Skip to main content
Log in

A structure evolving learning method for fuzzy systems

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

This paper proposes a structure evolving learning method for fuzzy systems. The mechanism of the algorithm is that it is an error-reducing driven learning method. The proposed algorithm starts with a simple fuzzy system and evolves the system structure by adding more fuzzy terms and rules to reduce the model errors in a ‘greedy’ way. The main features of the proposed algorithm are summarized as three points. Firstly, it can automatically determine and control the number and location of fuzzy terms by following the error-reducing driven evolving process to achieve the desired accuracy. Secondly, it adds new fuzzy terms and rules by evenly distributing error to each sub-region aiming at an efficient set of fuzzy rules. Thirdly, it uses triangular membership functions with regular partitions and leads to fuzzy system models with good transparency and interpretability. Three benchmark examples are given to illustrate the advantages of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angelov P (2002) Evolving rule-based models: a tool for design of flexible adaptive systems. Springer, Heidelberg

    MATH  Google Scholar 

  • Angelov P, Filev D (2004) An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Trans Syst Man Cybern B Cybern 34:484–498

    Article  Google Scholar 

  • Angelov P, Filev D (2005) Simpl_eTS: a simplified method for learning evolving Takagi–Sugeno fuzzy models. In: The 14th IEEE international conference on fuzzy systems, pp 1068–1073

  • Angelov P, Filev D, Kasabov N, Cordon O (eds) (2006) Evolving Fuzzy Systems. In: Proceedings of the 2006 international symposium on evolving fuzzy systems EFS’06, IEEE Press

  • Bernard K, Lázsló L (1981) Mathematical structures underlying greedy algorithms. In: Gecseg F (ed) Fundamentals of computation theory: Proceedings of the 1981 international FCT-conference. Lecture Notes Comput Sci, vol 117. Springer, Berlin, pp 205–209

  • Deng D, Kasabov N (2000) Evolving self-organizing maps for online learning, data analysis and modeling. In: Amari SI. Giles CL, Gori M, Piuri V (eds) Proceedings IJCNN 2000, Neural networks neural computing, new changes perspectives new millennium, vol VI, New York, pp 3–8

  • Ding YS, Ying H, Shao SH (2000) Necessary conditions on minimal system configuration for general MISO Mamdani fuzzy systems as universal approximators. IEEE Trans Syst Man Cybern B 30(6):857–864

    Google Scholar 

  • Emami MR, Turksen B, Goldenberg AA (1998) Development of a systematic methodology of fuzzy modeling. IEEE Trans Fuzzy Syst 6(6):341–361

    Google Scholar 

  • Fritze B (1995) A growing neural gas network learns topologies. Adv Neural Inf Process Syst 7:1–8

    Google Scholar 

  • http://lib.stat.cmu.edu/datasets/

  • Ishibuchi Nozaki HK, Tanaka H (1993) Efficient fuzzy partition of pattern space for classification problems. Fuzzy Sets Syst 59:295–304

    Article  Google Scholar 

  • Jack E (1971) Matroid and the greedy algorithm. Math Program 1:127–136

    Article  MATH  Google Scholar 

  • Kadirkamanathan V, Niranjan M (1993) A function estimation approach to sequential learning with neural networks. Neural Comput 5:954–975

    Article  Google Scholar 

  • Kasabov N (1998) Evolving fuzzy neural networks–algorithms, applications and biological motivation. In: Yamakawa T, Matsumoto G (eds) Methodologies for conception design and application of soft computing. World Scientific, Singapore, pp 217–274

    Google Scholar 

  • Kasabov N (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(1):144–153

    Article  Google Scholar 

  • Kim E, Park M, Ji S, Park M (1997) A new approach to fuzzy modeling. IEEE Trans Fuzzy Syst 5(3):328–337

    Article  Google Scholar 

  • Leng G, Prasad G, McGinnity TM (2004) An on-line algorithm for creating self-organising fuzzy neural networks. Neural Netw 17(10):1477–1493

    Article  MATH  Google Scholar 

  • Leng G, McGinnity TM, Prasad G (2005) An approach for on-line extraction of fuzzy rules using a sefl-organising fuzzy neural network. Fuzzy Sets Syst 150(2):211–243

    Article  MATH  MathSciNet  Google Scholar 

  • Lin F-J, Shen P-H (2006) Adaptive fuzzy-neural-network control dsp-based permanent magnet linear synchronous motor servo drive. IEEE Trans Fuzzy Syst 14(4):481–495

