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Abstract In this paper, we propose a new incremental learning algorithm of
Radial Basis Function (RBF) Network to accelerate the learning for large-
scale data sequence. Along with the development of the internet and sensor
technologies, a time series of large data chunk are continuously generated
in our daily life. Thus it is usually difficult to learn all the data within a
short period. A remedy for this is to select only essential data from a given
data chunk and provide them to a classifier model to learn. In the proposed
method, only data in untrained regions, which correspond to a region with
a low output margin, are selected. The regions are formed by grouping the
data based on their near neighbor using Locality Sensitive Hashing (LSH), in
which LSH has been developed to search neighbors quickly in an approximated
way. As the proposed method does not use all training data to calculate the
output margins, the time of the data selection is expected to be shortened. In
the incremental learning phase, in order to suppress catastrophic forgetting,
we also exploit LSH to select neighbor RBF units quickly. In addition, we
propose a method to update the hash table in LSH so that the data selection
can be adaptive during the learning. From the performance of nine datasets,
we confirm that the proposed method can learn large-scale data sequences
fast without sacrificing the classification accuracies. This fact implies that the
data selection and the incremental learning work effectively in the proposed
method.

Keywords resource allocating network · locality sensitive hashing · incremental
learning · large-scale data sequence
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1 Introduction

Due to the recent development of computer networks and sensor technologies,
many application software and devices (e.g. www, twitter, surveillance cam-
era) keep generating large-scale and high-dimensional data continuously as a
stream. Large-scale data sequences are characterized as data which are given
continuously in a short time and whose data distribution is changed over time.
There are at least two major issues to be solved: (1) how to handle the growing
number of data while maintaining high-performance, and (2) how to adapt to
dynamic environment quickly. The first issue can be solved by learning only
important information incrementally (Attar et al. 2010). On the other hand,
for the second issue, the computational time needs to be reduced by removing
unimportant calculations in the learning.

For the incremental learning algorithm, we have proposed an extended ver-
sion of modified Resource Allocating Network (RAN) classifier (Platt 1991) in
which LSH is used to select data and active RBF centers. RAN with local
learning (i.e. learning only active RBF centers) can effectively suppress the
so-called catastrophic forgetting (Polikar et al. 2001) by learning some RBF
centers with a given training data. However, the learning could be problem-
atic if many data are provided to learn at the same time. In order to ensure
real-time incremental learning, a mechanism to select and learn only essential
data is solicited in modified RAN. For this purpose, a margin-based data se-
lection has often been adopted in neural networks. In this approach, a training
data is given to a neural classifier and the margins of the two largest outputs
are calculated, and then only data with small margins are selected to learn.
However, the computational costs to calculate output margins are generally
expensive, especially when a large number of data are given as a continuous
data sequence.

One way to alleviate the computational burden in the data selection is that
the margin calculation is restricted only for training data in ‘untrained’ regions.
To specify such regions with less computation, we adopt LSH (Datar et al. 2004,
Andoni and Indyk 2008, Gu et al. 2013, Lee and Lee 2012, Shen et al. 2008).
With LSH, the region of a given training data is quickly specified by transform-
ing into a hash value and the learning status for the specified region is checked
in a hash table. If the region is judged as ‘untrained’, the training data would
be selected to learn; otherwise, it would be discarded. Since the calculation of
hash values in LSH is generally much smaller than that of output margin, the
data selection is expected to be fast by using LSH. The idea of using LSH can
also be applied to the selection of active RBF units. Since the learning time
strongly depends on the number of RBF units (Ozawa et al. 2005) in modified
RAN, if only RBF units with high activations are selected, the learning of con-
nection weights would be significantly faster. For this purpose, we adopt LSH
again to find active RBF units quickly; that is, instead of calculating RBF
activations, we can find active RBF units by calculating the LSH distances
between the hash values of an input and all RBF centers.
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Resource Allocating Network (RAN)
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Fig. 1 Network Structure of RAN-LSH.

