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Identifying effective guaranteed connections in a
multimodal public transport network

Daniel Sparing · Rob M.P. Goverde

Abstract Minimizing transfer waiting time is important in making public
transport networks more attractive. A guaranteed transfer, with the departing
vehicle waiting on moderately delayed arriving vehicles at a transfer node, is an
effective way to reduce waiting times at transfers between low frequency public
transport lines. This secondary train delay comes at the cost of a new delay
for non-transferring passengers. The method described in this paper, based
on max-plus algebra, classifies potential connections based on their feasibility
for given initial delays, in order to help operational decisions on-line and to
assist public transport companies off-line in identifying transfers vulnerable
to delays. A case study shows the applicability of the approach for a real-life
multimodal network.
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1 Introduction

Public transport users prefer direct, short, high-frequency services in order to
minimize travel time, waiting time and inconvenience. On the other hand, it is
neither possible nor efficient to provide direct connections between all origin
and destination pairs. Similarly, high-frequency services are not justified by
demand on all public transport routes. Therefore it is inevitable for any public
transport network to include some transfer connections between low frequency
lines.
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A measure to tackle the issue of long transfer waiting times is timed trans-
fers: a timetable which synchronizes arrival and departure times of different
lines in order to make the waiting time significantly lower than the head-
way. However, in case of arrival delays, timed transfers can actually result in
a higher overall waiting time than in the case of uncoordinated timetables.
Therefore, a timed transfer can additionally be guaranteed when a departing
vehicle waits for moderately delayed arriving vehicles. A guaranteed transfer
significantly improves the travel experience of transferring passengers while
causing only relatively mild delays for other passengers. Nonetheless, there is
a cost to guaranteed transfers and this cost also depends on the scheduled
slack times in the timetable of the departing vehicle; in other words, on how
fast the departure delay can be absorbed.

This connection management has already received significant attention in
literature, with different modelling assumptions and target functions. Knop-
pers and Muller (1995) examine when timed transfers are beneficial with re-
spect to frequency and reliability conditions. Goverde (1998) focuses on train
networks with predefined connections and makes a distinction between wait-
ing time in vehicles and on platforms. Heidergott and De Vries (2001), also
describe interconnected train networks and introduce some heuristics to re-
duce the solution space created by multiple connections. Ginkel and Schöbel
(2007) use a hybrid criteria of passenger volumes for a missed connection and
vehicle delay for a maintained connection. For a further review of connection
management literature, we refer to Ginkel and Schöbel (2007).

This paper uses efficient delay propagation methods based on the max-plus
algebra approach to identify connections at risk for a given delay scenario. By
defining a subset of the full public transport network as the controllable com-
ponent, the scope of the calculations for optimal control is significantly smaller
than the whole network where initial delays are taken into account. An ob-
jective function based on passenger delays caused by both missed connections
and arrival delays is used.

The paper is organised as the following. Section 2 describes the mathemat-
ical model for periodic public transport networks and the max-plus algebra
representation. Section 3 explains the approaches to reduce the solution space
via defining significant connections and splitting the network to controllable
and uncontrollable parts. Section 4 describes a case study based on a real-life
network and Section 5 concludes the paper.

2 The periodic public transport network model

A public transport network operating according to a periodic schedule can
be modelled as a discrete-event dynamic system (Goverde 2010) as follows.
Let T be the timetable period, often T = 60 min and i a certain periodic
timetable event such as a departure, arrival or passage at a station. Then
xi (k) is the event time of event i scheduled in period k. Hence, if k = 0
represents the initial period [0, T ), then k = 1 represents the next period
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[T, 2T ), and in general xi (k) is scheduled in period [kT, (k + 1)T ). Let D, A
and P denote a departure, arrival, and passing event, respectively. Then an
event i can be identified by a triple of attributes i = (d0i , Si, Li, Ti), where d0i
is the initial scheduled event time, Si is the station of the event, Li the line,
and Ti ∈ {A,D,P} is the event type. Note that di denotes either a scheduled
departure, arrival or passage time.

