Skip to main content
Log in

Interval type-2 fuzzy logic controller design for TCSC

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Interval type-2 fuzzy logic controller (IT2FLC), which is a special type of type-2 fuzzy logic controller, is evolving as an alternative type of fuzzy logic controller (FLC) in most of the complex, nonlinear and uncertain systems due to its more uncertainty handling capacity in the last years. In this paper an IT2FLC is designed by exploring the property of type-2 fuzzy sets as a thyristor control series capacitor (TCSC) to improve the power system damping of a single machine system. The performance of the proposed controller is compared with the existing differential evolutionary optimization tuned lead lag compensator and very popular conventional FLC based TCSC design, respectively. The proposed controller performance is also tested with effect of applied disturbance and noise. Simulation results demonstrated the better performance of the proposed controller and the idea to test for the application of type-2 fuzzy logic system as a TCSC controller is succeeded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abdel–Magid YL, Abido MA (2003) Coordinated design of a PSS and a SVC-based controller to enhance power system stability. Int J Elec Power Energ Syst 25:695–704

    Article  Google Scholar 

  • Abido MA (2000) Pole placement technique for PSS and TCSC based stabilizer design using simulated annealing. Electric Power Energ Syst 22:543–554

    Article  Google Scholar 

  • Aguero JR, Vargas A (2007) Calculating functions of interval type-2 fuzzy numbers for fault current analysis. IEEE Trans Fuzzy Syst 15(1):31–40

    Article  Google Scholar 

  • Angelov P (2004) A Fuzzy controller with evolving structure. Inf Sci 161:21–35

    Article  MATH  MathSciNet  Google Scholar 

  • Atmakuru R, Sreerama Kumar R (2010) ANN based adaptive control co-ordination of PSS and FACTS devices in multi-machine power systems. In: Proceedings IEEE MEPS 2010, Poland Wrocland

  • Castillo O, Melin P (2008) Type-2 fuzzy logic: Theory and Applications. Springer, Berlin

    Google Scholar 

  • Castillo O, Melin P, Montiel O, Rodriguez–Diaz A, Sepulveda R (2005) Handling uncertainty in controllers using type-2 fuzzy logic. J Intell Syst 14(3):237–262

    Google Scholar 

  • Chaoui H, Gueaieb W (2008) Type-2 Fuzzy logic control of a flexible joint manipulator. J Int Robot Syst 51(2):159–186

    Article  Google Scholar 

  • Dai XZ, He D, Fan LL, Li NH, Chen H (1999) Improved ANN αth order inverse TCSC controller for enhancing power system transient stability. IEEE proceedings Generation, Transmission, distribution 146(6):550–556

    Google Scholar 

  • Dash PK, Mishra S (2003) Damping of multimodal power system oscillations by FACTS devices using non-linear Takagi–Sugeno fuzzy controller. Electric Power Energ Syst 25(6):481–490

    Article  Google Scholar 

  • Etingov P, Oudalov A, Vorapai N, Cherkaoui R, Germond A (2007) Power System stability enhancement using ANN based coordinated emergency control system. In: proceedings IEEE Power Technology pp 232–237

  • Hagras H (2004) A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst 12:524–539

    Article  Google Scholar 

  • Hagras H (2007) Type-2 FLCs: a new generation of fuzzy controllers, IEEE Computational intelligence magazine pp 30–43

  • Hameed S, Das B, Pant V (2008) A self tuning fuzzy PI controller for TCSC to improve power system stability. Electric Power syst Res 78:1726–1735

    Article  Google Scholar 

  • Hingorani NG, Gyugyi L (2000) Understanding FACTS: concepts and technology of flexible AC transmission systems. IEEE Press, New York

    Google Scholar 

  • Innocent P, John R (2001) Type-2 fuzzy representations of lung scans to predict pulmonary emboli. In: Procedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada. pp 1902–1907

  • John R, Lake S (2001) Type-2 fuzzy sets for modeling nursing intuition In: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada. pp 1920–1925