In this paper, we propose a fast learning algorithm of modified RAN which
consists of the following two mechanisms: the LSH-based data selection and the
LSH-based RBF selection. With the former mechanism, even if a large chunk of
training data is given, only essential data are trained in modified RAN. With
the latter mechanism, even if the number of RBF units becomes large, the
learning time is expected to be fairly constant because the number of selected
RBF units are limited to the near RBF. This paper is organized as follows.
Section 2 explains the modified RAN and Section 3 presents its extended
model, in which the data selection and the RBF selection are implemented by
using LSH. In Section 4, the performance of the proposed model is evaluated for
several benchmark datasets in the UCI Machine Learning Repository. Finally,
Section 5 gives the conclusions of this work.

2 Modified Resource Allocating Network (RAN)

Figure 1(b) illustrates the structure of the RAN classifier. Let I, J , and K
be the numbers of inputs, RBF outputs, and network outputs, respectively.
When inputs x = {x1, · · · , xI}T are given to RAN, the RBF outputs y(x) =
{y1(x), · · · , yJ(x)}T and the network outputs z(x) = {z1(x), · · · , zK(x)}T are
calculated as follows:

yj(x) = exp

(
−∥x − cj∥2

σ2
j

)
(j = 1, · · · , J) (1)

zk(x) =
J∑

j=1

wkjyj(x) + ξk (k = 1, · · · ,K) (2)

where cj = {cj1, · · · , cjI}T and σ2
j are the center and the variance of the jth

RBF unit, respectively; wkj and ξk are the connection weight from the jth
RBF unit to the kth output unit and its bias, respectively.
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Algorithm 1 Modified RAN Learning
Input: Data X′ = {(xi, di, h(xi))}N

i=1, RAN, hash table H and parameter θp.
Output: RAN.
1: for all (xi, di, h(xi)) ∈ X′ do
2: Calculate the outputs z for xi and find the nearest center c∗ to xi.
3: Calculate the error: E = ∥z(x) − 1c∥/K
4: if E > ε & ∥x − c∗∥ > δ then
5: Add an RBF unit (i.e., J ← J + 1) and set an RBF center, and the connection

weights: cJ = xi, and wJ = di − z.
6: Get an index set C of RBFs position in hash table as such xi is the kth entry in

hash table Hk: CJ = k.
7: else
8: Do LSH-based RBF Selection for training data (xi, di, h(xi)), an index set C of

RBFs position in hash table and an index set R of selected RBFs.
9: for all {(cj , wj)}j∈R do

10: Calculate the outputs Φ for selected RBF centers cj (j ∈ R) and a training
data xi by Eq. (1).

11: Decompose Φ using SVD and obtain the matrices V , H, U .
12: Update connection weights W ′ = V H−1UT D.
13: end for
14: Calculate the outputs z for xi.
15: Calculate the error: E = ∥z(x) − 1c∥/K
16: if E > ε then
17: Add a hidden unit and the connection weights: cJ = xi, and wJ = di − z.
18: Get an index set C: CJ = k.
19: end if
20: end if
21: end for

Algorithm 1 shows the learning algorithm of a modified RAN. The learning
of RAN is divided into two phases: the addition of RBF units (Line 4-5 and
Line 16-17) and the update of connection weights between hidden and output
units (Line 9-13). Once RBF units are allocated, the centers are fixed after-
wards. The connection weights W = {{wjk}J

j=1}K
k=1 of the modified RAN are

updated by solving the following equation (Haykin 1999):

ΦW = D (3)

where Φ is a matrix of RBF outputs and D is a target matrix. Suppose that
a training data (x,d) is given and J RBF centers (cj ,wj) (j = 1, · · · , J) have
already been allocated. In order to suppress the interference caused by the
incremental learning, the modified RAN is trained with some RBF centers
as well as a new data. Therefore, a target matrix D in Eq. (3) is formed as
follows: D = {d,w1, · · · ,wJ}T , while a matrix of RBF outputs Φ is given by
Φ = {y(x),y(c1), · · · ,y(cJ)}. To obtain W in Eq. (3), Singular Value Decom-
position (SVD) is often used, and the solution is given by W = V H−1UT D
where V and U are orthogonal matrices and H is a diagonal matrix.

