competence of
the agent, since participants in the different conditions were
informedabout the presenceof an arbitrary andvariable delay
imposed by the experimenters. Indeed, participants were
explicitly told, before starting the experiment, that the timing
of the partner’s response feedback on the participant’s touch-
screen tablet was postponed by a variable delay starting from

Fig. 1 Perceptual inference task and Social influence task. Perceptual
inference task. Participants were presented with a red disk that appeared
on a horizontal line and then disappeared after 200 ms, followed by
another disk appearing and disappearing after 200 ms to the right of
the first disk. Participants were asked to touch a point (SBJ), to the
right of the second disk, in order to reproduce the stimulus length (s’),
namely the distance between the first and the second disk (s). Social

influence task. In each trial, first the participant had to estimate the
length of a visual stimulus, as in the Perceptual inference task and then
received feedback on the estimate of their partner (PA). Eventually, the
participant made a final decision by choosing a point between own and
partner’s estimates (FINAL). The index of influence (i) was computed
as the adjustment towards the partner in the final decision (a) divided
by the distance between the two agents’ responses (d)
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the actual reaction time of the partner. The final debrief-
ing confirmed that none of the participants believed that
the timing of appearance of the partner’s response revealed
significant information for the assessment of the partner’s
accuracy.

After the counterpart’s estimate, participants had to make
a final decision: they could select any position between their
previous response and the partner’s response, but not outside
this range. In these terms, participants’ final decisions express
the relative weight assigned to the judgment of the two inter-
acting partners. After the participant’s final decision, a green
dot and a vertical green line with the word FINAL marked
the position chosen by the participant. Participants were told
that information about both their initial estimate and final
decision would have been shown to their partner. The task
consisted of 66 trials divided in three blocks by two pauses.
The position of all the three responses (participant’s estimate,
partner’s estimate and final decision) remained visible on the
screen for 1 s.

At the end of the task, participants were asked to evaluate
from 1 to 10 their own and the other agent’s accuracy in in
the perceptual estimates, without taking into account their
final decisions.

5.2.3 Agents’ Behavior in the Social Influence Task

The simulated perceptual judgments of the participants’ part-
ner (human, robot or computer) in the Social influence
task were controlled by the same algorithm. In each trial,
the actual length of the agent’s perceptual estimate was
randomly drawn from a gaussian distribution centered at
the current stimulus length (i.e., the correct response). The
response distribution was characterized by a standard devi-
ation of 1.52 cm. The magnitude of the standard deviation
of the response distribution was chosen to maintain a bal-
ance between accuracy, variability and credibility of the
agent’s behavior. We aimed at controlling the variance of
the algorithm in order to prevent participants from recur-
rently observing extremely high discrepancies between the
two responses, which would have affected considerably the
perceived reliability of the partner. For this reason, the stan-
darddeviationof the responsedistributionof the agentwas set
to be 25% lower than the observed standard deviation of par-
ticipants’ responses, as estimated in a pilot study. However,
we also considered the possibility that few participants could
be very accurate in their perceptual inferences. In this case,
the participant and their partner would select close responses
very often, preventing the emergence of variability in partici-
pants’ final decisions. Therefore, in half of the cases in which
the sampled estimate of the algorithm was rather close to the

participant’s one (i.e., d < 0.5 cm), the algorithm re-sampled
a new response from the distribution (i.e., until d > 0.5 cm).1

This response distribution was used for all the perceptual
estimates in all the three between-subject conditions of the
Social influence task.

5.3 Data Analysis

5.3.1 Perceptual Inference Task

For the purpose of subsequent between-condition analyses
in the Social influence task, we compared the performance
of the three groups (Computer, Robot and Human) to ensure
that they were comparable in terms of perceptual abilities in
the Perceptual inference task. The parameter of accuracy that
has been used throughout the paper was the estimation error,
computed as the absolute difference between the estimated
length and the actual stimulus length (e), divided by stimulus
length (s):

estimation error = e

s

Dividing the actual estimation error by the current stimu-
lus length allows us to give equal weights to trials including
short and long visual stimuli.

5.3.2 Social Influence Task

In the Social influence task, participants’ made their percep-
tual estimates as in the previous task and then could observe
the partner’s estimate concerning the same stimulus. Then
they were asked to make a final decision, placing their final
response in any position between their own and the partner’s
response. Concerning participants’ final decisions, an index
of influence was computed as the discrepancy between the
participants’ final and initial response (a) divided by the dis-
tance between the two agents’ initial estimates (d):

in f luence = a

d

Therefore, the index of influence can take any value
between 0 and 1, where, for instance, 0 indicates a final

1 The value of 0.5 cm has been chosen after a pilot study aimed at
assessing participants’ perception of agents’ distance (i.e., discrepancy
between participant’s and partner’s estimate). Values around 0.5 cm (or
lower)were generally interpreted as “minor” distances.Nonetheless,we
resampled agent’s estimates in the case of distance lower than 0.5 cm
only in half of the cases, since the full absence of trials with minimum
discrepancy between the two responses would have appeared as suspi-
cious (e.g., participants might have thought that the partner’s responses
were specifically set to be far from the participants’ responses). Any-
way, we highlight that distances lower than 0.5 cm were infrequent in
the Social influence task (7% of the total number of trials).
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decision coinciding with the participant’s own estimate, 0.5
reflects an equal distribution of weight towards own and
other’s judgments and 1 corresponds to a final decision coin-
ciding with the partner’s estimate.2

Influence was compared across experimental conditions
(Human, Robot, Computer) to investigate the effect of prior
beliefs on the processing of the other agent’s feedbacks. To
further investigate the hypothesis that prior beliefs about the
partner’s capabilities are crucial for determining the partici-
pants’ willingness to follow the partner’s responses in their
final decisions, we analyzed the evolution of influence over
time and across conditions. In particular, we hypothesize that
differences in participants’ influence across conditions are
relatively higher at the beginning of the experiment, when
prior beliefs are likely to exert the highest impact on the
interpretation of available feedback.