  • Karnik NN, Mendel JM (1998) An Introduction to Type-2 Fuzzy Logic Systems. USC report http://sipi.usc.edu/~mendel/report. October 1998

  • Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci 132:195–220

    Article  MATH  MathSciNet  Google Scholar 

  • Karnik NN, Mendel JM, Liang Q (1999) Type-2 Fuzzy Logic Systems. IEEE transactions on Fuzzy Systems 7(6):643–658

    Google Scholar 

  • Kazemi A, Sohrforouzani MV (2006) Power system damping using fuzzy controlled facts devices. Electric Power Energ Syst 28(5):349–357

    Article  Google Scholar 

  • Klir GJ, Yuan B (1995) Fuzzy sets and Fuzzy logic: theory and applications, upper saddle river, N J Printice Hall

  • Leottau L, Melgarajo M (2011) An embedded type-2 fuzzy controller for a mobile robot application, Recent advances in Mobile Robotics, Dr. Andon Topalov (ed), ISBN: 978-953-307-909-7, InTech, Available from: http://www.intechopen.com/books/recent-advances-in-mobile-robotics

  • Li L, Lin W-H, Liu H (2006) Type-2 fuzzy logic approach for short-term traffic forecasting. In: Proceedings Inst Elect Eng Intell Transp. Syst. 153(1):33–40

  • Liang Q, Mendel JM (2000) Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. IEEE Transaction on Fuzzy Systems, 8(5):551–563

    Google Scholar 

  • Liang Q, Mendel JM (2000) Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Transactions on Fuzzy systems. 8(5):535–550

    Google Scholar 

  • Liang Q, Karnik NN, Mendel JM (2000) Connection admission control in ATM networks using Survey-based type-2 fuzzy logic systems. IEEE Trans Syst Man Cybern Part C Appl Rev 30(3):329–339

    Article  Google Scholar 

  • Lin PZ, Lin CM, Hsu C. F, Lee TT (2005) Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters. IEEE Proceedings Electric Power Applications 152(6):1482–488

    Google Scholar 

  • Lughofer E, Angelov P (2009) Detecting and responding to drift and shift in online data streams with evolving fuzzy systems. 2009 IFSA world congress and 2009 EUSFLAT Conference, Lisbon, Portugal, pp 931–937

  • Lughofer E, Angelov P (2011) Handling drifts and shifts in online data streams with evolving fuzzy systems. Appl Soft Comput 11(2):2057–2068

    Article  Google Scholar 

  • Mathur RM, Verma RK (2002) Thyristor-based FACTS controllers for Electrical Transmission systems. IEEE Press, Piscataway

    Google Scholar 

  • Mendel JM (2000) Uncertainty, fuzzy logic, and signal processing. Signal Process 80(6):913–933

    Article  MATH  Google Scholar 

  • Mendel JM(2003) Fuzzy sets for words: a new beginning, proceedings of 2003 IEEE international conference on fuzzy systems, St. Louis, USA 1:37–42

  • Mendel JM, John R (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127

    Article  Google Scholar 

  • Mendel JM, Hagras H, John RI (2006) Standard background material about interval type-2 fuzzy logic systems that can be used by all authors. www.ieee-cis.org/_files/standards

  • Mendel JM, John RI, Liu F (2006b) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  • Mitchell HB (2005) Pattern recognition using type-II fuzzy sets. Inf Sci 170:409–418

    Article  Google Scholar 

  • Narne R, Therattil JP, Panda PC (2012), Improving power system transient stability by PSS and hybrid fuzzy PI based TCSC controllers, 978-1-4673-0455-9/12/$31.00© 2012 IEEE

  • Panda S (2009a) Differential evolutionary algorithm for TCSC based controller design. Simul Model Pract Theor 17:1618–1634

    Article  Google Scholar 

  • Panda S (2009b) Multi-objective evolutionary algorithm for SSSC-based controller design. Electr Power Syst Res 79(6):937–944

