Skip to main content
Log in

Online self-evolving fuzzy controller with global learning capabilities

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

This paper presents an online self-evolving fuzzy controller with global learning capabilities. Starting from very simple or even empty configurations, the controller learns from its own actions while controlling the plant. It applies learning techniques based on the input/output data collected during normal operation to modify online the fuzzy controller’s structure and parameters. The controller does not need any information about the differential equations that govern the plant, nor any offline training. It consists of two main blocks: a parameter learning block that learns proper values for the rule consequents applying a local and a global strategy, and a self-evolving block that modifies the controller’s structure online. The modification of the topology is based on the analysis of the error surface and the determination of the input variables which are most responsible for the error. Simulation and experimental results are presented to show the controller’s capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Angelov P (2004) A fuzzy controller with evolving structure. Inform Sci 161(1–2):21–35

    Article  MATH  MathSciNet  Google Scholar 

  • Cara AB, Lendek Zs, Babuska R, Pomares H, Rojas I (2010) Online self-organizing adaptive fuzzy controller: application to a nonlinear servo system. In: Proceedings of 2010 IEEE world congress on computational intelligence, pp 2491–2498

  • Castro J (1995) Fuzzy logic controllers are universal approximators. IEEE Trans Syst Man Cybern 25(4):629–635

    Article  Google Scholar 

  • Chen CH, Lin CJ, Lin CT (2009) Nonlinear system control using adaptive neural fuzzy networks based on a modified differential evolution. IEEE Trans Syst Man Cybern C 39(4):459–473

    Google Scholar 

  • Galluzzo M, Cosenza B (2009) Control of the biodegradation of mixed wastes in a continuous bioreactor by a type-2 fuzzy logic controller. Comput Chem Eng 33(9):1475–1483

    Article  Google Scholar 

  • Gao Y, Er MJ (2003) Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems. IEEE Trans Fuzzy Syst 11(4):462–477

    Article  Google Scholar 

  • Gao Y, Er MJ (2005) An intelligent adaptive control scheme for postsurgical blood pressure regulation. IEEE Trans Neural Netw 16(2):475–483

    Article  MathSciNet  Google Scholar 

  • Hoffmann F, Nelles O (2001) Genetic programming for model selection of TSK-fuzzy systems. Inform Sci 136(1–4):7–28

    Article  MATH  Google Scholar 

  • Lalouni S, Rekioua D, Rekioua T, Matagne E (2009) Fuzzy logic control of stand-alone photovoltaic system with battery storage. J Power Sources 193(2):899–907

    Article  Google Scholar 

  • Lee C (1990) Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Trans Syst Man Cybern 20(2):419–435

    Article  MATH  Google Scholar 

  • Li C, Lee C (2003) Self-organizing neuro-fuzzy system for control of unknown plants. IEEE Trans Fuzzy Syst 11(1):135–150

    Article  Google Scholar 

  • Lin C, Xu Y (2006) A novel genetic reinforcement learning for nonlinear fuzzy control problems. Neurocomputing 69(16–18):2078–2089

    Article  Google Scholar 

  • Lin CT, Lin CJ, Lee CSG (1995) Fuzzy adaptive learning control network with on-line neural learning. Fuzzy Sets Syst 71(1):25–45

    Article  MathSciNet  Google Scholar 

  • Liu Y, Zheng Y (2009) Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn 57(3):431–439

    Article  MATH  MathSciNet  Google Scholar 

  • Mingzhi H, Jinquan W, Yongwen M, Yan W, Weijiang L, Xiaofei S (2009) Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks. Expert Syst Appl 36(7):10428–10437

    Google Scholar 

  • Mucientes M, Casillas J (2007) Quick design of fuzzy controllers with good interpretability in mobile robotics. IEEE Trans Fuzzy Syst 15(4):636–651

    Article  Google Scholar 

  • Park J, Park G, Kim S, Moon C (2005) Direct adaptive self-structuring fuzzy controller for nonaffine nonlinear system. Fuzzy Sets Syst 153(3):429–445

    MATH  MathSciNet  Google Scholar 

  • Phan PA, Gale TJ (2008) Direct adaptive fuzzy control with a self-structuring algorithm. Fuzzy Sets Syst 159(8):871–899