We also tested whether participants used available feed-
back revealing (indirect) information about participants’ own
and partner’s competence to decide whether to use their part-
ner’s estimate in their final decisions. We defined the index
of agents’ distance as the absolute distance between the par-
ticipant and the partner’s estimates (d) divided by the current
stimulus length (s):

agents′ distance = d

s

As for the estimation error, by weighting distance by the
actual stimulus length we can assign equal weights to short
and long stimuli. The agents’ distance is indeed the only feed-
back available to participants to estimate their own and their
partner’s competence in the Social influence task. Therefore,
we explored the relationship between trial-by-trial agents’
distance and influence to investigate the impact of the dis-
crepancy between the responses of the two interacting agents
on the participants’ willingness to follow the partner’s opin-
ion.

We also investigatedwhether participants’ influence along
the experiment could be explained by the interaction between
prior beliefs about their partner’s competence and the first
impression on the reliability of the partner’s responses, as
expressedby the agents’ distance in thefirst trial of the experi-
ment. This hypothesis is in linewith the idea that prior beliefs,
which are supposed to play a crucial role in the interpreta-
tion of the partner’s responses, should have a strong impact
in the interpretation of early feedback linked to others’ com-
petence. Conversely, the exposure to a relatively long history
of feedback on the partner’s responses should mitigate the

2 In a few cases, along the manuscript, the index of influence will be
expressed as a percentage instead of a proportion (e.g., influence= 0.14
or influence= 14%). For instance, an influence of 100%will express full
reliance in the partner’s estimates and an influence of 50% will express
an equal distribution of weight towards own and other’s judgments.

effect of prior beliefs, leading to higher reliance on processes
of estimation of the partner’s abilities based on empirical
feedback. To test this hypothesis, we considered the agents’
distance in the very first trial of the Social influence task and,
for each of our three samples, we performed a median split
to divide participants that observed a low distance from par-
ticipants that observed a high distance from the partner at the
beginning of the experiment. We will refer to this categorical
factor as initial distance (low or high). Then we compared
participants’ influence across the two levels of the initial dis-
tance factor, in the three different conditions, to assess the
impact of the very first factual feedback on participants’ per-
ception of the partner competence.

Eventually, we tested whether and how participants’ sus-
ceptibility to the partner’s judgments in the three conditions
was modulated by the perceived reliability of the partner’s
estimates. We analyzed participant’s performance ratings
concerning own and partner’s accuracy (from 1 to 10),
which were collected at the end of the Social influence
task. In particular, we tested the relationship between perfor-
mance ratings (i.e., self–other ratings) and influence to assess
whether participants’ willingness to follow the partner’s
opinion was well-explained by the perceived competence of
the partner.

5.3.3 Statistical Data Analysis

Most of the analyses reported in this work focus on analysing
variation of task-related dependent variables (i.e., influence,
estimation error) as a function exogenous experimental fac-
tors (i.e., experimental conditions) and endogenous predic-
tors (i.e., agents’ distance, performance ratings). Moreover,
throughout the paper we also directly compared individ-
ual variables (e.g., mean influence, mean estimation error,
performance ratings) across experimental conditions. Since
these individual variables occasionally show some degree of
skewness and, in some conditions, show a violation of the
normality distribution assumption, we used non-parametric
tests (Wilcoxon signed-rank test, Wilcoxon rank-sum test,
Kruskal–Wallis test) throughout the paper for consistency.
All tests are two-tailed and report z statistic, p value and
effect sizes (r, η2). The formulas used for the calculation of
the effect sizes can be found in [95] and [96]: r = Z/

√
N; η2

= Z2/N, where N is the total number of observations. For
the same reason, we used non-parametric correlation tests
(Spearman’s rank correlation). Multiple comparisons have
been treated using Bonferroni correction. The alpha level
was set at p = 0.05 for all the statistical analyses.

Regression analysis was also used to explore relationships
between our variables of interest (e.g., influence) and task-
relevant predictors. Simple and multiple linear regressions
were used to assess between-subject relationships between
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participants’ individual measures (e.g., participants’ perfor-
mance ratings, participants’ mean influence). Mixed-effects
models were used to test relationships between within-
subject levels of relevant predictors as well as trial-by-trial
measures of interest (e.g., trial-by-trial influence, estimation
error and agents’ distance). In mixed-effects models, the ran-
dom effect has been applied to the intercept to adjust for the
baseline level of influence of each subject and model intra-
subject correlation of repeated measurements. In regression
and mixed-effects model analyses, we report unstandardized
(B) and standardized (β) regression coefficients, t (or z) statis-
tics and p values. In one of the models (model 3), we have
also treated the influence variable as a percentage (instead
of a proportion), in order to facilitate the interpretation of
the results. In this case, we report regression coefficients as
B%, in addition to the classical unstandardized B values. In
the Supplementary information, we report complete results
of complex models (i.e., mixed-effects models), including
tables with standard errors and confidence intervals. Specifi-
cation and results of all the mixed-effects models have been
described in detail in the Supplementary information.