Since the computational complexity of SVD is O(J3), the number of RBFs
is a key to reduce the learning time. Let us introduce the selection of active
RBF in the modified RAN. Algorithm 1 shows a pseudo-code of the RAN
learning with RBF selection. As seen at Line 8 in Algorithm 1, when the
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Algorithm 2 RAN-LSH Learning Algorithm
Input: A set of N0 initial training data X0 = {(xi, di)}N0

r=1, parameters θa and θm.
1: Do Initialization. Get proper parameters σ2, P and an initial hash table H.
2: loop
3: Input: a chunk of N training data X = {(xi, di)}N

i=1 and parameter θd.
4: Calculate the hash values h(xi) for all xi ∈ X by Eqs. (5) and (6).
5: Set X̂ = {(xi, di, h(xi))}N

i=1.
6: Do Update Hash Table and get a new hash table H.
7: Do LSH-Based Data Selection and get a set of selected data X′.
8: Do Modified RAN Learning for X′.
9: end loop

connection weights are updated, only a part of RBFs are selected and used to
define the matrix of RBF outputs Φ′. The matrix Φ′ is decomposed into the
orthogonal matrices V ′, U ′ and a diagonal matrix H ′ by using SVD. Then,
the connections weights W ′ are updated for the selected RBF units, while the
connections for the other RBF units are not changed.

In order to suppress the catastrophic interference, it is empirically known
that some RBF units should be learned along with a given training data,
so that the previous memories are not forgotten when learning new data. In
conventional RAN, the problem is solved by learning local region which is
approximated using C1 continuous polynomial without calculating the RBF
outputs (Platt 1991). Whereas, the same goal is achieved by another variant
of RAN, RAN with Long Term Memory (RAN-LTM) where it carried out the
learning with memory items that are stored in LTM (Kobayashi et al. 2001,
Okamoto et al. 2003, Ozawa et al. 2010). Nevertheless, we use different ap-
proach which can be easily implemented by using LSH where we are able to
select active RBF units. This will be described in the later section.

3 RAN with LSH-based Data Selection and LSH-based RBF Selection

3.1 Learning Algorithm

We assume that only a limited number of training data are available in the
initial learning phase. These initial training data are used to decide the struc-
ture of a learning model and to set up its appropriate parameters. On the
other hand, in the incremental learning phase, it is assumed that a large set
of training data are given sequentially and it is too large to learn all data at
every time step.

Under such learning environments, training data to be learned in the in-
cremental learning phase should be restricted to only essential ones such as
those existing in untrained regions. For this purpose, the margin-based data
selection has often been used (Dan and Kevin 2006). However, to introduce
this margin-based method in modified RAN, the output margins must be cal-
culated for all training data. Obviously, it requires expensive computations for
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Algorithm 3 Initialization
Input: Initial data set X0 = {(xi, di)}N0

i=1, parameters θa and θm.

Output: Hash table H, parameters σ2 and P .
1: Do the cross validation for X0 to determine the parameters: the RBF width σ2 and the

number of partitions P .
2: Do PCA for X0, and obtain l eigenvectors U l such that the accumulation ratio is larger

than θa.
3: for j=1 to l do
4: Calculate the jth projection values vij for all (xi, di) ∈ X0 by Eq. (4).
5: Get the maximum value vmax

j and the minimum value vmin
j .

6: Calculate the decimal hash function H(vij) for vij by Eq. (5).
7: end for
8: Get the hash value h(xi) for all xi ∈ X0 by Eq. (6).
9: Sort the hash values in the ascending order: {h1, · · · , hk. · · ·}.