    Article  MathSciNet  Google Scholar 

  • Lu Y, Sundararajan N, Saratchandran P (1997) A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks. Neural Comput 9:461–478

    Article  MATH  Google Scholar 

  • Mousavi SJ, Ponnambalam K, Karray F (2007) Inferring operating rules for reservoir operations using fuzzy regression and ANFIS. Fuzzy Syst Sets 158(10):1064–1082

    Article  MATH  MathSciNet  Google Scholar 

  • Nelles O, Fink A, Isermann R (2000) Local linear model trees (LOLIMOT) toolbox for nonlinear system identification. In: Proceedings of 12th IFAC symposium system Identification Santa Barbara

  • Pedram A, Jamali MR, Pedram T, Fakhraie SM, Lucas C (2006) Local Linear Model Tree (LOLIMOT) reconfigurable parallel hardware, in transactions on engineering. Comput Technol 13:1305–5313

    Google Scholar 

  • Pedrycz W (2006a) Logic-based fuzzy neurocomputing with unineurons. IEEE Trans Fuzzy Syst 14(6):860–873

    Article  Google Scholar 

  • Pedrycz W (2006b) Linguistic models as a framework of user-centric system modeling. IEEE Trans Syst Man Cybern A 36(4):727–745

    Article  Google Scholar 

  • Platt J (1991) A resource allocating network for function interpolation. Neural Comput 3:213–225

    Article  MathSciNet  Google Scholar 

  • Qin H, Yang SX (2007) Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images. Fuzzy Systems Sets 158(10):1036–1063

    Article  MATH  MathSciNet  Google Scholar 

  • Rung HJ, Sundararajan N, Huang GB, Saratchandran P (2006) Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy System Sets 157:1260–1275

    Article  Google Scholar 

  • Sugeno M, Yasukawa T (1993) A fuzzy-logic based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1(1):7–31

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    MATH  Google Scholar 

  • Tsekouras GE (2005) On the use of the weighted fuzzy C-means in fuzzy modeling. Int J Adv Eng Softw 36:287–300

    Article  MATH  Google Scholar 

  • Wang L-X (1992) Fuzzy Systems are Universal Approximators. In: Proceedings of 1st IEEE Conference on Fuzzy Systems, San Diego, pp 1163–1169

  • Wang L-X (1997) A course in fuzzy systems and control. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  • Wang L-X, Mendel JM (1992) Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans Neural Netw 3:807–814

    Article  Google Scholar 

  • Wang L, Yen J (1999) Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter. Fuzzy Sets Syst 101:353–362

    Article  MathSciNet  Google Scholar 

  • Wang D, Zeng X-J, Keane JA (2010) An evolving construction scheme for fuzzy systems. IEEE Trans Fuzzy Syst 18(3)

  • Wu S, Er MJ (2000) Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Trans Syst Man Cybern B 30:358–364

    Google Scholar 

  • Wu S, Er MJ, Gao Y (2001) A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Trans Fuzzy Syst 9:578–594

    Article  Google Scholar 

  • Zeng X-J, Singh MG (1994) Approximation theory of fuzzy systems—SISO case. IEEE Trans Fuzzy Syst 2:162–176

    Article  Google Scholar 

  • Zeng X-J, Singh MG (1995) Approximation theory of fuzzy systems—MIMO case. IEEE Trans Fuzzy Syst 3:219–235

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Associate Editor and reviewers for their very detailed comments and very valuable suggestions which have helped us to improve the paper both in the presentation and methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Zeng.

Appendix

Appendix

Proof of Theorem 1

We assume that the sub-region sub-region m is selected for splitting, and the splitting point is \( {\mathbf{x}}^{splitting} = ( {x_{1}^{splitting}}, x_{2}^{splitting}, \ldots, x_{n}^{splitting} ), \) and the selected attribute for splitting is x s . Now we prove that for any given input vector \( {\mathbf{x}} = (x_{1},x_{2}, \ldots,x_{n} ), \) the output o old(x) for the old fuzzy system F old(x) (before sub-region splitting), is the same as the output o new(x) for the new fuzzy system \( \hat{F}^{new} ({\mathbf{x}}) \) after sub-region splitting.