All analyses include the entire sample of 75 subjects and
all trials of the two experimental tasks.

5.3.4 Data Availability

The datasets supporting analyses and figures included
in the current study are available in a dedicated
OSF repository at: https://osf.io/yk2cv/?view_only=
40765e2bad2145a4834e6fad60699bd0.

6 Results

6.1 Perceptual Inference Task

We investigated the comparability of our three experimental
groups by testing for the presence of a difference in estima-
tion error across experimental conditions. Results show that
the three groups did not differ in terms of estimation error
(Computer: 0.20 ± 0.05; Robot: 0.19 ± 0.06; Human: 0.21
± 0.05. Kruskal–Wallis test, χ2 = 3.10, p = 0.212). There-
fore, the null hypothesis assuming that the estimation error
distribution is the same across the three groups cannot be
rejected.

6.2 Social Influence Task

6.2.1 Estimation Error: Perceived vs. Actual Performance

First, analysis of participants’ estimation error reveals par-
ticipants’ accuracy in perceptual estimation was markedly

lower than that of their partner in all the three experimen-
tal conditions (Wilcoxon rank-sum test, estimation error as
dependent variable, agent (participant or partner) as indepen-
dent variable. Computer: z = 6.06, r = 0.86, η2 = 0.73, p <
0.001; Robot group: z= 6.06, r= 0.86, η2 = 0.73, p < 0.001.
Human: z = 5.64, r = 0.80, η2 = 0.64, p < 0.001. Results
are significant at the Bonferroni-corrected threshold for 3
comparisons). Moreover, in all conditions, participants’ esti-
mation error was comparable to that shown in the Perceptual
inference task, suggesting that the partner’s feedback did not
help participants in improving their performance (Wilcoxon
signed-rank test, estimation error as dependent variable, task
as independent variable. Computer: z = 0.040, r = 0.01, η2

= 0.00, p = 0.968; Robot: z = − 0.740, r = 0.10, η2 = 0.01,
p = 0.459; Human: z = 0.417, r = 0.06, η2 = 0.00, p =
0.677).3

The partner’s average estimation error was comparable
across conditions (Computer: 0.10 ± 0.01; Robot: 0.10 ±
0.01; Human: 0.10 ± 0.01. Kruskal–Wallis test, χ2 (2) =
2.29, p = 0.318). As in the Perceptual inference task, we did
not find any difference in terms of participants’ estimation
error across conditions (Computer: 0.21± 0.06; Robot: 0.20
± 0.06; Human: 0.21 ± 0.09. Kruskal–Wallis test, χ2 (2) =
0.55, p = 0.759).

Interestingly, participants showed a remarkable distortion
in their perception of own and partner’s performance. Specif-
ically, participants did not recognize that their partner was
more accurate than they were, since their performance rat-
ings were even higher for their own accuracy (Computer:
6.28 ± 1.10; Robot: 6.4 ± 1.08; Human: 6.16 ± 1.43) than
that of the partner (Computer: 5.52 ± 1.64; Robot: 6.24 ±
1.90; Human: 5.52± 1.48). Amixed-effects model with per-
formance rating as dependent variable, agent (self or other),
identity of the other agent (computer, robot or human) as
independent factors and subject as random effect confirms
the presence of an effect of agent (higher ratings for self than
other, omnibus test:χ2 (1)= 6.14, p= 0.013) but no effect of
partner’s identity (χ2 (2) = 2.76, p = 0.251) and interaction
(χ2 (2) = 1.53, p = 0.466).

6.2.2 Social Influence Under Uncertainty

In line with the egocentric bias observed in participants’
performance ratings, analysis of final decisions reveal that
participants reliedmore on their own estimate than that of the
partner (average influence, Computer: 0.26 ± 0.13; Robot:
0.35 ± 0.16; Human: 0.23 ± 0.14. Wilcoxon signed-rank

3 We acknowledge that part of the results of this set of analysis, for
Robot and Computer conditions only, can be also found in previously
published papers [60, 79]. We believe that reporting these results in the
current section, together with results of the Human condition, is helpful
for the interpretation of the results of the next paragraphs.
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test, null hypothesis: average influence = 0.5. Computer: z
= 4.29, r = 0.86, η2 = 0.74, p < 0.001; Robot: z = 3.51, r =
0.70, η2 = 0.49, p < 0.001; Human: z = 4.37, r = 0.87, η2

= 0.76, p < 0.001. Results are significant at the Bonferroni-
corrected threshold for 3 comparisons).

Although participants in all conditions showed egocen-
tric advice discounting in their final decisions, their mean
level of influence was statistically different across condi-
tions (Kruskal–Wallis test, χ2 (2) = 7.67, p = 0.022). We
further explored this difference by running a mixed-effects
model with trial-by-trial influence as dependent variable
and experimental condition as categorical factor (Fig. 2a.
Supplementary Information, model 1). Results reveal that
participants were more influenced by the robot partner than
both the human partner (Human–Robot, B= − 0.118, β = −
0.473, z=−2.97,p=0.003) and the computer one (Comput-
er–Robot, B= − 0.084, β = − 0.338, z= − 2.12, p= 0.034).
We did not find any difference between the Human and the
Computer conditions (Human–Computer, B = − 0.034, β

= − 0.135, z = − 0.85, p = 0.397). These results do not
change when controlling for participants’ estimation error
(Supplementary Information, model (2). These differences
are particularly interesting if we consider that the responses
of the partner were identical across experimental conditions.
This finding suggests that the nature of the partner (com-
puter, robot or human) played a role in the processing and
weighting of the partner’s estimates, supporting H1.