10: for all hash values hk do
11: Find all xi with h(xi) = hk and calculate the mean vector x̂k.
12: Calculate the output margin for x̂k by Eq. (8) and set the margin flag Fk by Eq. (9).
13: Register {hk, x̂k, Fk} in the hash table H.
14: end for

the data selection, and it makes difficult for modified RAN to learn a large
data chunk in real time.

To select untrained data from a chunk of given data quickly, we introduce
LSH in the data selection. Figure 1 illustrates the proposed model called RAN
with LSH-based Data Selection (RAN-LSH) and Algorithm 2 shows the main
flows of the RAN-LSH learning. As seen in Fig. 1, RAN-LSH is composed of
two parts: (a) LSH-based data selection and (b) RAN classifier. The learning
is divided into the following two phases: initial learning phase and incremental
learning phase. As mentioned above, in the initial learning phase, only a limited
number of data are assumed to be given. They are used to get proper values
of the RBF width σ2 and the number of partitions P , and to create an initial
hash table H (see Step 1 in both Algorithms 2 and 3).

After the initialization, the learning mode is changed to incremental learn-
ing. Whenever a new chunk of data is given, it is first forwarded to LSH to
calculate a hash value. After updating the hash table, the chunk of data is sent
to the data selection part to select only essential data from the given chunk X.
In order to make the learning of RAN-LSH faster, we adopt a local learning
algorithm in which only a limited number of active RBF units are selected by
using LSH and their connection weights are trained incrementally (see Fig.
1). Since the time complexity of learning connection weights in modified RAN
is the order O(J3) (J : the number of RBF units) (Ozawa et al. 2005), it is
expected that the proposed local learning algorithm would also contribute
to reducing the learning time in RAN-LSH. These steps are summarized in
Algorithm 2 (RAN-LSH learning algorithm).

In the following, we explain the detailed procedures in the LSH-based data
selection and the whole learning algorithm of RAN-LSH.
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3.2 LSH-based Data Selection

The LSH-based data selection is carried out based on a hash table H which
consists of the following three items: hash value h(x), prototype vector x̂ and
margin flag F . A hash function is used to encode an input data into a hash
value as an index in the hash table. In LSH, input data that exist within a
local region are encoded into the same hash value (Chellapilla et al. 2007). A
prototype vector corresponds to a typical input data (e.g., mean vector) which
represents a local region, and the margin flag means the learning status of the
local region: trained or untrained.

Since the proposed LSH-based data selection is carried out under an in-
cremental learning environment, the hash table H in the proposed method
should be updated on an online basis. For this purpose, the LSH method used
here has the following differences from the conventional projection-based im-
plementations of LSH proposed by Andoni et. al. (Andoni and Indyk 2008):

1) A hash function Hi is defined as the projection to an eigenvector obtained
by Principal Component Analysis (PCA), instead of that to a random
vector.

2) Only one hash table H is used and H is evolved in both size and contents
to adapt to time-varying data distributions; that is, the entries in H is
increased in number and updated online. Therefore, it is unlikely that H
covers all areas of an input space, although it may end up covering the
whole space for a long run.

In the next subsections, let us give detailed explanations on the hash en-
coding, how to update a hash table and the propose data selection algorithm.

3.2.1 Hash Encoding

The basic idea of LSH is to hash high-dimensional input data so that sim-
ilar data are mapped to the same buckets (subregions of inputs) with high
probability. Here, we adopt a projection-based LSH, in which the projection
in a hash encoding is conducted for eigenvectors obtained by PCA, instead
of random vectors. It is well known that an eigen-subspace spanned by such
eigenvectors gives a good approximation to an input space and its approxima-
tion error can be easily controlled by the accumulation ratio, which is defined
by the ratio of input components in the approximated subspace over those in
the whole input space. Therefore, by introducing eigenvectors instead of ran-
dom vectors in the projection-based LSH, we can easily determine a suitable
number of hash functions from a given data distribution.

