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Abstract. Real life situations may require an automatic fast update of the control of a plant, whether
the plant is an airplane that needs to overcome an emergency situation due to drastic environment
change, or a process that needs to continue executing an application in spite of a change in an operating
system behavior. Settings for run-time control synthesis are defined, assuming the environment maybe
totally dynamic, but is reentrant and history oblivious for long enough periods. A reentrant environment
allows several copies of a plant to interact with the environment independently; a history oblivious
environment ensures a repetition (in the probabilistic case with the same probability) of an interaction
starting with a plant in a certain state and replaying its output to the environment.
Total dynamic changes of the environment do not allow a definition of weakly realizable specifications,
as weakly realizable specifications depend on the environment behavior. On line experiments of the en-
vironment assists in the implementation of unrealizable specifications; Automatically checking whether
the unrealizable specifications define weakly realizable specifications, given the behavior restriction of
the current environment. A successful search for a control implicitly identifies the weakly realizable
specifications, and explicitly the implementation that respect the specifications.
Different settings and capabilities of the plant are investigated. In particular, (i) plant state reflection
that allows observation of the current state of the plant, (ii) plant state set that generalizes the reset
capability, allowing setting the plant to each of its states, and (iii) (static or dynamic) plant replication
that allows instantiation of plant replicas or use of preexisting plant replicas for parallelizing testing
algorithms. The algorithms presented prove that the above capabilities enable a polynomial search for
a new control upon a drastic change of the environment.
Keywords: replication, state set, reflection.

1 Introduction

In the early attempts to reach supersonic speeds, flight pilots experienced a strange phenomenon that made
their control surfaces useless, and their aircraft uncontrollable. The airplanes were saved by either reducing
the speed or changing the usual control procedure [18]. Flying an airplane in a volcano ash cloud may stop
the operation of the airplane. The airplane can still be saved if the pilots direct it out of the ash cloud, let
the engines cool and then restart them [8]. These two examples demonstrate the type of dramatic control
changes that sometimes has to be made on-line, without prior experience, when the environment changes
unexpectedly.

Today, when a programmer creates a program, she/he designs the program for a certain environment.
When the program encounters unanticipated environmental behavior, the program performance may degrade
drastically, it may continue to execute while producing a faulty (unexpected) output, or it may crash. Pro-
grammers and system administrators use their accumulated knowledge of the system and of the environment
to investigate and solve problems by patching up the system each time a new problem is detected. In many
? Partially supported by the Lynne and William Frankel Center for Computer Sciences, by a Deutsche Telecom

grant, the Israeli Ministry of Science, and the Rita Altura Trust Chair in Computer Sciences. The paper abstract
appeared in The Sixth NASA Langley Formal Methods Workshop (LFM 2008), NASA Conference Proceedings,
April 2008.



cases, the solution is post mortem and off-line. Ideally, systems would be autonomous, i.e., the systems would
be able to cope with unexpected situations dynamically and independently, without human intervention.

In the example of the plane in the volcano ash cloud, imagine that the plane is able to release miniature
replicas of itself into the air, where each replica tries a different control program. The replicas that succeed
in leaving the ash cloud successfully report back to the plane. Next, the plane uses the obtained control to
leave the ash cloud. This is an example of an autonomic system that is able to deal with unexpected changes
in the environment.

Growing interest in disaster recovery [9], RAS (Reliability, Availability, Serviceability) paradigm, auto-
nomic computing [11], self-healing systems, and evolving systems, reflects the desire and the need for systems
that automatically adapt themselves to an unpredictably changing environment.
Our contribution. We suggest a program search engine that uses parallelization to produce a supervisory
control dynamically and automatically. The program search engine produces a control on the fly, such that
the control continuously respects a set of (possibly unrealizable) specifications in the presence of dynamic
changes in an environment. We do not make any assumptions about changes the environment may undergo
during the program life cycle.

A natural environment is very big, sophisticated and dynamic. The environment can only be modeled
by a non-deterministic infinite automaton. On-line learning of the environment automaton is impossible.
Thus, we make a distinction between a plant – a machinery our program interacts with and the environment
(the rest of the universe). We assume that a plant can be modeled by a deterministic or probabilistic finite
automaton. Even if we are convinced, as Albert Einstein was, that “God does not throw a dice”, i.e.,
the environment is deterministic, still the environment state cannot be contained by finite means and the
environment automaton cannot be learned; in such a case, one may model the environment as an automaton
with probabilistic transition function. We use testing techniques to obtain a control for the plant dynamically
in an efficient manner. Our settings differ from the common approach where the whole environment is
considered monolithically [19].

The plant is considered to be either an rs-box (reflection and set box) or a black box. The rs-box plant has
a state reflection capability or a state set capability, or both. The state reflection capability provides access
to the plant state (e.g., using Java reflection) without revealing the plant automaton transition function.
The state set capability, which is a generalization of the reset capability, allows setting the plant state to a
given state. We are able to record only the plant inputs and outputs for the black box plant.

We suggest a control search engine that finds a supervisory control that respects the specifications dy-
namically and automatically by experimenting on plant replicas. In order to detect the deterioration of a
current control due to a change in the environment, the control search engine constantly monitors the con-
trol execution by obtaining a reliable record of the control-plant-environment interaction from a dependable
entity called an Observer. The search engine evaluates the quality of the interaction and initiates a search
for a new control if the current control does not respect the specifications.

We present control search algorithms for various plant settings: (i) plant state reflection which allows a
control search algorithm to learn a connected component of a current plant state in the plant automaton
graph (ii) plant state set that generalizes the reset capability, allows setting the plant to each of its states and
exploring all connected components of the plant automaton graph, (iii) static plant replication that implies
use of preexisting replicas for parallelizing testing algorithms or dynamic plant replication capability that
allows instantiation of new replicas in run time, and (iv) deterministic or probabilistic plant automaton.