6.2.3 The Impact of Prior Beliefs on Social Influence

We further investigated the hypothesis that prior beliefs are
crucial for the process of weighting of the partner’s responses
by analyzing the temporal evolution of participants’ influ-
ence along the task (Fig. 2b). We ran a mixed-effects model
with trial-by-trial influence as dependent variable and exper-
imental condition, trial and their interaction as predictors
(Supplementary Information,model 3). To facilitate the inter-
pretation of the results of model 3, we also report B values
obtained by running the same model with the influence vari-
able as a percentage, insteadof a proportion (B%, seeModel 3
in the Supplementary information). One of the most interest-
ing effects resulting from the current model is the difference
between the intercepts across conditions. Indeed, the inter-
cepts represent the estimated level of influence at time zero
for each condition, which can be seen as an estimate of the
participants’ level of influence prior to temporal effects due
to the repetitive exposure to the partner’s feedback along the
task. Results show that the estimated level of influence at
time zero is significantly higher in the Robot condition than
in Human and Computer conditions (Human–Robot, B = −
0.146, B% = − 14.60%, z = − 3.52, p < 0.001; Comput-
er–Robot, B = − 0.113, B% = − 11.30%, z = − 2.72, p
= 0.007), whereas we did not find any differences between

Human and Computer conditions (Human–Computer, B =
− 0.033, B% = − 3.31%, z = − 0.80, p = 0.426). Then we
investigated the presence of temporal effects in participants’
influence along the task. In this case, theB%value represents,
in form of a percentage, the average increase/decrease of
influence per trial. Results show that participants in Human
and Computer conditions significantly increase their level of
influence along the task with very similar slopes (Computer:
B= 0.001, B%=+ 0.06%, z= 2.23, p= 0.026;Human:B=
0.001, B%= + 0.06%, z= 2.17, p= 0.03; interaction effect,
Human–Computer, B = − 0.000, B% = − 0.00%, z = −
0.04, p = 0.966). The effect is absent in the Robot condition
(B=− 0.000, B%=− 0.03%, z=− 1.09, p= 0.276), where
the level of influence tends to decrease along time, converg-
ing towards the mean level of influence of participants in the
other two conditions at the end of the experiment (Fig. 2b).
Indeed, the interaction effects between the Robot condition
and the other two conditions are significant (Human–Robot,
B = 0.001, z = 2.30, p = 0.021; Computer–Robot, B =
0.001, z= 2.35, p= 0.019). Interestingly, if we multiply B%
by the total number of trials, we can obtain an estimate of
the general change in influence along the task in each of the
three groups. If we combine this estimatewith the intercept in
the three conditions (expressing the level of influence at time
“zero”), we can obtain a comprehensive estimate of the tem-
poral evolution of influence in the three conditions. Indeed,
participants in the Computer condition increase their level of
influence from 24.32 to 28.14%; the Human group increases
the level of influence from 21.02 to 24.73%, whereas partic-
ipants in the Robot condition slightly decrease their level
of influence from 35.62 to 33.76% along the experiment
(Fig. 2b). These results suggest that the highest difference
between the Robot condition and the other two conditions
can be found at the very beginning of the experiment, when
prior beliefs have a stronger influence on the interpretation
of the partner’s feedback. Conversely, repeated exposure to
the partner’s responses leads to a decrease in the discrepancy
between participants’ influence between the three conditions.

Furthermore, we tested whether the interaction between
prior beliefs and the very first feedback useful for an estimate
of the partner’s competence could explain the participants’
willingness to follow the partner’s suggestions in the entire
experiment, based on the experimental condition. We ran a
linear regression with mean influence (averaged along the
entire experiment) as dependent variable and condition, ini-
tial distance and their interactions as factors. Results reveal
that large part of the difference between the three experi-
mental conditions was due to the group of participants that
observed a high distance in the first trial (initial distance =
high). Indeed, participants in the Robot group interpreted this
feedback as a signal that the robot should be taken into high
consideration in their final decision, whereas participants in
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Fig. 2 aAverage influence in the Social influence task. Point-range plot
of mean influence in Computer, Robot and Human conditions. Large
dots representmean values for each condition, bar ranges represent stan-
dard error of the mean and small symbols individual influence means.
Influence was significantly different across conditions: mean influence
was higher in the Robot condition than in the other two conditions. **

p < 0.01, * p < 0.05, ns = non-significant, mixed-effects model with
condition as categorical factor. b Temporal evolution of influence in
the Social influence task. We characterize the temporal evolution of
participants’ influence along the 66 trials of the Social influence task.
Data has been smoothed by linear fit separately for the three conditions,
represented by different colors. Grey bounds represent standard errors

Human and Computer conditions adjusted their final deci-
sion to a much lower degree when they have seen a high
discrepancy in the first trial of the task (Human–Robot, B
= − 0.163, β = − 1.085, t = − 2.77, p = 0.007; Com-
puter–Robot, B = − 0.150, β = − 0.998, t = − 2.55, p
= 0.013). Conversely, if we consider the group of partici-
pants that observed a relatively lower distance in the first
trial (initial distance = low), we do not observe statistically
significant differences across conditions in terms of influ-
ence along the experiment (Human–Robot, B = − 0.076, β
= − 0.510, t = − 1.35, p = 0.180; Computer − Robot, B
= − 0.024, β = − 0.159, z = − 0.42, p = 0.674). Then we
checked whether this result could be linked to a correlation
between agents’ distance in the first trial and mean agents’
distance along the experiment. We ran the same regression
by using the mean agents’ distance (low or high) instead of
initial distance as predictor. However, in this case we do not
observe a significant difference across conditions in the “high
distance” group (Human–Robot, B= − 0.103, β = − 0.690,
t = − 1.76, p = 0.082; Computer–Robot, B = − 0.105, β =
− 0.703, t = − 1.80, p = 0.077).