2.1 Schedule constraints

The public transport timetable defines scheduled event times di (k) for the
departure, arrival and passing events i. While early arrival and passing events
are usually allowed, early departures are typically forbidden in most public
transport networks. This results in the constraints

xi (k) ≥ di (k) , i ∈ {i : Ti = D}.

Recall that {i : Ti = D} is the set of departure events.

2.2 Precedence constraints

The successive events on a given vehicle journey are connected by activities
with given minimum process times like minimum running, dwell, and layover
times. Moreover, infrastructure restrictions – especially on railway infrastruc-
ture – may imply that events of different lines using the same piece of infras-
tructure can only take place with sufficient minimum headway time elapsed
between them, and moreover, the timetable fixes an order of the vehicles. Such
constraints can be following trains on the same railway track, merging or cross-
ing trains at a railway junction, or trains of opposite direction passing at loops
on single track lines.

Both journey and infrastructure constraints can be defined between any
departure, arrival, or passing event as a preceding constraint of the form

xi (k) ≥ aij(k) + xj (k − µij) , (1)

where aij(k) ≥ 0 is the minimum process time from event j to i in period k,
and µij ∈ N0 is the period shift, meaning that event i is scheduled µij periods
later than j, with µij = 0 thus implying that events i and j are in the same
period. Based on the scheduled event times, µij can be calculated as (Goverde
2007)

µij =
a0ij + d0j − d0i

T
,

where a0ij is the scheduled process time given in full minutes and d0i , d
0
j are the

scheduled event times in the initial period. Note that a0ij > aij(k) in case of a
positive time reserve for the given process. For any given network it is possible
to transform the model, by adding dummy events, so that µij ∈ {0, 1} for all
(j, i) (Goverde 2005).
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2.3 Controllable connections

Connection constraints describe the interdependency of an arrival event of
one line and a departure event of another line because of a shared resource
(vehicle or crew) or because of a guaranteed passenger transfer. Vehicle or
crew constraints are hard connections that cannot be relaxed, so they are also
modelled as a precedence constraint (1) from an arrival to a departure event.
On the other hand, some passenger transfers can be seen as ‘soft’ connections,
or controllable, that can be activated or not based on the actual vehicle delays.

These soft connections can be modelled using the decision variables δij (k) ∈
{0,−∞}, which mean that the controllable connection from event j (k − µij)
to i (k) is active if δij (k) = 0 and inactive if δij (k) = −∞. This is modelled
as

xi (k) ≥ aij(k) + δij (k) + xj (k − µij) .

Note that an inactive soft connection is broken while an active connection
implies a guaranteed transfer.

We assume that a list C of controllable connections is available. Note that
a controllable connection is a pair (j, i) of an arrival event j and a departure
event i with a given minimum transfer time aij ≥ 0 and a decision variable
δij ∈ {−∞, 0}. Not all arrival/departure pairs of different lines at a given
station are generally defined as a connection. In particular, a minimum transfer
time must be available in the timetable to enable the transfer in punctual
operations and moreover a maximum waiting time applies up to which we still
speak of a (controllable) connection. If a a list of possible connections is not
available then we may generate a list from the timetable. Assume that the
minimum transfer time tmin for a given arrival and departure platform pair is
given, and that the maximum acceptable waiting time wmax is defined. Then,
the set of possible soft connections is given as

C = {(j, i)|Tj = A, Ti = D,Sj = Si, Lj 6= Li, (d
0
i−d0j−tmin) mod T < wmax}.

In case of such a generated connection list, however, extra care has to be taken
to filter out potential connections which are not attractive to the passengers.
This is possible by taking into account passenger flows.

2.4 Max-plus algebra representation

Discrete event systems as described above can be formulated and analysed
effectively in max-plus algebra (Heidergott et al 2005). In particular, max-
plus models have been applied successfully in the evaluation of periodic railway
timetables (Braker 1993; Goverde 2007).

Max-plus algebra is an algebraic structure defined on Rmax := R ∪ {−∞}
with the max operator and addition instead of addition and multiplication
in conventional algebra, respectively. This structure satisfies the properties of
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an idempotent semiring, see e.g. Heidergott et al (2005). That is, max-plus
addition and multiplication are defined for a, b ∈ Rmax as

a⊕ b := max (a, b) and a⊗ b := a+ b.