We show that parallelization and the ability to observe and to manipulate the plant state allow us to
improve the control search complexity. The use of parallelization makes the search time reasonable for
on line systems, trading off (possibly exponential or polynomial) time with a (exponential or polynomial)
number of plant replicas. The plant state capabilities allow reduction of the number of experiments on the
plant replicas from exponential (for a black box plant) to polynomial (for rs-box plant) in the number of
plant automaton states.
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1.1 Related Work

Statically generated adaptable programs. Several papers explore techniques for creating systems that
are able to adapt themselves to a changing environment by using information about the environment that was
accumulated off-line, e.g., planning, multi-version programming. Such a program is able to adapt itself only
to a predefined set of changes in the environment, namely, all environment changes have to be anticipated off-
line, as the program is being created. This implies that the program still may exhibit an undesired behavior
if it encounters unexpected changes in the environment.

The SA-CIRCA (Self-Adaptive Cooperative Intelligent Real-Time Control Architecture) [13] is an exam-
ple of a program search engine that generates a program for a robot from full environment specifications and
overall system goals. The program search engine dynamically generates patches of code for handling unex-
pected scenarios by executing a search algorithm with potentially unbounded time complexity. SA-CIRCA
uses incremental improvement algorithms that trades off solution quality for shorter computation time.

A model-based approach for self-adaptive software [21] suggests that a programmer has to specify redun-
dant methods for completing each method. If faults in a system indicate that a method does not achieve its
goals, the management module deprecates the current method and chooses a substituting method from the
list. The choice of the new method is based on reasoning about the consequences of the deprecated method’s
actions. Additional criteria for choosing the new method are safety, timeliness and accuracy criteria. The
authors claim that as the self-adaptive software evolves, by deprecating the current methods and choosing
better methods in the system context, the software becomes more robust and with better performance. This
conclusion is strongly based on the fact that the programmer will supply efficient redundant methods that
suit every state of the environment.

A system presented in [23] is able to alter its behavior by controlling its sub-components. The system acts
as a controller which monitors its sub-components and reconfigures the composition of the sub-components
choosing from a pool of predefined configurations in order to achieve the desired functionality and the system
goals.

In our work we do not make any assumptions about the types of faults that may happen and we do not
provide predefined alternative scenarios for anticipated faults. Our program search engine is able to create a
completely new program upon (drastic) changes in a system environment.
Autonomic computing. The research in autonomic systems suggests accepting failures as a part of a
system’s existence. Instead of trying to anticipate all possible failures and problems, autonomic computing
suggests enhancing systems with a mechanism for automatic recovery from failures. The decision on which
recovery action to take place is made in run time, i.e., an autonomic system is a dynamically adaptable
software. However, the recovery actions are predefined; therefore, an autonomic system is able to recover
efficiently from only a restricted set of failures.

The common approach to autonomic computing [15] is an architecture consisting of a core component,
a monitoring layer, an inference tool, and an affecting tool. The core component mostly executes correctly,
but may fail occasionally. The monitoring layer constantly traces the component execution and streams its
output as an input for the inference tool. The inference tool analyzes the component behavior and detects the
faults and their source based on artificial intelligence techniques. Then, the inference tool suggests a recovery
procedure based on some learning algorithm output or based on some predefined recovery scenarios. The
recovery procedure is invoked through the affecting tool – a tool that is able to alternate a behavior of the
core component.

The common autonomic computing architecture is unable to deal with drastic change in the environment:
in this case the program search engine may repeatedly detect failures and initiate recovery actions, while not
achieving any significant progress in terms of system goals.
Program synthesis from realizable specifications. This research area suggests compiling a program
from requirements and environment specifications (environment variables and environment actions). The
generated program respects the specifications with regard to the current environment, i.e., the program is
absolutely correct with regard to the current environment. In [22] the specifications are a program in a high
level specifications language, that are compiled into an executable code.
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Partial but realizable specifications are compiled into a program that satisfies the specifications in [1, 19,
20, 17]. The compilation process is based on a two person game, where the players are the system and the
environment. The compiler assumes that the specifications are a determined game, and one of the players
has a winning strategy. The system wins the game if it is able to come up with a winning strategy for every
state of the environment. The compilation process is exponential (or even double exponential) in the length
of the specifications. Another major concern is that the environment is assumed to be known rather than a
black box – the environment model is a part of the compilation process.

We note that an environment can change, leading to an unavailable model of the current environment.
Even if the new specifications of the environment are available, a program has to be recompiled to accom-
modate the environment changes. In a sense our control synthesis algorithms parallelize black box or gray
box verification algorithms (e.g., [16], [12]) and uses reflection, set and replication capabilities to make the
search fast. Recent work proposes techniques for systems composed of deterministic black boxes and white
boxes [12]; in such terms our settings may be viewed as a composition of a (deterministic or probabilistic)
reentrant and history-oblivious black box with a (deterministic or probabilistic) rs-box plant. Most of the
controls produced by our search engine are controls considered by a model checker. Namely, the produced
control is either a chain automaton or an automaton in a form of a chain ending with a loop. A different finite
state control automaton is presented for the probabilistic settings. To fit the run-time synthesis requirement
we present a search engine that monitors the system and is able to trigger a search for a new control fast in
the presence of a changing environment.

The rest of the paper is organized as follows. In Section 2 we present the system architecture and setting.
In Section 3 we describe control search algorithms for a deterministic plant and a deterministic environment.
In Section 4 we present control search algorithms for a probabilistic or deterministic plant and a probabilistic
environment. Conclusions and optimizations appear in Section 5.