These results indicate that prior beliefs interacted in
a peculiar way with the very first feedback on the part-
ner’s competence, playing a crucial role in the participants’
interpretation of the partner’s behavior and capabilities and
participants’ behavior along the task. In Human and Com-
puter conditions, a high distance in the first trial convinced
participants not to take into high consideration the partner’s

suggestion for the entire experiment; conversely, participants
in the Robot group interpreted this remarkable response dis-
crepancy as an indication that the robot’s suggestions should
have been taken into account for the optimization of task
performance.

Altogether, these findings support H1, highlighting the
crucial role of a priori beliefs in the interpretation of the part-
ner’s behavior and in the use (or disuse) of this information
for upcoming decisions.

6.2.4 Partner’s Reliability, Social Influence and Social Norms

Then we investigated if within-subject modulation of influ-
ence was linked to the perceived reliability of the partner’s
estimates. Therefore, we tested the relationship between
influence and agents’ distance. We ran a mixed-effect lin-
ear regression with final decision as dependent variable,
condition (Computer, Robot, Human), distance and their
interactions as independent variables, with subject as random
effect (Supplementary information, model 4). Results show a
negative effect of distance on influence in all the three exper-
imental conditions (Computer: B = − 0.435, β = − 0.291, z
= − 12.86, p < 0.001; Robot: B = − 0.299, β = − 0.200, z
= − 9.76, p < 0.001; Human: B= − 0.058, β = − 0.039, z=
− 1.98, p = 0.048) groups: more specifically, participants’
influence decreased with the increase of the distance from
the partner’s estimate (Fig. 3b). One the one hand, this effect
suggest that participants’ susceptibility to their partner was
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Fig. 3 a Influence as a function of agents’ distance in the first trial.
Point-range plot of mean influence (along the entire experiment) based
on agents’ distance in the first trial (initial distance: high or low) in
Computer, Robot and Human conditions. Large dots represent average
values for each level of initial distance by condition, bar ranges repre-
sent standard error of the mean and small symbols individual influence
means. ** p < 0.01, * p < 0.05, ns= non-significant, multiple regression
with initial distance, condition and their interactions as factors.b Influ-
ence as a function of agents’ distance. Standardized (within-subject)
influence plotted as a function of distance from the partner’s estimate.
To obtain this graph, for each participant, we standardized trial-by-trial
normalized distance between the estimates of the two agents (distance
(cm)/stimulus length (cm)) to express each distance value in terms of
deviation from the individual subject mean. We clustered standardized

distances in six bins to obtain six distance ranges with a similar mean
number of observations per bin: (1) distance < − 1 SD; (2) − 1 SD
≥ distance < − 0.5 SD); (3) − 0.5 SD ≥ distance < 0 SD; (4) 0 SD
≥ distance < 0.5 SD; (5) 0.5 SD ≥ distance < 1 SD; (6) distance ≥ 1
SD. We also standardized, for each participant, trial-by-trial influence
to express influence values in terms of deviation from individual influ-
encemeans. Eventually, for each distance range, we averaged individual
influence means across subjects. We report standardized regression
coefficients and p values obtained through amixed-effect model analyz-
ing the relationship between within-subject modulation of influence by
agents’ distance. We also report interactions effects assessing between-
condition differences in the relationship between influence and response
distance: ** p < 0.01, *** p < 0.001

indeed modulated by the perceived reliability of the current
partner’s feedback; one the other hand, it reveals that the exis-
tence of a discrepancy between the two interacting partners’
responses was interpreted by participants as a signal of the
unreliability of the partner rather than themselves, confirming
the emergence of egocentric advice discounting. Moreover,
we highlight the existence of interaction effects: the effect
of distance was stronger in the Computer condition than in
the other two conditions (Robot–Computer, B = 0.136, β =
0.091, z = 2.99, p = 0.003; Human–Computer, B = 0.377,
β = 0.252, z = 8.40, p < 0.001). Moreover, the effect of dis-
tance was stronger in the Robot than in the Human condition
(Human–Robot, B = 0.241, β = 0.161, z = 5.66, p < 0.001).
Altogether, interaction effects suggest that the nature of the
partner determines the extent to which participants’ use its
perceived reliability to modulate their expression of suscep-
tibility to them. In particular, these results suggest that the
more the partner shows human-like or social characteristics,
the less participants’ susceptibility depends on the perceived
reliability of the partner’s estimates.

We further explored this hypothesis by running a regres-
sion with influence as dependent variable and condition,

performance ratings (self–other) and their interactions as
independent variables. Results reveal significant interactions
highlighting a stronger relationship between influence and
performance ratings in Computer and Robot conditions com-
pared to the Human condition (Robot–Human, B= − 0.054,
β = − 0.667, t = − 2.34, p = 0.022; Computer–Human, B
= − 0.047, β = − 0.581, t = − 2.05, p = 0.044. Figure 4).
We did not find a significant difference between Robot and
Computer conditions (Robot–Computer, B=− 0.007, β=−
0.085, t= − 0.38, p= 0.705). These interaction effects were
driven by a significant main effect in Robot (B =—0.043,
β = − 0.531, t = − 3.32, p = 0.001) and Computer (B =
− 0.036, β = − 0.446, t = − 2.83, p = 0.006) conditions,
which was absent in the Human condition (B = 0.011, β =
0.136, t = 0.58, p = 0.567).