    Article  MATH  MathSciNet  Google Scholar 

  • Pomares H, Rojas I, Ortega J, Gonzalez J, Prieto A (2000) A systematic approach to a self-generating fuzzy rule-table for function approximation. IEEE Trans Syst Man Cybern B 30(3):431–447

    Article  Google Scholar 

  • Pomares H, Rojas I, Gonzalez J, Prieto A (2002a) Structure identification in complete rule-based fuzzy systems. IEEE Trans Fuzzy Syst 10(3):349–359

    Article  Google Scholar 

  • Pomares H, Rojas I, Gonzalez J, Rojas F, Damas M, Fernandez FJ (2002b) A two-stage approach to self-learning direct fuzzy controllers. Int J Approx Reason 29(3):267–289

    Article  MATH  Google Scholar 

  • Pomares H, Rojas I, Gonzalez J, Damas M, Pino B, Prieto A (2004) Online global learning in direct fuzzy controllers. IEEE Trans Fuzzy Syst 12(2):218–229

    Article  Google Scholar 

  • Rojas I, Pomares H, Ortega J, Prieto A (2000) Self-organized fuzzy system generation from training examples. IEEE Trans Fuzzy Syst 8(1):23–36

    Article  Google Scholar 

  • Rojas I, Pomares H, Gonzalez J, Herrera L, Guillen A, Rojas F, Valenzuela O (2006) Adaptive fuzzy controller: Application to the control of the temperature of a dynamic room in real time. Fuzzy Sets Syst 157(16):2241–2258

    Article  MATH  MathSciNet  Google Scholar 

  • Wang D, Zeng XJ, Keane JA (2008a) An incremental construction learning algorithm for identification of T-S fuzzy systems. In: Proceeding of 2008 IEEE international conference on fuzzy systems (FUZZ 2008), vol 1–5, pp 1662–1668

  • Wang W, Chien Y, Li I (2008b) An on-line robust and adaptive T-S fuzzy-neural controller for more general unknown systems. Int J Fuzzy Syst 10(1):33–43

    MathSciNet  Google Scholar 

  • Ying H (2000) Fuzzy control and modeling: analytical foundations and applications. Wiley-IEEE Press, New York

Download references

Acknowledgments

This work has been partially supported by the Spanish Junta de Andalucía, Consejería de Innovación, Ciencia y Empresa, under Projects nos. TIC02906 and P07-TIC-02768, and by the Spanish MICINN Project no. SAF2010-20558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Belén Cara.

Appendix

Appendix

The nonlinear servo system used for the experimentation in Sect. 6.2 is modeled by the following differential equations:

$$ \begin{aligned} \dot{{\mathbf{x}}}=& f({\mathbf{x}},u)= A{\mathbf{x}} + Bu + G \\ =& \left[ \begin{array}{ll} 0&1\\ 0&{\frac{-K^2-bR}{RJ}}\\ \end{array}\right]{\mathbf{x}} + \left[ \begin{array}{l} 0\\ {\frac{K}{RJ}} \\ \end{array}\right] u - \left[ \begin{array}{l} 0\\ {\frac{mgl}{J}} \sin(\theta)\\ \end{array}\right]\\ \end{aligned} $$
(26)

where \({\mathbf{x}} = \left[ \begin{array}{ll}\theta&\dot{\theta}\\ \end{array}\right]^T \in {\mathbb{R}}^2\) is the state of the plant, given by the angle θ and the angular velocity \(\dot{\theta}\), u is the control input, and G is the gravity term. The plant’s output is the angle θ. The meaning and values of the parameters used for the DC motor are given in Table 4.

Table 4 Nonlinear servo system’s parameters

As mentioned before, the proposed OSEFC does not require the differential equations that govern the plant to be controlled. However, we have included this information in this appendix with the purpose of allowing the interested reader to simulate the experiment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cara, A.B., Pomares, H., Rojas, I. et al. Online self-evolving fuzzy controller with global learning capabilities. Evolving Systems 1, 225–239 (2010). https://doi.org/10.1007/s12530-010-9016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-010-9016-8

Keywords

Navigation