2 System Architecture and Settings

A system consists of three components: a control, a plant, and an environment. The system components and
their interactions are presented in Figure 1 in the System box. The control receives input from a user, then
calculates a plant input and sends it to the plant. The plant receives the input from the control and makes
some internal calculation while interaction, i.e., sending and receiving some massages from the environment.
Then, the plant calculates output message and sends it to the control. The control receives the plant output,
makes some internal calculations and creates an output for the user.
Environment. An environment is an infinite non deterministic automaton. We assume that the environment
acts as a deterministic or probabilistic automaton for every given period of time. This may be attributed
to the approximate fixed location and time of interest of the plant-environment interaction. We also assume
that the environment is reentrant and history oblivious. The reentrant property of the environment allows
several copies of a plant to interact with the environment independently at the same time; the history
oblivious property of an environment implies that plant replicas that are set to the same state will have
identical interaction with the environment (in the probabilistic case – with the same probability). Thus,
the interaction of an environment with a deterministic (probabilistic) plant replica set to a state s that
receives a particular control sequence C is identical (implies identical probability for) to the interaction of
the environment with another deterministic (respectively, probabilistic) plant that reached the state s in e
other possible way, and that receives the same control sequence C.
Plant. A plant is modeled by a deterministic finite automaton, Ap = {Σp

in, Σp
out, Sp, startp, αp, Fp}. The

values of the plant input variables are symbols in the plant input alphabet Σp
in, such that Σp

in = Σpc
in ×Σpe

in ,
where Σpc

in is an alphabet of the plant input variables in the plant-control interaction and Σpe
in is an alphabet

of the plant input variables in the plant-environment interaction. The plant output instances are symbols in
the plant output alphabet Σp

out = Σpc
out × Σpe

out, where Σpc
out is an alphabet of the plant output variables in

the plant-control interaction and Σpe
out is an alphabet of the plant output variables in the plant-environment

interaction. The plant is a finite automaton, which implies that Σout
in and Σpe

out are also finite. Sp is a collection
of plant automaton states, startp ∈ Sp is an initial state of the plant automaton, αp is a transition function
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Fig. 1. The system and the control search engine architecture.

where αp : Sp×Σp
in → Sp×Σp

out, and Fp ∈ Sp is a list of the plant accepting states. αp is subject to dynamic
changes as the environment changes. For example, a spring of a machine on the Moon may react differently
than on Earth.

The plant is either a black box or an rs-box (reflection and set box). A plant is a black box if one does not
have an access to the plant state, only to the plant input and output. A plant is an rs-box if the plant has
either the plant state reflection capability or the plant state set capability, or both. The plant state reflection
capability implies that the plant state is fully exposed without revealing the plant automaton transition
function. During the search procedure we can see the plant transitions from a state to a next state. The
plant state set capability allows to set a plant to a given state, which implies that the control search engine
is able to explore all connected components in the plant automaton graph.
Control. A control is modeled by a deterministic finite IO automaton Ac = {Σc

in, Σc
out, Sc, startc, αc, Fc}.

The values of the control automaton input variables are symbols in the control input alphabet Σc
in, such

that Σc
in = Σpc

out, where Σpc
out is an alphabet of plant output variables in the plant-control interaction. The

values of the control automaton output variables are symbols in the control output alphabet Σc
out, such that

Σc
out = Σpc

in , where Σpc
in is an alphabet of the plant input variables in the plant-control interaction. Sc is

a collection of control automaton states, startc ∈ Sc is an initial state of the control automaton, αc is a
transition function αc : Sc × Σc

in → Sc × Σc
out, and Fc ∈ Sc is a list of the control automaton accepting

states.
A control automaton produces an output, which is, in turn, a plant input in the plant-control interaction.

The control output implies the plant producing an IO sequence in plant-environment interaction, such that
IO respects the specifications.
System. A system is an automaton Asys, where Asys = Ac ×Ap ×Aenv. A system state ssys is a combined
state of the control sc, the state of the plant sp, and the state of the environment senv. The system atomic step
(a transition in the system automaton) asys = 〈[sc, sp, senv] ,

[
s′c, s

′
p, s

′
env

]
, io〉 leads to transition from state

[sc, sp, senv] to state
[
s′c, s

′
p, s

′
env

]
. The transition consists of internal calculations of the system components

(the control, the plant, and the environment), of a single interaction of the control with a user, of a single
interaction of the control with the plant, and of a single interaction of the plant with the environment, i.e.,
io ∈ (Σc

in×Σpc
in ×Σpe

in )× (Σc
out×Σpc

out×Σpe
out). The system execution E = c1, a1, c2, a2, . . . consists of system
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configurations ci, where ci ∈ (Sc × Sp × Senv) (the values of the system state variables), and of atomic steps
ai, so that ci+1 is reached from ci by the execution of ai.
Specifications. The desired system execution is defined by specifications. A specifications can be in the
form of a goal, where the goal is a desired outcome (typically, in the form of unrealizable specifications), or as
a behavior, where the behavior is a desired finite IO system sequence. For the sake of simplicity, the desired
execution of a system is described by a set of behaviors.

The specifications are unrealizable [1], i.e., the specifications do not define a control. No meaningful real-
izable specifications exist for unpredictable dynamic environments. Unrealizable specifications are potentially
more abstract and shorter than realizable specifications, and, therefore, less prone to human mistakes. Thus,
unrealizable specifications allow better human-specifications interface than the human-program interface.

The control search engine searches for a control that makes a system to respect unrealizable specifications
by on line experimentation on the plant replicas. During the on line experimentation, we implicitly check
whether the unrealizable specifications define weakly realizable specifications, given the behavior restriction
on the current environment. A successful search for a control implicitly identifies the weakly realizable spec-
ifications, and explicitly identifies the implementation that respects the specifications.