These findings underline a marked difference between
participants’ willingness to rely on the judgment of either
a mechanical agent or a peer. One the one hand, reliance
on the judgments of a mechanical partner (computer or
robot) was strictly dependent on the perceived reliability of
the mechanical agent itself. On the other hand, the explicit
expression of susceptibility towards a human partner was not
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Fig. 4 Scatter plots of individual average influence as a function of
the difference between self and partner rating of estimation accuracy,
assessed at the end of the Social influence task.We found a positive rela-
tionship between performance ratings and mean influence in Computer

and Robot conditions, whereas there is no significant relationship in the
Human condition. Standardized beta values (β) and p values are derived
from the main effects of regression with mean influence as dependent
variable and condition as categorical factor

fully explained by the perceived relative ability of the two
interacting partners, suggesting the emergence of social nor-
mative dynamics in peer interaction. These results support
H2, highlighting important differences in the emergence of
social norms during interaction with human peers compared
to non-human agents.

7 Discussion

7.1 The Role of Prior Beliefs in Social Influence
Under Uncertainty

When interacting with other agents, we may or may not rely
on their advice based on the perception of our own and their
competence and performance in the current task. This is the
case for interaction with human peers, but also for interac-
tion with humanoid social robots or artificial agents [33, 97].
However, in interactive settingswe do not always have access
to objective and accurate information about individuals’ per-
formance and abilities. In this context, our prior beliefs on
the capabilities and relational properties of other agents can
bias our interpretation of their behavior and our willingness
to rely on information provided by them.

In the current study, participants performed a joint percep-
tual task in three between-subject conditions (Human, Robot
and Computer): participants in the three groups believed to
perform the taskwith different partners (a human participant,
a humanoid social robot iCub or a computer, respectively).
Participants had to estimate the length of visual stimuli
and, after each decision, could observe the estimate of their
respective partner. In fact, the estimates of the interacting
partners were systematically controlled by the same algo-
rithm in all the conditions. After feedback on the partner’s
judgment, participants had the possibility tomodify their own
response (final decision), revealing the influence exerted by
the partner on them.

Results reveal a significant effect of condition in the level
of susceptibility to the partner’s advice in participants’ final
decisions. In particular, participants in the Robot condition
were more influenced by the partner’s advice than those in
the other two conditions, although the actual accuracy of
the interacting partners was comparable across conditions.
This difference was particularly high at the beginning of the
experiment, whereas it tended to decrease along the experi-
ment after repetitive feedback about the partners’ responses.
These findings highlight the importance of prior beliefs about
the nature and the capabilities of other agents (human, robotic
or algorithmic) in determining reliance on them [98]. This is
especially true in all the contexts in which individuals cannot
interact repetitively for a sufficient period of time and can-
not receive relevant feedback signaling the competence of
the interacting partner(s). Several factors, in principle, might
have determined this result in our experimental paradigm.
Thefirst andmore interesting question concerns the drivers of
the difference between the Robot and the Human condition,
which might involve social influence mechanisms related to
(1) attribution of competence to the partner and (2) social
normative mechanisms modulating the overt expression of
susceptibility towards the partner.

7.2 Human vs. Robot Partner: Prior Beliefs
and Perception of Competence

Thefirst dimension concerns the impact of prior beliefs on the
perception of the accuracy and the reliability of the perceptual
and motor systems sustaining the partner’s response. In this
regard, we highlight that participants in the Robot condition
had a brief experience of the existence of a perceptual system
in the humanoid robot iCub before starting the experiment.
In particular, through a brief meeting with iCub, participants
were implicitly informed about the task-related capabilities
of the robot. Participants had the impression that iCub was
capable of making autonomous and accurate movements in
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order to reach and touch a touch-screen placed in front of it.
Moreover, participants understood that iCub was endowed
with visual perception and was indeed able to see the visual
stimuli shown on the tablet. We stress that, in this prelim-
inary encounter with the robot, participants did not receive
any direct or indirect clue about the actual accuracy of the
robot. Indeed, we believe that the higher levels of suscepti-
bility observed in the Robot condition are grounded in the
relatively high “a priori” confidence that humans genuinely
attribute to robotic systems [27], which can be maintained in
absence of feedback revealing failures or inefficient behav-
ior [65]. Concerning the Human condition, it is likely that
participants assumed that, in principle, they and their human
partner possessed very similar perceptual skills.However, the
observed (meta-cognitive) inability to assess own and other’s
performance in absence of accuracy feedback, reinforced
by the typical tendency to over-estimate own capabilities in
social contexts [5, 52], led to low confidence in the perceptual
abilities of the partner. These results are also consistent with
evidence in social decision-making revealing that humans’
susceptibility to information provided by others depends on
the relative confidence of the interacting agents and on the
possibility to communicate accurately their actual level of
confidence to each other [41, 99, 100].