Matrix addition ⊕ and matrix multiplication ⊗ are defined analogous to con-
ventional algebra, i.e., for matrices A,B ∈ Rn×nmax

(A⊕B)ij := aij ⊕ bij = max(aij , bij)

(A⊗B)ij :=

n⊕
k=1

(aik ⊗ bkj) = max
k=1,...,n

(aik + bkj).

The precedence and controllable connection constraints above can be rewrit-
ten using max-plus algebra notation as follows. Let Π denote the set of all
precedence constraints, including hard connections, and C the set of all con-
trollable connections. Then the model becomes in max-plus algebra

xi (k) =
⊕

(j,i)∈Π

(aij ⊗ xj(k − µij))
⊕

(l,i)∈C

(ail ⊗ δil(k)⊗ xl(k − µil))⊕ di(k).

This model can be written in vector notation as follows. Collect all event
times xi (k) in the event time vector x(k) = (x1(k), . . . , xn(k))′ ∈ Rn, and
define the (uncontrollable) matrices A0, A1 ∈ Rn×nmax as

(Al(k))ij =

{
aij(k) if (j, i) ∈ Π and l = µij
−∞ otherwise,

and the controllable matrices B0, B1 ∈ Rn×nmax as

(Bl(u(k), k))ij =

{
aij(k) + δij(k) if (j, i) ∈ C and l = µij
−∞ otherwise.

The vector u(k) is the control vector in period k which determines which
of the connections in period k are broken and which are not, i.e., u(k) sets
δij(k) = −∞ for all connections (i, j) ∈ C that are broken and δij(k) = 0
otherwise. Then the model can be written in matrix notation as

x(k) = A0(k)x(k)⊕A1(k)x(k−1)⊕B0(u(k), k)x(k)⊕B1(u(k), k)x(k−1)⊕d(k).
(2)

Alternatively, this can be expressed as

x(k) = [A0(k)⊕B0(u(k), k)]x(k)⊕ [A1(k)⊕B1(u(k), k)]x(k − 1)⊕ d(k).

The model (2) can now be used to find the delay propagation from any given
time point for any given past delays (Goverde 2010). Without loss of generality,
we may assume a given initial condition x(0) = x0, where x0 = d(0) + z(0)
with z(0) ≥ 0 the vector of delays in the initial period. From this given initial
condition, the event time estimates x(k) can now be calculated for any k ≥ 1
up to a suitable time horizon K ≥ 1. In particular, a lower bound of all
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(secondary) delays can be obtained by braking all controllable connections,
i.e., δij = −∞ for all (j, i) ∈ C, or equivalently, B0(u(k), k) and B1(u(k), k)
having all entries equal to −∞. Then (2) reduces to

x(k) = A0(k)x(k)⊕A1(k)x(k − 1)⊕ d(k), x(0) = x0. (3)

By guaranteeing any additional connection (j, i) ∈ C the total train delay
may increase, but the passenger waiting time might decrease depending on the
transferring and onboard passenger volumes and the amount of delay recovery.

2.5 Passenger delay estimations

Modelling or forecasting passenger flows for disturbed operations is difficult,
especially taking into account the mode choice which is also affected, see Van
Eck (2011) for a multimodal traffic model taking into account simultaneous
mode choice. On the other hand, simply counting the number of maintained
and broken connections is not sufficient as an objective since the demand and
attractiveness of different connections can vary significantly. Therefore, at least
a rudimentary model for passenger demand is required.

Assume that an estimate of the number of boarding and alighting passen-
gers is known for every stop of every service. Denote by wi(k) the number of
boarding or alighting passengers in period k, depending on the event type Ti,
i.e., wi(k) is the number of alighting passengers for {i : Ti = A} and the num-
ber of boarding passengers for {i : Ti = D}, while by convention wi(k) = 0
for passage events {i : Ti = P}. Furthermore, for each controllable connection
(j, i) ∈ C let wij(k) be the number of transferring passengers from arrival
event j to departure event i in period k. These passenger count estimates can
be provided by previous passenger counts or traffic flow models. See Hilderink
et al (2010) for a traffic flow model that models public transport passenger
flows at this detail.