We consider two types of system behavior sequences, a one shot behavior and a periodic behavior. A one
shot behavior is an IO sequence of length k produced by the system automaton, bhv = {io1, . . . , iok}. We
denote bhv[i] to be the i-th entry in the behavior sequence, bhv[i] = ioi, and bhvj to the suffix of size j of the
behavior sequence, bhvj = {iok−(j+1), . . . , iok}. A system conforms to the behavior bhv during an execution
E if E = ..., cj , aj , . . . , cj+i, aj+k, ..., such that aj = 〈∗, ∗, io1〉, . . . , aj+k = 〈∗, ∗, iok〉.

A periodic behavior sequence is defined by a one shot behavior of length P , bhv = {io1, . . . , ioP }, where
P is the period length. A system conforms to the period behavior bhvp = 〈bhv, P 〉 during an execution E if
there are infinitely many consequent subsequences of size P in E, so that the system conforms to the behavior
bhv in every subsequence. A desired execution of an ongoing system is defined by a periodic behavior, while
a one shot behavior defines an execution of a code section, e.g., a terminating function execution.

A control automaton that fits a one shot behavior is the chain automaton. A control automaton that fits
a periodic behavior is the chain automaton for a one shot behavior with a loop.
Control search engine. The control search engine architecture is presented in Figure 1 in the Control
Search Engine box. The control search engine receives as an input specifications. The control search engine
outputs a control that makes a plant to respect the specifications, i.e., the control makes the plant to produce
an IO sequence that respects the behavior, when executing in the current environment.

The control search engine has two main components, a Control Generator and an Observer. Next we
present in detail the control search engine components and their interactions.
• Control generator. The control generator calculates the control automaton either by using an exhaustive
search and on-line experimentation on replicated plants [14] or by using experiments for constructing a plant
automaton and searching it to find the control automaton. The control automaton is continuously adapted
by the control search engine to accommodate changes in the environment.

The control generator algorithm differ according to the available plant capabilities, plant state reflection
and plant state set. We can use dynamic plant replication to reduce the number of replicated plants in case a
plant state reflection capability is available: Algorithms I to IV are designed for a deterministic plant and a
deterministic environment. Algorithms III and IV can be adapted to have dynamic plant replication, which
implies a better run-time complexity. Algorithms V and V I are designed for probabilistic environment, where
the plant can be either deterministic or probabilistic. Figure 2 presents the list of control search algorithms
for different settings, the total number of steps in all experiments, and the length of the longest experiment.
Nmax is the upper bound on the number of plant states N = |Ap|.
• Observer. One functionality of the Observer is to provide access to values of the plant-environment
interaction variables, which cannot be accessed directly. Another functionality of the Observer is to provide
a sanity check for the plant output in the plant-control interaction: The control generator must receive a
reliable plant state in order to be able to evaluate the quality of a control. Input and output exchange
between the control and the plant is subject to dynamic unexpected changes and, therefore, is unreliable.
One possible example of such a change is an incorrect connection of the output wires of the plant to the
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control module. For example, the wire of the plant output variable outi is plugged in the place of the control
input variable inj and the wire of the plant output variable outj is plugged in the place of the control input
variable ini. Thus, monitoring the control-plant interaction using only the input and output variables does
not allow reliable detection of the real status of the plant, which may lead to a totally erroneous conclusion
about the way the control is functioning. The observer inputs are used to solve such problems.

3 Control Search Algorithms for Deterministic Plant and Deterministic
Environment

In this section we present algorithms for a deterministic environment and a deterministic plant (algorithms
I-IV in Figure 2). Each algorithm has two threads, Control Search Thread and Monitoring Thread. The
Control Shearch Thread finds a control that respects the provided specifications if such a control exists.
The Monitoring Thread monitors the quality of the currently executing control. If the current control is not
respecting the specifications, the monitoring thread restarts the control generator thread.
Algorithm I: Static plant replication, no state state, no state reflection. The algorithm code is
presented in Fig. 3. The algorithm input is a periodic behavior tuple bhvp = 〈bhv, P 〉, the upper bound
on the number of states in the plant automaton Nmax, and the plant input alphabet in the plant-control
interaction is Σpc

in .
The desired periodic behavior may begin from every possible plant state. Therefore, we examine controls

that reach all states in the connected component of the plant current state sp−curr, and search for a control
that obtains the periodic behavior starting from every reached state. The control sequences with prefixes
of lengths 0 to Nmax are used to reach every state in the connected component of the current plant state
sp−curr (line 1). We search for a control sequence suffix that obtains a periodic behavior from a plant state
reachable from sp−curr by trying all possible control sequences of length P concatenated Nmax + 1 times
(line 1).

There are IN possible input sequences that need to be examined (see lines 1-2 for the exact value
of IN). The generator creates IN plant replicas (line 3), each in the current state sp−curr of the plant.
The generator executes each input on a distinct plant replica in parallel and records the subsequent plant-
environment interaction IO using the Observer (lines 5-6). If the recorded IO sequence has an integer number
of consequent appearances of bhv (line 7), then the algorithm returns the corresponding control inputi (line
8).

If there does not exist a control that begins from the current plant state sp−curr and that respects the
behavior in the given environment, the algorithm terminates and returns no control (line 9). The algorithm
is unable to find a control sequence that starts from a plant state that is not reachable from sp−curr due to
lack of the plant state set capability.