Interestingly, the difference between Human and Robot
conditionswasmainlydrivenby the interactionbetweenprior
beliefs and initial signals about the partner’s competence.
Participants who had observed a relatively higher discrep-
ancy between their own and their partner’s responses, at
the very beginning of the experiment, behaved differently
depending on the experimental condition. Participants in the
Robot condition likely interpreted this high discrepancy as
an indication of their own fallibility in the task and decided
to follow the advice of the robot to a relatively higher extent;
conversely, participants in the Human condition interpreted
this high discrepancy as a signal of the unreliability of the
partner, leading to lower levels of influence. This findings
indicate that prior beliefs on other’s competence may have
a strong impact on the interpretation of minimal and uncer-
tain piece of evidence linked to others’ reliability.We believe
these findings to have important implications for research of
trust in HRI. This high “a priori” confidence in the robot’s
ability, which have an impact on repetitive interaction with
the robot itself, can represent a double-edged sword for
human–robot interaction. When, as in our experiment, the
robot produces reliable and effective behavior, this high con-
fidence in the robot could help the human partner in trusting
the robot during cooperative interaction, with positive impli-
cation for assistive real-life scenarios (see the paragraph “7.5
Implications”). However, the observed high “a priori” trust
in the robot competence could be detrimental in the presence
of faulty and unreliable robots, in line with several findings
showing over-trust in robots [28–31].

7.3 Human vs. Robot Partner: Social Norms
and Social Influence

The second dimension that could have an impact on par-
ticipants’ influence concerns their willingness to overtly
reveal their actual level of confidence in the partner’s compe-
tence. In this regard, we remind that, in the Social influence
task, participants were told that their partner would observe
their final decisions. Extensive evidence in the human–hu-
man interaction literature has demonstrated that the overt
expression of opinions and judgments in social contexts
is modulated by normative conformity and peer pressure
[6–8, 56–61, 101], which distort the process of weighting of
information provided by others depending on its actual relia-
bility, which is predicted by Bayesian theories of information
aggregation [58, 102]. This interpretation is corroborated
by our results that show no between-subject relationship
betweenperformance ratings (self–other) and influence in the
Human condition; conversely we found a strong relationship
between performance ratings and participants’ susceptibility
inComputer andRobot conditions.Moreover, within-subject
modulationof trial-by-trial influencebasedon the current dis-
tance from the partner’s response was much less pronounced
in the Human condition than in the other two experimental
conditions. These findings suggest that participants’ belief
of interacting with another human participant interfered in a
peculiar way with the process of weighting of information
by reliability. In particular, participants might have decided
to adjust their final estimates by a fair amount even when
participants believed the partner’s response to be unreliable
(i.e., when their responses were inconsistent between each
other), following normative principles. Conversely, in Robot
andComputer conditions participants’ reliance on the partner
rapidly and monotonically decreased as long as the distance
from the partner increased, highlighting a more systematic
decision process based on the estimation of the partner’s
accuracy in the current trial. This is consistent with extensive
evidence revealing that social influence in human–robot and
human–machine scenarios is primarily shaped by the percep-
tion of the agent’s competence and performance [22–26].

An interesting question is whether normative considera-
tion could have played a role also in the Robot condition.
Indeed, the human-like and social characteristics of the
humanoid robot iCub might have led participants to try to
please the robot by showing (relatively) higher levels of sus-
ceptibility. This hypothesis is motivated by studies showing
that humanoid robots can evoke automatic behavioral reac-
tions similar to those exerted by humans [103]. Actions of
both humanoid robots and humans trigger, in an observer,
similar responses in terms of motor resonance [104, 105],
anticipation [90] and speed adaptation [106] in simple action
observation tasks. Most importantly, extensive evidence has
revealed the emergence of pro-social behavior towards robots
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in adults [66, 68, 69, 72, 107] and children [108–111]. How-
ever, evidence revealing the emergence of purely normative
conformity in mixed (human–robot) dyads or groups is still
inconclusive. Several studies failed in revealing an effect of
normative conformity in adults while interacting with robots
[80–82, 85], although mechanisms of normative conformity
have been found in adult dyads [79] children and adults who
interact with a group of robots [80–83] and in groups of
one robot and several human adults [84]. Moreover, recent
evidence has shown that humans’ willingness to trust or imi-
tate robots’ behavior is tightly related with the uncertainty
of the task solution [85]. Furthermore, in our task, the robot
did not provide socially relevant signals to the participant,
since the only feedback concerning the behavior of the robot
consisted in its perceptual estimates, which had purely func-
tional value. In this context, it is unlikely that participants
used social normative considerationswhenmaking their final
decisions, in linewith the idea that the emergence of affective
and pro-social behavior towards robots requires explicit and
transparent social cues from the robot itself [79].

7.4 Social Influence in Interaction with a Computer
Algorithm

Concerning the Computer condition, it is unlikely that
mechanisms related to the attribution of perceptual–motor
competence and social norms played a role in the modula-
tion of participants’ social influence. In fact, the computer
partner did not possess any kind of perceptual or motor sys-
tem. We believe that participants’ influence in the Computer
condition depended entirely on the estimated performance
of the algorithm that produced the perceptual estimates, in
line with mechanisms of informational conformity [112],
and therefore was not influenced by social normative con-
siderations, as generally observed in interaction with fully
autonomous virtual agents [113]. In this regard, since partic-
ipants decreased their level of susceptibility as the distance
from the partner’s estimate increased, we hypothesize that
participants believed that the partner’s accuracy has been
varying according to a certain response function. Due to
the observed scarce self-assessment of own and partner’s
accuracy and consequent egocentric bias, the general aver-
age level of influence in the Computer condition was rather
low and, interestingly, significantly lower than that the one
observed in the Robot condition.