1.1 Part A. Proof for Mamdani fuzzy system

1.1.1 Part A.I

If \( {\mathbf{x}} = (x_{1},x_{2}, \ldots,x_{n} ) \) is located in sub-region c , and c ≠ m, then the parameters \( y_{c}^{{k_{1} k_{2}, \ldots, k_{n} }} \) and membership functions \( \mu_{c,i}^{{k_{i} }} (x_{i} ) \) for sub-region c (c ≠ m) do not change after sub-region splitting.

$$ o^{new} ({\mathbf{x}}) = o^{old} ({\mathbf{x}}) = \sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i = 1}^{n} \mu_{c,i}^{{k_{i} }} (x_{i} )} \right) \times y_{c}^{{k_{1} k_{2}, \ldots, k_{n} }} } $$
(18)

1.1.2 Part A.II

If \( {\mathbf{x}} = (x_{1},x_{2}, \ldots,x_{n} ) \) is located in sub-region m , then before sub-region splitting, the model output of F old(x) is,

$$ \begin{gathered} o^{old} ({\mathbf{x}}) = \sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i = 1}^{n} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y_{m}^{{k_{1} k_{2}, \ldots, k_{n} }} } \hfill \\ = \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y_{m}^{{k_{1} k_{2}, \ldots, k_{n} }} |_{{k_{s} = 0}} } } \right) \hfill \\ + \left( {{\frac{{x_{s} - b_{m,s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y_{m}^{{k_{1} k_{2}, \ldots, k_{n} }} |_{{k_{s} = 1}} } } \right) \hfill \\ \end{gathered} $$
(19)

We define,

$$ A_{0} = \sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y_{m}^{{k_{1} k_{2}, \ldots, k_{n} }} |_{{k_{s} = 0}} } $$
(20)
$$ A_{1} = \sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y_{m}^{{k_{1} k_{2}, \ldots, k_{n} }} |_{{k_{s} = 1}} } $$
(21)

Then,

$$ o^{old} ({\mathbf{x}}) = \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{0} + \left( {{\frac{{x_{s} - b_{m,s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{1} . $$
(22)
  1. (a)

    If \( x_{s} \in [ {b_{m,s},x_{s}^{splitting} } ), \) then after sub-region splitting, the model output of \( \hat{F}^{new} ({\mathbf{x}}) \) is,

    $$ \begin{gathered} o^{new} ({\mathbf{x}}) \hfill \\ = \left( {{\frac{{x_{s}^{splitting} - x_{s} }}{{x_{s}^{splitting} - b_{m,s} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y_{m}^{{k_{1} k_{2}, \ldots, k_{n} }} |_{{k_{s} = 0}} } } \right) \hfill \\ + \left( {{\frac{{x_{s} - b_{m,s} }}{{x_{s}^{splitting} - b_{m,s} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y^{{k_{1} k_{2}, \ldots, k_{s - 1} k_{s + 1}, \ldots, k_{n} }} } } \right) \hfill \\ \end{gathered} $$
    (23)

    Applying Eqs. 2022, we obtain,

    $$ o^{new} ({\mathbf{x}}) = \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{0} + \left( {{\frac{{x_{s} - b_{m,s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{1} $$
    (24)

    where \( x_{s}^{splitting} \) is the edge of the new sub-region created after splitting. However, b m,s and c m,s are the minimum and maximum value of the old sub-region_m before splitting.Therefore

    $$ o^{new} ({\mathbf{x}}) = o^{old} ({\mathbf{x}}). $$
    (25)
  2. (b)

    If \( x_{s} \in [ {x_{s}^{splitting},c_{m,s} } ), \) then after sub-region splitting, the model output of \( \hat{F}^{new} ({\mathbf{x}}) \) is,

    $$ \begin{gathered} o^{new} ({\mathbf{x}}) \hfill \\ = \left( {{\frac{{x_{s} - x_{s}^{splitting} }}{{c_{m,s} - x_{s}^{splitting} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y_{m}^{{k_{1} k_{2}, \ldots, k_{n} }} |_{{k_{s} = 1}} } } \right) \hfill \\ + \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - x_{s}^{splitting} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times y^{{k_{1} k_{2}, \ldots, k_{s - 1} k_{s + 1}, \ldots, k_{n} }} } } \right) \hfill \\ \end{gathered} $$
    (26)

    Applying Eqs. 2022, we obtain,

    $$ o^{new} ({\mathbf{x}}) = \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{0} + \left( {{\frac{{x_{s} - b_{m,s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{1} $$
    (27)

    therefore

    $$ o^{new} ({\mathbf{x}}) = o^{old} ({\mathbf{x}}) $$
    (28)