The monitoring thread code appears in lines 10-12. The monitoring thread receives from the Observer
a reliable record of the plant-environment interaction. For any given IO suffix of length P , there must be
a suffix of bhv of length i, 0 ≤ i ≤ P , that is followed by a prefix of bhvp of length P − i. The monitoring
thread keeps a record of the last P inputs and outputs in the plant-environment interaction and checks that

Algorithm Reflection Set Total Number of Steps Longest Experiment
in All Experiments

I ¬Available ¬Available O((PNmax)|Σpc
in |

NmaxP ) O(PNmax)
II Available ¬Available O(N |Σpc

in |
P ) O(P )

III ¬Available Available O(N |Σpc
in |) O(N)

IV Available Available O(N |Σpc
in |) O(1)

V(Probabilistic) Available Available O(N2 · |Σpc
in | · |Σ

pe
in | · |Σ

pe
out| · SP ) O(1)

VI(Probabilistic) Available ¬Available O(N2 · |Σpc
in | · |Σ

pe
in | · |Σ

pe
out| · SP ) O(1)

Fig. 2. Properties of the control search algorithms.
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Algorithm I (Static Replication from Current State, No Reflection)
input: bhvp = 〈bhv, P 〉, Nmax, Σpc

in

output: control C
Control Search Thread

1 input∗ = {(Σpc
in)i((Σpc

in)P )(Nmax+1) : 0 ≤ i ≤ Nmax}
2 IN = |input∗|
3 replicate IN plants from sp−curr: p1, p2, . . . , pIN //Plant replication
4 in parallel
5 ∀inputi ∈ input∗

6 execute(pi, inputi) and IOi = Observer.recordFor(|inputi|)
7 if IOi == IOstartbhvx// x ∈ N
8 return C = inputi

9 return no control
Monitoring Thread
10 while (true)
11 if Observer.recordFor(P ) ; bhv
12 if 6 ∃ControlGenarator ControlGenerator.start()

Fig. 3. Algorithm I: static replication from current state, no state reflection.

every such suffix contains a prefix and a suffix of bhv as described above. The monitoring code is identical
in all algorithms for deterministic settings.

The sum of control sequence lengths examined over all replicas is used to measure the algorithm com-
plexity. Algorithm I experiments complexity is O((PNmax)|Σpc

in |
NmaxP ) 1.

Theorem 1. The algorithm in Fig. 3 finds a control sequence C such that when C is applied to the plant
in the current state sp−curr, the plant produces an IO sequence that respects the periodic behavior bhvp =
〈bhv, P 〉 if such a control exists.

Proof. Assume towards a contradiction that there exists a control C =
{in1, in2, . . . , inj , (inj+1, . . . , inj+1+p)∗}, j ≤ Nmax, that obtains the periodic behavior bhvP . How-
ever, the search algorithm in Fig. 3 does not find C, i.e., returns no control or a control that does not imply
the periodic behavior.

The existence of control C implies the existence of a plant state sstart, such that sstart is reached
from sp−cur by executing control C1 = {in1, in2, . . . , inj}, and the execution of C2 = {inj+1, . . . , inj+1+p}
beginning from sstart exhibits the desired behavior bhvp.

Every state in the connected component of sp−cur in the graph describing the plant automaton, in
particular sstart, can be reached by executing a control of length Nmax or less. In line 1 the algorithm
generates all controls of size less than or equal to Nmax + P ; in particular the algorithm produces a control
Ctry = C1 · (C2)Nmax+1. The control Ctry is experimented on a replica. By the fact that the environment is
reentrant and is history oblivious the experiment succeeds. Thus, the algorithm finds a control that brings the
plant to the state sstart and produces an IO sequence in the plant-environment interaction with a subsequent
integer number of behavior sequences.

Next we prove that a control returned by the algorithm implies an infinite loop. Any sequence chosen by
the algorithm has a suffix with Nmax + 1 repetitions of a control sequence of length P . At least two such
repetitions start in the same plant state, sr. Therefore, there is a subsequence of an integer number of control
C2 repetitions that starts in sr and ends in sr while producing the IO sequence that has the subsequent
integer number of behavior sequences. sr is reached by the control that is synthesized by the algorithm and
the periodic behavior is obtained by that control, therefore the contradiction.
1 We note that for non-parallel search settings it may be possible to obtain a better complexity, when Nmax is

significantly greater than N , using the results in [24, 6, 2] as suggested in [12].
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Algorithm II: Static plant replication, state set, no state reflection. The plant state set allows the
control search engine to explore all connected components in the plant automaton graph and always find
a control if it exists. Even though we do not have the plant state reflection capability, i.e., we do not have
access to a plant state, the plant state set allows us to set the plant to all possible distinct states. Note that
knowing the set of the plant states does not imply knowledge of the plant automaton: the plant automaton
transition function can change due to the changes in the current environment.

The Control Generator Thread is designed as follows. We create all possible control (input) sequences of
length P , (Σpc

in)P . We try each control sequence from every plant state. If the control sequence produces IO
sequence that equals to the desired bhv the algorithm returns a tuple consisting of a beginning plant state
and a control sequence 〈sbegin, C〉. The control is an infinite loop in which we set the plant to state sbegin

by set instruction and then execute control sequence C.
The Monitoring Thread is the same as in Figure 3. The complexity of the experiments of Algorithm II

is O(PN).
Algorithm III: Static plant replication, no state set, state reflection. In these settings the plant
state is fully exposed. During the search procedure we can see the plant transition from one state to the
next, and, therefore, gain a full description of a connected component of the current plant state sp−curr in
the plant automaton.

Due to static plant replication we are unable to exploit the reflection attribute in order to improve the
algorithm complexity: we release all plant replicas simultaneously and are only able to observe the state
transitions. Thus, the algorithm in these settings is identical to Algorithm I.