7.5 Implications

Our results show that humans’ a priori beliefs on robots’
competence could play a crucial role in their willingness
to accept help and advice from them. In our experimental
task, these beliefs modulate the perception, the evaluation

and the use of the robot’s advice under uncertainty. In partic-
ular, our findings reveal that the absence of feedback on the
robot’s performance does not prevent and even increase indi-
viduals’ probability to use the partner’s advice compared to
interaction with a human peer or a computer algorithm. This
phenomenon might play a role in real-life contexts involv-
ing assistive and service robots. In these scenarios, we need
robots that can be trusted by customers, workers or patients
that may benefit from the robot’s assistance. Specifically,
our study focuses on those situations in which individuals
cannot learn the reliability of the robot from direct experi-
ence (i.e., through feedback on its performance), but rather
should “trust” the advice-giving robot in the presence of
uncertainty on its competence. For instance, our findings can
have implications on service robots welcoming and assist-
ing customers in stores, hotels, restaurants, banks and other
commercial activities, or providing assistance in hospitals,
factories and schools. Service providers using robots in their
activities should be aware that, independently of the appear-
ance or behavior of robots themselves, the evaluation of their
competence is strongly biased by the customers’ prior beliefs
on the robot’s competence in the current task. These beliefs
may depend on several factors, including: previous experi-
ence with robots, general trust in technology, risk-aversion
and,most of all, the type of task inwhich the robot is involved.
Indeed, the type of service provided by the robot and the rel-
ative context is crucial in determining the individuals’ level
of a priori trust towards the robot itself, which may be high in
certain types of task, but low in others [77, 78]. Furthermore,
our findings show that prolonged access to the robot’s behav-
ior leads to a decrease in the impact of prior beliefs, even in
the absence of precise feedback on the robot’s performance.
Humans naturally estimate the robot’s competence observing
the robot’s behavior: if they have reasons to believe that the
robot is doing mistakes, they will likely and rapidly lose trust
in its competence and will stop to follow its advice [63–65].
This aspect should be always taken into account by entities
providing services consisting of repeated interactions with
the same robot, including banks, hospitals and companies
designing robots for domestic assistance.

8 Limitations

The present study investigated the role of prior beliefs
in social influence under uncertainty in the context of a
functional perceptual task. Recent evidence has highlighted
marked differences between functional and social tasks
concerning human willingness to rely on robots [77, 78].
Therefore, the results of our paper (e.g., higher influence in
the Robot condition) may change in tasks targeting “social”
abilities (e.g., theory of mind, moral judgment, empathy),
where humans may be expected to exhibit more refined skills
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than robots. For this reason, researchers should be careful in
generalizing our results to other kinds of interactive contexts,
especially those involving social skills.

Furthermore, we acknowledge that the current experi-
mental task did not require any physical interaction with
the robot. Furthermore, the robot did not produce any kind
of socially relevant behavior during the task. In this con-
text, it is not surprising that our results did not provide
clear evidence on the emergence of social normative mech-
anisms modulating social influence under uncertainty in
human–robot interaction. Although the peculiar features of
our experiment guaranteed the comparability of our experi-
mental conditions on a functional level, they require caution
concerning the generalizability of our results to scenarios
involving physical interaction between humans and robots,
especially if they entail affective processes. Indeed, exten-
sive findings in HRI [e.g., 67, 68, 73, 114] have revealed the
emergence of emotional and empathic reactions in human
participants during interaction with a physically present
robot, particularly if endowed with social-like and human-
like behavior. Researchers should be aware of the growing
literature on the social, affective and normative effects mod-
ulating human–robot interaction if they aim at comparing our
findings to other human–robot interaction scenarios.

9 Conclusions and Future Directions

The current study aimed at exploring the differences and
the similarities underlying social influence under uncer-
tainty in interaction with peers, social robots and computers,
using a unique and controllable experimental protocol. Our
results suggest that, in the absence of feedback about the
interacting partner’s performance, the influence exerted by
the partner is biased by participants’ prior beliefs about
its nature (human, robot or computer) and relative com-
petence, leading to distortions in the process of weighting
of socially-acquired information. Moreover, we show that
human–human social influence is characterized by the emer-
gence of social normative mechanisms that interfere with
a process of integration of information that is uniquely
based on its reliability. These normative phenomena do not
appear to emerge in human–robot social influence, which
is modulated by informational mechanisms similar to those
intervening in human–computer interaction.

Our findings offer novel insights in the understanding of
the informational and social normative mechanisms underly-
ing humans’ susceptibility to peers and autonomous agents.
We hope that our work could fuel further research on
social influence under uncertainty in human–robot interac-
tion. Although our experimental task specifically targeted
perceptual abilities, human–robot interaction is amuch richer
process requiring other types of skills (e.g., motor, cognitive,

social). Future studies may employ different tasks and inter-
active scenarios to understand the role of prior beliefs in other
types of robots’ behavior, pointing in the direction of a more
integrated and exhaustive view of human–robot social influ-
ence. For instance, future works may investigate the impact
of social and affective signals produced by social robots on
social influence under uncertainty.

Future studies may also try to control and manipulate task
difficulty and participants’ uncertainty in order to understand
the circumstances underwhich individualsmay bemorewill-
ing to rely on robotic partners. Furthermore, future studies
may enrich the investigation of human–robot interaction by
allowing robots themselves to express their own level of con-
fidence in the human partner’s abilities [79, 115], in line with
recent cognitive architectures modelling human–robot trust-
based behavior from a robot-centered perspective [116, 117].
These dynamics may reveal crucial in the design of robotic
agents that could effectively act as collaborative companions
in contexts such as healthcare [16, 18], rehabilitation [118],
elderly people assistance [17], customer care [19, 119] and
education [20, 21].
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