    Article  MathSciNet  Google Scholar 

  • Panda S, Padhy NP (2007) Thyristor controlled series compensator-based controller design employing genetic algorithm, a comparative study. Int J Electron Circ Syst 1(1):38–47

    Google Scholar 

  • Panda S, Padhy NP (2008) Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl Soft Comput 8(4):1418–1427

    Article  Google Scholar 

  • Panda MK, Pillai GN, Kumar V (2012a) Design of an interval type-2 fuzzy logic controller for automatic voltage regulator system. Electr Power Compon Syst 40(2):219–235

    Article  Google Scholar 

  • Panda MK, Pillai GN, Kumar V (2012) Interval Type-2 Fuzzy Logic controller as a Power System Stabilizer. In: Proc. IEEE APCET 2012. Vijayawada, India, pp 1-6. doi:10.1109/APCET.2012.6302033

  • Rainer S, Kennth P (1997) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Rocca P, Olivery G, Massa A (2011) Differential evolution as applied to electromagnetics. IEEE Antennas Propag Mag 53(1):38–49

    Article  Google Scholar 

  • Sepulveda R, Castillo O, Melin P, Diaz AR, Montiel O (2007) Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf Sci 177:2023–2048

    Article  Google Scholar 

  • Tripathy M, Mishra S (2011) Interval type-2 based thyristor controlled series capacitor to improve power system stability. IET Generation, Transmission and Distribution 5(2):209-222

  • Wu H, Mendel JM (2007) Classification of battlefield ground vehicles using acoustic features and fuzzy logic rule-based classifiers. IEEE Trans Fuzzy Syst 15(1):56–72

    Article  Google Scholar 

  • Wu D, Tan WW (2005) Type-2 FLS modeling capability analysis. In: Proceedings of the IEEE international conference on fuzzy systems. Reno, USA, pp 242–247

  • Wu D, Tan WW (2010) Interval type-2 fuzzy pi controllers: why they are more robust? In: Proceedings of the IEEE International Conference on Granular Computing, Silicon Valley, USA pp 802–807

  • Yu YN (1983) Power System Dynamics. Academic Press Inc., London

    Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning parts 1, 2 and 3. Inf Sci 8:199–249, 301–357, 9:43–80

    Google Scholar 

  • Zhao J, Bose B K (2002) Evaluation of membership function for fuzzy logic controlled Induction motor drive, 0-7803-7474-6/02/$17.00 © 2002 IEEE, pp 229–234

  • Zhao J, Bose B K (2003) Membership function distribution effect on fuzzy logic controlled induction motor drive, 0-7803-7906-3/03/$17.00© 2003 IEEE, pp 214–219

  • Zhou X, Liang J (1999) Overview of control schemes for TCSC to enhance the stability of power systems, IEEE proceedings Part-C, Generation, Transmission and Distribution 146(2):125–130

    Google Scholar 

Download references

Acknowledgments

This research work is supported by Quality Improvement Program Center of Indian Institute of Technology, Roorkee & All India Council of Technical Education, New Delhi. Authors are very much thankful to the reviewers for their valuable suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Panda.

Appendix

Appendix

All data are in per unit (pu) unless specified.

Generator: M = 8 s, D = 4.4, Xd = 1, Xq = 0.8 \( {\text{X}}_{\text{d}}^{\prime } \) = 0.3, \( {\text{T}}_{\text{do}}^{\prime } \) = 5.044, f = 60, VT = 1.0, Pe = 0.9 pu, Q = 0.1513 pu, Exciter: KA = 10, TA = 0.01 s, Transmission line and Transformer: X = 0.6, XT = 0.1, Ra = 0, TCSC: XTCSC0 = 0.3369, TTCSC = 15 ms, XC = 0.5X, XP = 0.25XC, k = 2, XTCSCmax = 0.8X, XTCSCmin = 0, α0 = 1580.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, M.K., Pillai, G.N. & Kumar, V. Interval type-2 fuzzy logic controller design for TCSC. Evolving Systems 5, 193–208 (2014). https://doi.org/10.1007/s12530-013-9097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-013-9097-2

Keywords

Navigation