Still, we are able to exploit the plant state reflection capability in case Nmax is unknown and we may
have several stages for generating replicas. We consider a multi-phase search algorithm: Nmax is set to initial
value N0 and we execute Algorithm I with the given Nmax value. If the control is found the multi-phase
algorithm terminates. Otherwise, we double the value of Nmax and execute algorithm I again. In each phase
all the visited plant automaton states and edges i.e., recording which inputs are applied to the plant state, are
recorded. If in the next phase we do not encounter new states then we may conclude that we have explored
the whole connected component of sp−curr in the plant automaton. If the control was not found so far we
terminate and return no control, which implies that there is no control that begins in sp−curr.
• Algorithm III: Dynamic plant replication, no state set, state reflection. The algorithm is pre-
sented in Figure 4. The plant state reflection and dynamic plant replication capabilities allows us to learn
the connected component of sp−curr in the most efficient manner by experimentation on the plant replicas:
we record the visited plant states and prune search paths that reach already visited states (lines 1-14). Note
that the algorithm explores all outgoing edges of each state si reachable from sp−curr exactly once.

The variable states is the list of states that were reached, but have not been fully explored (line 1),
i.e., the algorithm have not checked all outgoing edges of a state s ∈ states. The variable visitedStates is
the list of states for which their outgoing edges were fully explored by the algorithm (line 2). The variable
automatonComponent is a list of transition in the plant automaton graph observed by the algorithm (line
3). The algorithm chooses a state si ∈ states (line 5-6) and creates plant replicas set in state si (line 6). The
algorithm explores all outgoing edges from si by applying every possible input on a different plant replica
in parallel (lines 7-9). If a state s′j reached from si by applying input inj , was not not explored yet we add
s′j to the list of states to be explored and add the recorded transitions to the automaton component graph
(lines 11-13). Finally, when no new states are encountered, we conclude that we have explored the connected
component of sp−curr in the plant automaton graph and construct the observed connected component graph
A′

p (line 14).
Next, we search the connected component for a control that produces a periodic behavior in the same

manner as in Algorithm I (lines 15-21). The algorithm returns no control if there is no control that starts in
sp−curr.

In the worst case, the algorithm explores all edges in the graph describing the plant automaton during
the experimentation stage, namely, N |Σpc

in | edges. Therefore, the algorithm experimentation complexity is
O(N |Σpc

in |).
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Algorithm III
(Dynamic Plant Replication, No State Set, State Reflection)

input: 〈bhv, P 〉, Σpc
in

output: control C
Control Search Thread
//Plant Automaton Discovery
1 states = {sp−curr}//states to explore
2 vistedStates = {}//explored states
3 automatonComponent = {}
4 while (states 6= ∅)
5 ∀si ∈ states
6 states = states\{si}
7 replicate |Σpc

in | plants in state si: p1, . . . , p|Σpc
in |

8 in parallel ∀pj// Experimentation
9 ∀inj ∈ Σpc

in

10 execute(pj , inj) //plant state after execution is s′j
11 if s′j /∈ visitedStates
12 states = states ∪ {s′j}
13 automatonComponent = automatonComponent ∪ 〈si, inj , s

′
j〉

14 A′
p = constructAutomata(automatonComponent) //connected component automaton

//Search For Control
15 n = |A′

p|
16 input∗ = {(Σpc

in)i((Σpc
in)P )(n+1) : 0 ≤ i ≤ n}

17 ∀inputi ∈ input∗

18 execute(pi, inputi) and IOi = Observer.recordFor(|inputi|)
19 if IOi == IOstartbhvx//x ∈ N
20 return C = inputi

21 return no control
Monitoring Thread
22 while (true)
23 if Observer.recordFor(P ) ; bhv
24 if 6 ∃ControlGenarator ControlGenerator.start()

Fig. 4. Algorithm III: dynamic replication from current state and state reflection.

Algorithm IV: Static plant replication, state set, state reflection. In these settings we are able to set
a plant to every possible state. We learn the plant automaton transition function by applying to every plant
state all possible inputs and observing the reached state. We use the plant states and the plant automaton
transition function to construct the plant automaton.

We search the graph off-line for a periodic control. Starting from every state si we check all possible
input (control) sequences of of size P . If a sequence C drives the plant to produce IO sequence, such that
bhv = IO, and the last transition of C brings us back to state si, then the algorithm returns C. The algorithm
complexity is O(N |Σpc

in |), which is the total number of steps in all experimentations.

4 Control Search Algorithms for Deterministic/Probabilistic Plant and
Probabilistic Environment

Nature (the environment) may exhibit probabilistic behavior, responding to actions differently but with
the same probability distribution. The fact that the plant is not aware of the entire state (or output) of the
environment can be modeled by probabilistic plant-environment IO interaction, where environment reactions
to the plant inputs are probabilistic. In this section we turn to assume that the environment is probabilistic
and a plant is either probabilistic or deterministic. The probabilistic plant has a probabilistic transition
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function: for every two states s and s′ there is a probability pr, 0 ≤ pr ≤ 1, of transition from the state s
to the state s′ upon input σ while implying io in the plant-environment interaction. The transition function
probabilities are not known and may change if the environment changes. The suggested algorithms for
probabilistic settings are applicable in both the plant-environment combinations, in which the environment
is probabilistic and the plant is either probabilistic or deterministic.

A control search algorithms for probabilistic environment settings has to be executed all the time (unlike
for deterministic environment settings), due to the fact that the environment reactions are probabilistic, and,
moreover, the plant transition function is probabilistic too (in case the plant is probabilistic). The control
search algorithm decides on the next step based on the current state of the plant and the last IO exchange
in the plant-environment interaction during run time.
Preprocessing. We assume that during preprocessing we operate on plant replicas with plant state reflec-
tion and plant set capabilities. Thus, we are able to create all plant states and learn the plant automaton
transition function by observation. During the preprocessing stage we learn the (probabilistic) plant au-
tomaton transition function by experimentations. We calculate additional data structures based on the plant
automaton.