Let l be the number of eigenvectors which are obtained by setting the
threshold θa for the accumulation ratio; that is, l is given as the minimum
number of eigenvectors whose accumulation ratio is larger than or equal to the
threshold θa. In addition, let the obtained eigenvectors be U l = {u1, · · · ,ul}.
Then, a projection vector V = {v1, · · · , vl}T of an input data x is obtained by

V = UT
l x. (4)
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Algorithm 4 Update Hash Table
Input: RAN, X̂ = {(xi, di, h(xi))}N

i=1, and hash table H.
Output: Hash table H.
1: for all xi ∈ X̂ do
2: Find h(xi) in H.
3: if h(xi) and h(x̂k) of kth entry Hk = {h(x̂k), x̂k, Fk} is matched then
4: Update x̂k with xi by Eq. (7).
5: if Fk = 0 then
6: Calculate the output margin for x̂k by Eq. (8).
7: Update margin flag Fk by Eq. (9).
8: end if
9: else

10: Calculate the output margin for xi by Eq. (8).
11: Calculate margin flag FK+1 by Eq. (9).
12: Register a (K + 1)th entry in H: HK+1 = {h(xi), xi, FK+1}.
13: end if
14: end for

In the proposed hash encoding, each projection vi (i = 1, · · · , l) is divided
into P partitions along the one-dimensional space spanned by the eigenvector
ui. Let H(vi) be a hash function that transforms vi into an l-series of hash
value: H(vi) ∈ {1, . . . , P}l

i=1, and let v+
i and v−i be the lower and upper

values of typical projections vi on the ith eigenvector ui, respectively. In the
proposed RAN-LSH, v+

i and v−
i are determined in the initial learning phase

(see Algorithm 3 Line 5), and they are defined as the minimum and maximum
values of the projections for initial training data X0. The hash function H(vi)
is given as follow:

H(vi) = max{
⌈

min{max{vi, v
−
i }, v+

i } − v−
i

v+
i − v−

i

P

⌉
, 1}. (5)

Therefore, a hash value h(x) is defined as the following decimal code, which
is given by concatenating all the decimal codes of a hash function H(vi):

h(x) = {H(v1), · · · ,H(vl)} (6)

as such, an input x is encoded into an l-series of decimal hash vector.

3.2.2 Update of Hash Table

As seen in Algorithm 2, the hash values of training data X are first calculated,
and X is redefined by adding the hash values h(xi): X̂ = {(xi,di,h(xi))}N

i=1.
Then, a hash table H is updated with the newly defined training data X̂.
Algorithm 4 shows how to update a hash table H with X̂. In the following,
let us assume that a hash table has K entries (i.e., H = {Hk}K

k=1) and the kth
entry Hk is represented by a triplet Hk = {h(x̂k), x̂k, Fk} where x̂k, h(x̂k),
and Fk are a prototype vector, its decimal hash encoding, and the margin flag,
respectively.

For each training data in X̂, the following procedures are carried out. First,
a hash value h(xi) is searched from H. If h(xi) is matched with h(x̂k) in H,
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Algorithm 5 LSH-Based Data Selection
Input: X̂ = {(xi, di, h(xi))}N

i=1 and hash table H.

Output: X̂ = {(xi, di, h(xi))}N
i=1.

1: for all xi ∈ X̂ do
2: Find h(xi) in H.
3: if Fk = 1 for a matched entry then
4: Remove xi from X̂ and N ← N − 1.
5: end if
6: end for

it implies that the neighbor area around xi has already been learned. In this
case, the prototype vector x̂k is updated with xi as follow:

x̂′
k =

1
N + 1

(N x̂k + xi) . (7)

If the margin flag Fk = 0, the output margin should be checked for the updated
prototype x̂′

k as follow:

∆z(x̂′
k) = z∗(x̂′

k) − z∗∗(x̂′
k) (8)

where z∗ and z∗∗ are the largest and the second largest outputs of modified
RAN, respectively. Then, the margin flag Fk is updated as follow:

Fk =
{

1 (∆z(x̂′
k) > θm)

0 (otherwise) (9)

where θm is a positive threshold.
If there is no matched entry in H, it implies that a training data xi has

not been learned so far. Thus, the output margin for xi need to be calculated,
so that a margin flag would be assigned for the new entry. Then, a new entry
HK+1 is created in H as follow: HK+1 = {h(xi),xi, FK+1}.