If detailed passenger counts are not available or not available over diffferent
periods over a day, then we may resort to fixed weights wi and wij measuring
the relative importance of stops and connections. Such passenger counts allow
for a reasonable comparison of total passenger delays in case of maintained
or broken connections. In case of a maintained connection with a delayed
departure, the total arrival passenger delay on the given line is the sum of
vehicle arrival delays weighted by the number of alighting passengers per stop.
The total arrival delay in the network is given by

K∑
k=1

∑
j∈{j:Tj=A}

wj(k) ·max (0, xj(k)− dj(k)) ,

where the maximum of delay and zero is required so that early arrivals do not
count. Moreover, the delay due to the missed connections can be estimated as

K∑
k=1

∑
(j,i)∈M(k)

wij(k)cj ,



Identifying effective guaranteed connections in a multimodal network 7

with cj the cycle time of line i and M(k) the set of missed connections in
period k defined as

M(k) = {(j, i) ∈ C : xi(k)− xj(k − µij)− aij < 0}. (4)

These delays can be compared for different connection controls u(k).

2.6 The optimization model

The goal of the optimization model is to find the optimal decision parameters
δij(k) for each controllable connection (j, i) and period k ≥ 1 so that the
estimated total passenger delay caused by either maintaining or braking a
controllable connection is minimal. Input parameters are the line cycle times
cj , the passenger weight wi(k) for each arrival event i, and the transfer weight
wij(k) for each connection (j, i) ∈ C, as well as the initial condition including
delays x0, and a time horizon K ∈ N. Then the optimization problem becomes

min

K∑
k=1

 ∑
j∈{j:Tj=A}

wj(k) ·max (0, xj(k)− dj(k)) +
∑

(j,i)∈M(k)

wij(k)cj

 ,

subject to

xi(k) ≥ di(k) i ∈ {i : Ti = D}, k = 1 . . . ,K
xi(k) ≥ aij(k) + xj(k − µij) (j, i) ∈ Π, k = 1 . . . ,K
xi(k) ≥ aij(k) + δij(k) + xj(k − µij) (j, i) ∈ C, k = 1 . . . ,K
δij(k) ∈ {−∞, 0} (j, i) ∈ C, k = 1 . . . ,K
x(0) = x0,

where M(k) is the set of missed connections as defined in (4).

The problem is solved using the max-plus interpretation where the delay
propagation can be computed very quickly. The constraint set of the above
optimization problem can therefore be formulated equivalently as

x(k) = A0(k)x(k)⊕A1(k)x(k − 1)⊕ . . .
B0(u(k), k)x(k)⊕B1(u(k), k)x(k − 1)⊕ d(k) k = 1, . . . ,K

x(0) = x0,

where u(k) ∈ {−∞, 0}|C| is a |C|-dimensional control vector encoding the
connection decisions. Note that |C| denotes the size of C, i.e., the number of
controllable connections.



8 Daniel Sparing, Rob M.P. Goverde

3 Solution approach

The solution to the optimization problem may be found using a standard
mixed-integer programming solver. For problems with many controllable con-
nections we may explore the (max-plus) structure of the problem and use a
branch-and-bound procedure to find the optimal combination of decision vari-
ables. In both cases, reducing tthe dimension of the problem will help solving
it more quickly. In this section we give two preprocessing steps that can be
used for this aim.

3.1 Identifying significant connections

The decision variables are the ‘binary’ variables δij(k) corresponding to the
controllable connections. In a preprocessing step we may reduce this set to
only those connections that are significant to the optimization problem. For
this we look at the output of the initial delay propagation for the given initial
delay scenario and all connections broken. Then the controllable connections
can be categorized depending on the initial delay scenario and a maximum
allowable departure delay dmax as follows.

– Automatically maintained connections: those arrival-departure pairs where
a transfer is possible despite the delays, without further delay of the de-
parture vehicle.

– Significant connections: Those connections that are maintained by delaying
the departing vehicle by at most dmax.