We assume knowing the smallest probability value prmin in the plant automaton transaction function.
Alternatively, we may assume that prmin is the smallest positive float value that can be defined by numeric
capabilities of a computer that executes the preprocessing. Safety paramter (SP) is the number of experiments
required in order to find edges with the minimal probability prmin with high probability. Thus, SP ∼= 1/prmin.
•Probabilistic Plant Automaton Graph (PPAG) table. We compute a table where each entry is of the form
PPAG[si, sj , σ, io] = pri,j , where si and sj are plant states, pri,j is the probability to reach sj from si with
input σ ∈ Σpc

in while producing io ∈ Σpe
in ×Σpe

out in the plant-environment interaction.
We compute PPAG[si, sj , σ, io] by experimentation on plant replicas as follows. For each two states si

and sj and for each σ ∈ Σpc
in , we create SP · |Σpe

in | · |Σ
pe
out| plant replicas set to the state si and give each

plant replica the input σ. We compute the percentage of times of the total number of experiments the plant
transits to the state sj while producing io in the plant-environment interaction. The experiments complexity
of calculating all entries in the PPAG table is O(N2 · |Σpc

in | · |Σ
pe
in | · |Σ

pe
out| · SP ).

•“Removing” unsafe states from PPAG table. During the experiments we record the plant automaton tran-
sitions [si, sj , σ, io], in which a plant replica suffers a damage when moving from state si to state sj upon
input σ. We consider transitions and states in which a plant suffers a damage to be unsafe. Thus, we forbid
application of the input σ on the plant replica set to the state si. The plant will not make unsafe transitions
to unsafe states. Note, that the added constraint implies that the plant in the state si is not able to reach
some other states besides unsafe states.
•Behavior Suffix Probability (BSP) table. An entry in the Behavior Suffix Probability (BSP) table is
BSP [s, j] = [pr, σ], which means that the maximal probability to obtain the behavior sequence suffix of
length j, bhvj , when the plant is in state si is pr, and this probability is achieved by applying an input σ.
We denote by BSP [s, j].pr the value of the first variable in the BSP [s, j] entry and by BSP [s, j].σ the value
of the second variable in the BSP [s, j] entry.

We calculate BSP table iteratively. First, we calculate all entries for j = 1. Then, based on the calculated
entries, we calculate all entries for j = 2, and so on, till we calculate all entries for j = k. In order to
calculate an entry BSP [s, 1] we check all entries in PPAG table of the form PPAG[s, ∗, ∗, iok]. Suppose
prmax = max{PPAG[s, si, σj , iok] : si ∈ Sp, σj ∈ Σpc

in} and σmax is the input that produces iok with the
highest probability prmax among all other possible inputs. This implies that BSP [s, 1] = [prmax, σmax].

Assume we have calculated all entries in BSP table for j ≤ m. In order to calculate entries BSP [s,m+1]
for every plant state s we calculate pr(s, bhvm+1, σ) – a probability to obtain the control sequence
suffix bhvm+1 starting from the plant set to the state s by applying the input σ ∈ Σpc

in . We com-
pute pr(s, bhvm+1, σ) by exploring all neighbors of the state s that can be reached by the input σ:
pr(s, bhvm+1, σ) =

∑
s′ PPAG[s, s′, σ, bhv[k − (m + 1)]] ·BSP [s′, j]. Finally, we choose an input σmax that

implies bhvm+1 starting from s with the highest probability prmax (prmax = max{pr(s, bhvm+1 : σ ∈ Σpc
in})

among all other inputs in Σpc
in . Thus, BSP [s,m + 1] = [prmax, σmax]. The BSP table is computed based on
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the PPAG table only, thus the computation is off-line, i.e., the computation does not require experimenta-
tions.
•Reachability Probability (RP) table. An entry in the Reachability Probability (RP) table is RP [s, s′] = [pr, σ],
where pr is the maximal probability pr for reaching a plant state s ∈ Sp from a plant state s and σ in the
first input that should be to the plant to reach the state s′ with the probability pr. The maximal probability
is an approximation since we compute the probability of the best path rather than the probability of all the
paths.

We denote by RP [s, s′].pr the value of the first variable in the RP [s, s′] entry and use RP [s, s′].σ to
denote the value of the second variable in the RP [s, s′] entry.

We compute the table entries for every two state si, sj ∈ Sp by invoking a modified version of Dijkstra
algorithm [7] on the plant automaton graph as represented by the PPAG table. In the modified Dijkstra
algorithm we use max function instead of min function and multiplication instead of summation. We invoke
the modified Dijkstra algorithm with si as initial state and find a path with maximal probability to reach
every other state sj from si. The RP table is computed based on the PPAG table only, thus the computation
is off-line.
•Detecting and “removing” deadlock states in the PPAG table. We call a state s a deadlock state if there is
no control sequence that starts in s and exhibits a desired behavior. A deadlock state s entry in the BSP
table is of the form BSP [s, k] = [0, ∗].

A control search algorithm with no plant state set capability will be in a livelock after reaching a deadlock
state. Thus, for such algorithms we “remove” deadlock states from PPAG by avoiding a control symbol that
drives the system to one of these states, in the same manner as we “removed” unsafe states. We find all
deadlock states reachable from sp−curr by using BFS or DFS algorithms [7] and denote them by Sreach.