    By combining Eqs. 18 25, and 28,

    $$ o^{new} ({\mathbf{x}}) = o^{old} ({\mathbf{x}}). $$
    (29)

1.2 Part B. Proof for TS fuzzy system

1.2.1 Part B.I

If \( {\mathbf{x}} = (x_{1},x_{2}, \ldots,x_{n} ) \) is located in sub-region c , and c ≠ m, then the parameters \( a_{m,0}^{{k_{1} k_{2}, \ldots, k_{n} }},a_{m,1}^{{k_{1} k_{2}, \ldots, k_{n} }}, \ldots,a_{m,n}^{{k_{1} k_{2}, \ldots, k_{n} }} \) and membership functions \( \mu_{c,i}^{{k_{i} }} (x_{i} ) \) for sub-region c (c ≠ m) do not change after sub-region splitting.

$$ o^{new} ({\mathbf{x}}) = o^{old} ({\mathbf{x}}) = \sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i = 1}^{n} \mu_{c,i}^{{k_{i} }} (x_{i} )} \right) \times y_{c}^{{k_{1} k_{2}, \ldots, k_{n} }} } $$
(30)

1.2.2 Part B.II

If \( {\mathbf{x}} = (x_{1},x_{2}, \ldots,x_{n} ) \) is located in sub-region m , then before sub-region splitting, the model output of F old(x) is,

$$ \begin{gathered} o^{old} ({\mathbf{x}}) = \sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i = 1}^{n} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times \left( {a_{m,0}^{{k_{1} k_{2}, \ldots, k{}_{n}}} + \sum\limits_{i = 1}^{n} {a_{m,i}^{{k_{1} k_{2}, \ldots, k{}_{n}}} x_{i} } } \right)} \hfill \\ = \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times \left( {a_{m,0}^{{k_{1} k_{2}, \ldots, k{}_{n}}} + \sum\limits_{i = 1}^{n} {a_{m,i}^{{k_{1} k_{2}, \ldots, k{}_{n}}} x_{i} } } \right)|_{{k_{s} = 0}} } } \right) \hfill \\ + \left( {{\frac{{x_{s} - b_{m,s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times \left( {a_{m,0}^{{k_{1} k_{2}, \ldots, k{}_{n}}} + \sum\limits_{i = 1}^{n} {a_{m,i}^{{k_{1} k_{2}, \ldots k{}_{n}}} x_{i} } } \right)|_{{k_{s} = 1}} } } \right) \hfill \\ \end{gathered} $$
(31)

We define,

$$ A_{0} = \sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times \left( {a_{m,0}^{{k_{1} k_{2}, \ldots, k{}_{n}}} + \sum\limits_{i = 1}^{n} {a_{m,i}^{{k_{1} k_{2}, \ldots, k{}_{n}}} x_{i} } } \right)|_{{k_{s} = 0}} } . $$
(32)
$$ A_{1} = \sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times \left( {a_{m,0}^{{k_{1} k_{2}, \ldots, k{}_{n}}} + \sum\limits_{i = 1}^{n} {a_{m,i}^{{k_{1} k_{2}, \ldots, k{}_{n}}} x_{i} } } \right)|_{{k_{s} = 1}} } . $$
(33)

Then,

$$ o^{old} ({\mathbf{x}}) = \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{0} + \left( {{\frac{{x_{s} - b_{m,s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{1} $$
(34)
  1. (a)

    If \( x_{s} \in [ {b_{m,s},x_{s}^{splitting} } ), \) then after sub-region splitting, the model output of \( \hat{F}^{new} ({\mathbf{x}}) \) is,

    $$ \begin{gathered} o^{new} ({\mathbf{x}}) \hfill \\ = \left( {{\frac{{x_{s}^{splitting} - x_{s} }}{{x_{s}^{splitting} - b_{m,s} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times \left( {a_{m,0}^{{k_{1} k_{2}, \ldots, k{}_{n}}} + \sum\limits_{i = 1}^{n} {a_{m,i}^{{k_{1} k_{2}, \ldots, k_{n} }} x_{i} } } \right)|_{{k_{s} = 0}} } } \right) \hfill \\ + \left( {{\frac{{x_{s} - b_{m,s} }}{{x_{s}^{splitting} - b_{m,s} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times a_{new,0}^{{k_{1} k_{2}, \ldots, k_{s - 1} k_{s + 1}, \ldots, k_{n} }} } } \right) \hfill \\ \end{gathered} $$
    (35)