– Automatically broken connections: Those connections that must be can-
celled otherwise the departing vehicle will be delayed by more than dmax ≥
0.

The set of significant connections Cs is thus defined as

Cs = {(j, i, k) ∈ C : 0 ≤ xi(k)− aij(k)− xj(k − µij) ≤ dmax, k = 1, . . . ,K} ,

where the event times x(k) are computed using the delay propagation model
(3) with all connections broken. Note that Cs contains the significant control-
lable connections for each period separately. The parameter dmax is called the
synchronization margin in Knoppers and Muller (1995). In general, these syn-
chronization control margins may be different for different connections (Goverde
1998). However, in our model it is just a fixed upper bound on the allowed
delay, while the outcome of the optimization will determine how long a con-
necting vehicle will wait on a delay feeder train. For instance, a departing
vehicle with ample running time supplement and buffer time ahead may wait
longer than a departing vehicle with a tight schedule or a capacity bottle neck
nearby.

Hence, a shortlist of significant connections can be obtained rapidly from
combining the delay propagation algorithm with a (generated) controllable
connection list and using appropriate thresholds. In real-time online usage,
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the significant connections can be retrieved given the actual delays, thus help-
ing drivers and controllers focus on those transfers where decisions have to
be made. In off-line timetable evaluation usage, the significant connections,
for given realistic delay scenarios, represent the most vulnerable transfers. A
timetable planner may then try to modify the timetable to improve the relia-
bility of these transfers. The latter topic can also be done in an optimization
context which is another current research topic.

3.2 The controllable subnetwork

Another way to decrease the problem size is a partitioning of the network in
a controllable and an uncontrollable subnetwork. The controllable subnetwork
is a set of lines on which dispatching actions can be made, such as delaying
a departure. The uncontrollable subnetwork consists of the remaining lines
on which the expected user of the decision support model has no influence.
Typically, no vehicle or crew member operates on both subnetworks, while
passenger transfers can be defined between the two subnetworks.

As an illustrative example, the controllable subnetwork can be a bus net-
work controlled by a bus dispatcher, while the uncontrollable subnetwork is a
train network. In this case, it is realistic to assume that the dispatchers of the
bus company have influence on the bus network but not on the train network.

The advantage of this separation is that the optimization problem only
has to take the controllable subnetwork into account. Only the initial delay
propagation computation with all controllable connections broken must be run
for the whole network to find the delays at the boundaries of the controllable
network. In the next step, the effect of the different combinations of broken
or maintained controllable connections can be evaluated much faster by only
calculating delays on the smaller, controllable subnetwork.

4 Case study

4.1 Example network

The example network consists of a regional bus network of 4 lines in the West
of the Netherlands as listed in Table 1 and the Dutch national railway network
timetable which have several stations in common, see Figure 1. In this case
study, the bus network will be the controllable subnetwork, while the train net-
work is the external, non-controllable subnetwork. The timetables, minimum
process times and passenger load values are obtained from different sources
and are based on different years between 2004 and 2011. As accurate measured
or modelled passenger count data was not available, example passenger flow
values were generated for testing reasons. Therefore, the goal of the case study
network is not to reflect a real life situation on a given day perfectly, but to
provide an example of realistic size and complexity, see Table 2.
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Fig. 1 Network of four bus lines and connecting train lines in the Netherlands

Table 1 List of bus lines

line from to Cycle time
370 Schiphol Alphen aan den Rijn 15 min
380 Alphen aan den Rijn Den Haag Centraal 30 min
382 Boskoop Den Haag Centraal 60 min
383 Capelle a/d IJssel Den Haag Centraal 60 min

Table 2 Characteristics of the example controllable subnetwork

Vehicle journeys 16/hour
Stops 57
Transfer stations 6
Events 440
Controllable connections 95
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Table 3 Transfer stations

station transfer time (min)
Boskoop 4
Alphen aan den Rijn 5
Schiphol 4
Den Haag Centraal 5
Nieuwekerk a/d IJssel 5

4.2 Candidate transfers

We assume that initially no guaranteed connections are offered between the bus
and the train network, i.e., no transfer constraints are defined. We therefore
define a list of candidate transfers between arriving trains and departing buses.