We mark an input RP [s, s′].σ as inapplicable from the state s if s′ ∈ Sreach. Then, we recompute the BSP
table and repeat the procedure for removing deadlock states. We repeat the procedure till no more deadlock
states are found. The computation of the deadlock states is done using RP and BSP tables only, thus the
computation is off-line.
Algorithm V: Static plant replication, state set, state reflection. The control search algorithm is
presented in Fig. 5. The algorithm executes the loop in lines 2-9 infinitely often. The algorithm finds a state
sstart that has the highest probability that the desired behavior will be obtained when starting from the
plant set to sstart. We find the state sstart using the BSP table and sets the plant to the state sstart (lines
2-3). The variable index is the length of the obtained control sequence so far (line 4). We execute the input
as retrieved from the BSP table in order to achieve the current desired behavior sequence suffix with the
highest probability (line 6) until the whole control is found (line 5). If the transition to the next state snext

produces IO corresponding to the current entry in the behavior sequence suffix, and the probability to obtain
the rest of the behavior from the state snext is bigger than the probability to obtain the behavior from scurr

then we increase the length of the obtained control sequence (line 8). Otherwise, if we reached a state from
which we have a lower probability to obtain the rest of the behavior, we initialize the control sequence length
and set the current state to the best stating state in the same manner as in line 2 (line 9).

The algorithm experimentation complexity equals to the experimentation complexity of computing the
PPAG table and is O(N2 · |Σpc

in | · |Σ
pe
in | · |Σ

pe
out| · SP ).

Algorithm VI: Static plant replication, no state set, state reflection. The algorithm is presented in
Fig. 6. First, we present function ReachBetterStart (lines 9-11). The function makes transitions till it finds a
state s reachable from sp−curr, such that when starting in s a better probability for completing the desired
behavior than when starting from sp−curr is obtained.

In the Control Search Thread we execute the loop in lines 2-8 move to the best reachable starting state
using ReachBetterStart function (line 3) and then we start searching for control in the same manner as in
Algorithm V (lines 4-8). In case the algorithm deviates from the best possible path to obtain the control,
we initialize the control sequence size and search for the best state reachable from the current plant state
to start the control search anew (line 9). The algorithm experimentation complexity (computing the PPAG
table) is O(N2 · |Σpc

in | · |Σ
pe
in | · |Σ

pe
out| · SP ).
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Algorithm V
(Probabilistic, Static Plant Replication, State Set, State Reflection)
input: bhvp = 〈bhv, P 〉(|bhv| = k) , Σpc

in

On-Line Control Search Thread
1 while (true)
2 sstart = {sj : BSP [sj , k].pr = max{BSP [si, k].pr, 1 ≤ i ≤ N}}
3 setP lant(sstart) //sp−curr = sstart

4 index = 0
5 while (index ≤ k)
6 [snext, io] = execute(scurr, BSP [scurr, k − index].σ)
7 if io = bhv[index] and BSP [snext, k − index − 1] > BSP [scurr, k − index]
8 index + +
9 else index = 0, scurr = {sj : BSP [sj , k].pr = max{BSP [si, k].pr, 1 ≤ i ≤ N}}

Fig. 5. Algorithm V : probabilistic environment, static replication, state state and state reflection.

Algorithm VI
(Probabilistic, Static Plant Replication, No State Set, State Reflection)
input: bhvp = 〈bhv, P 〉(|bhv| = k) , Σpc

in

On-Line Control Search Thread
1 while (true)
2 ReachBetterStart(sp−curr)
3 index = 0
4 while (index ≤ k)
5 [snext, ioindex] = execute(scurr, BSP [scurr, k − index].s)
6 if ioindex = bhv[index] and BSP [snext, k − index − 1] > BSP [snext, k − index]
7 index + +
8 else index = 0, ReachBetterStart(sp−curr)
ReachBetterStart
input: scurr, bhvp = 〈bhv, P 〉(|bhv| = k)
9 while(∃s : RP [scurr, s] · BSP [s, k] > BSP [scurr, k])
10 σmax = {RP [scurr, s].σ : max(RP [scurr, s].pr), s ∈ |Ap|}
11 execute(scurr, σmax)

Fig. 6. Algorithm V I: probabilistic environment, static replication from current state and state reflection.

Monitoring and triggering control search. A change in the environment is, in fact, a change in the
probabilities of the transitions. Alas, we may be able to find such a change only after visiting the same state
SP · |Σpe

in | · |Σ
pe
out| times as we did during the preprocessing stage. We compare the probabilities computed in

the preprocessing stage and the probabilities observed during run time. In case there is a significant change
in the probabilities the monitoring thread initiates recalculation of the preprocessing stages.

5 Conclusions and Optimizations

A framework for run-time synthesis is presented, where on-line parallel experiments are used to rapidly find
a control. The framework also separates the plant from the environment and demonstrate the importance
of the plant state reflection and plant state set attributes. Several optimizations and directions for future
research are possible:
Extracting abstractions. One possible optimization of the sequence search procedure is to use subgoals.
A subgoal is a mile stone a control has to reach in order to reach its goals. Then the final control is a
combination of controls for subgoals. Some subgoals can be provided to the control generator in order to
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accelerate the search. Assume that there is a sequence that the control search engine identified as a sequence
that leads to achieving one of the subgoals, e.g., sending a message over a network. The control search engine
stores the sequence as a procedure abstraction and can use it when recomputing a control.
Partial reflection and set. Assume that there is partial plant state reflection, i.e., not all states are
transparent, but the number of non-transparent states between any two transparent states after any possible
dynamic change of the plant in the environment settings is dist. In order to assume partial plant state
reflection, one must be able to prove that the distance between two transparent states is constant for every
possible control execution. The algorithm for static replication of a plant from a current state with plant
state reflection will work in these settings as well. In this case, the search time complexity increases by the
factor of |Σpe

in |dist, which is a constant.
A partial state set that ensures that after any dynamic change there exists at least one state with the

state set attribute in each connected component of the plant automaton graph is also helpful.
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