    Applying Eqs. 32, 34, 35, we obtain,

    $$ o^{new} ({\mathbf{x}}) = \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{0} + \left( {{\frac{{x_{s} - b_{m,s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{1} $$
    (36)

    therefore

    $$ o^{new} ({\mathbf{x}}) = o^{old} ({\mathbf{x}}). $$
    (37)
  2. (b)

    If \( x_{s} \in [ {x_{s}^{splitting},c_{m,s} } ), \) then after sub-region splitting, the model output of \( \hat{F}^{new} ({\mathbf{x}}) \) is,

    $$ \begin{gathered} o^{new} ({\mathbf{x}}) \hfill \\ = \left( {{\frac{{x_{s} - x_{s}^{splitting} }}{{c_{m,s} - x_{s}^{splitting} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times \left( {a_{m,0}^{{k_{1} k_{2}, \ldots, k{}_{n}}} + \sum\limits_{i = 1}^{n} {a_{m,i}^{{k_{1} k_{2}, \ldots, k{}_{n}}} x_{i} } } \right)|_{{k_{s} = 1}} } } \right) \hfill \\ + \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - x_{s}^{splitting} }}}} \right) \times \left( {\sum\limits_{{k_{1} k_{2}, \ldots, k_{n} }} {\left( {\mathop \Uppi \limits_{i \ne s}^{{}} \mu_{m,i}^{{k_{i} }} (x_{i} )} \right) \times a_{new,0}^{{k_{1} k_{2}, \ldots, k_{s - 1} k_{s + 1}, \ldots, k_{n} }} } } \right) \hfill \\ \end{gathered} $$
    (38)

    Applying Eqs. 32, 34, 35, we obtain,

    $$ o^{new} ({\mathbf{x}}) = \left( {{\frac{{c_{m,s} - x_{s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{0} + \left( {{\frac{{x_{s} - b_{m,s} }}{{c_{m,s} - b_{m,s} }}}} \right) \times A_{1} $$
    (39)

    therefore

    $$ o^{new} ({\mathbf{x}}) = o^{old} ({\mathbf{x}}) $$
    (40)

    By combining Eqs. 30, 37, and 40, we have

    $$ o^{new} ({\mathbf{x}}) = o^{old} ({\mathbf{x}}). $$
    (41)

So we can get conclusion that by setting the initial value of consequent parameters by Eqs. 14 and 17, we obtain a special case of a new fuzzy system which is equivalent to its old fuzzy system before splitting in accuracy.

Proof of Theorem 2

We have proved in Theorem 1, that we can always find a new fuzzy system \( \hat{F}^{new} ({\mathbf{x}}) \) with its consequent parameters being determined by Eq. 12 or by Eqs. 14 and 17 is equivalent to its old fuzzy system F old(x). That is \( \hat{F}^{new} ({\mathbf{x}}) = F^{old} ({\mathbf{x}}) \) and \( E( {\hat{F}^{new} ({\mathbf{x}})} ) = E( {F^{old} ({\mathbf{x}})} ), \) \( \hat{F}^{new} ({\mathbf{x}}) \in \{ {F^{new} ({\mathbf{x}})} \}. \) Let \( F_{{^{Best} }}^{new} ({\mathbf{x}}) \in \{ {F^{new} ({\mathbf{x}})} \} \) be a new fuzzy system which minimizes the approximation errors, that is, \( E[ {F_{{^{Best} }}^{new} (X)} ] = \min_{{\{ {F^{new} ({\mathbf{x}})} \}}} E[ {F^{new} ({\mathbf{x}})} ]. \) Then we have

$$ E\left[ {F_{{^{Best} }}^{new} (X)} \right] = \min_{{\left\{ {F^{new} ({\mathbf{x}})} \right\}}} E\left[ {F^{new} ({\mathbf{x}})} \right] \le E\left[ {\hat{F}^{new} ({\mathbf{x}})} \right] = E\left[ {F^{old} ({\mathbf{x}})} \right] $$

where the inequality is obtained based on the fact that \( \hat{F}^{new} ({\mathbf{x}}) \in \{ {F^{new} ({\mathbf{x}})} \}. \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Zeng, XJ. & Keane, J.A. A structure evolving learning method for fuzzy systems. Evolving Systems 1, 83–95 (2010). https://doi.org/10.1007/s12530-010-9009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-010-9009-7

Keywords

Navigation