As a first step, we expect that there is a list of stop pairs available between
bus stops and train stations between which a transfer is physically possible in
reasonable time, as well as the estimated minimum transfer time tl required
at station Sl between alighting from a train to boarding a bus (Table 3).

Furthermore, we define wmax = 6 min as the maximum acceptable waiting
time for a connection. Therefore the connection list C includes all (j, i) arrival-
departure pairs at transfer station Sl, with minimum transfer time tl, where
tl ≤ di − dj mod T ≤ tl + wmax.

4.3 Initial delay scenario

To investigate a concrete network status including delay, assume that the
delays are known over a full timetable period k = 0. Without loss of generality,
we assume that the moment for the following calculations is the end of period
k = 0: initial delays within period k = 0 are known, while consecutive delays
in the successive periods k ≥ 1 can be calculated using the max-plus model,
taking into account different dispatching actions. For our calculation purposes,
a random initial delay vector is calculated, based on a delay probability p =
10% for each departure event and a uniform delay distribution between 0 and
10 minutes.

4.4 Significant connections

The set of significant connections Cs is determined using dmax = 4 and 20
different delay scenarios generated as described in Section 4.3. Figure 2 shows
the classification of connections in the first period. The results show that
although there are 95 controllable connections in the model, only about 10−
30% of them are significant and require more attention.

Another insight that can be gained from such results, assuming that not
random, but realized or simulated delay distributions are used, is a statistic of
how often a given connection becomes significant or broken beyond the maxi-
mum departure delay limit. Figure 3 shows for each connection, how often it
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Fig. 2 Connection classifications for the 20 random initial delay scenarios

Fig. 3 Histogram of significant connections

becomes significant or automatically broken over the same series of 20 delay
scenarios. A connection which would be broken exactly once for any delay sce-
nario would have a value of 100%. Such results, together with information on
the demand, help timetable planners and operating staff to identify vulnerable
transfers requiring more attention.

4.5 Optimal connection control

For a given delay scenario and set of significant connections, the solution of
the optimization problem (Section 2.6) returns the combination of maintained
or cancelled transfers with the lowest total passenger delay. In our example,
a set of initial delays results in 17 significant and 2 automatically broken
connections. Using generated example passenger count data, Table 4 shows
the total passenger arrival delay and the total passenger transfer delay in case
of all significant connections cancelled or maintained. Furthermore, Figure 4
and Figure 5 shows the vehicle and passenger delays, respectively, in case of
all connections cancelled. It is visible that even in case of moderate vehicle
delays, passenger delays can be significant because of missed transfers.

In case of all connections maintained, the total passenger transfer delay
is significantly smaller, as the passengers of the maintained connections do
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Table 4 Optimization results

control strategy arrival delay transfer delay total delay
(hh:mm:ss) (hh:mm:ss) (hh:mm:ss)

all connections cancelled 51:14:13 83:15:00 134:29:13
all connections maintained 65:36:03 06:00:00 71:36:03
optimal control 58:07:51 07:15:00 65:22:51

not experience transfer delay anymore. This comes at the relatively lower
cost or increased arrival delays. Note that there are still arrival delays for
all significant connections cancelled, because of the initial delays within the
controllable network; while there is some transfer delay even for all significant
connections maintained, due to the two automatically broken connnections.

The optimal control strategy consists of a mixture of some 6 significant
connections maintained and the other 11 cancelled. The final row in Table 4
shows the this control strategy, with the lowest total delay. Figure 6 shows
passenger delay for the optimal control, where the extent of total passenger
delay is reduced as compared to the first case without guaranteed connections
(Figure 5).

5 Conclusion

The presented numerical model can assess the influence of guaranteed transfers
on timetable stability in case of delays. The use of max-plus algebra results in
very short computational times, even on real-life networks. This approach is
suitable to support both long-term timetable coordination between different
operators and real-time analysis of delay propagation given a set of actual
delays.
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Fig. 4 Vehicle delays if all connections cancelled

Fig. 5 Passenger delays if all connections cancelled

Fig. 6 Passenger delays in case of optimal control