3.2.3 Data Selection

Algorithm 5 shows the steps to select essential data. In the data selection, the
hash value for each data is examined (see also the upper left of Fig. 1(a)).
If the margin flag is 0, it implies that a training data exists in an untrained
region; thus, such a training data should be selected and learned by RAN. On
the other hand, if the margin flag is 1, it implies that the neighbor region of
such a training data is well trained. Therefore, such a data is not considered
to be essential for RAN, and it can be discarded to reduce the learning time.

3.3 LSH-based RBF Selection

As mentioned before in Section 2, RBF bases in hidden layer are used to
suppress the interference effectively. However, it is not efficient to retrieve
and train all RBF bases. One of the reason is the calculation of the SVD
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Algorithm 6 LSH-based RBF Selection
Input: Training data (xi, di, h(xi)), an index set C of RBFs position in hash table, an index

set R of selected RBFs, hash table H, and parameter θp.
Output: R
1: for j = 1 to J do
2: Get hash value of kth entry from hash table H{k=Cj}: h(cj) = h(x̂k).

3: Calculate LSH distance d∗j between hash values of both RBF centers h(cj) and a

given training data h(xi) using Eq. (10).
4: if d∗j ≤ θp then

5: Define a set R of selected RBF centers (i.e R ← j).
6: end if
7: end for

in W = V H−1UT D would become heavier for a larger number of hidden
units as such, if all RBF centers are used to update the weight. Thus, the
processing time would require a longer time. Therefore, we restrict the RBF
bases to learn only near RBF centers, in which must satisfy a specific condition
(i.e. LSH distance d∗ ≤ θp). The algorithm to retrieve only a part of RBF bases
is shown in Algorithm 6.

In this study, we adopt LSH distance with decimal hash code, instead
of the well-known Hamming distance of binary hash code. This is because,
we notice that the Hamming distance of binary values is only appropriate
to measure distance of projection vector V which is divided into at most
three partitions. If larger number of partitions is used, the Hamming distance
value would not represents the distance correctly. For example, in the case of
P = 8, 3-bits binary would be used to represent each segment/bucket where
vl is located (i.e. segment ∈ {1, . . . , P}). Let say segment = 5 and segment
= 6 are represented by binary code 011b and 100b respectively. When the
Hamming distance between these segments are calculated, it would give 3-bit
difference instead of 1-bit difference. Since in this study we use larger than
three partitions, it is inappropriate to use binary hash code and Hamming
distance to find near RBFs.

To find the RBFs neighbor of a training data using LSH, firstly, the hash
values of RBFs need to be retrieved from the constructed hash table H where
the Cjth entries in H are correspond to the hash values of the jth RBFs. Next,
the LSH distance d∗

j for each jth RBFs can be calculated as follows;

d∗
j =

l∑
i=1

(hi(x) − hi(cj)) (10)

where we accumulate the distance (using hash values in decimal) between a
given training data hi(x) and all RBF centers hi(c) for l-projection vector
in V . Then the RBF centers with LSH distances that are less or equal to θp

would be selected to solve the linear equation in Eq. (3).
For instance, let partition P is equal to 16 and the number of eigenvectors

i given by θa = 0.7 is equal to 4. Thus the projection vector is {vi}4
i=1 ∈

{1, · · · , 16}. Let say, the hash value of a training data h(x) is {6, 3, 1, 10}. While
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Table 1 Evaluated UCI Datasets (Bache and Lichman 2013)

Dataset #Init. Data #Train. Data #Test Data #Attrib. #Classes
Hiragana 500 8366 8365 13 38
Adult 500 22611 22611 14 2
Shuttle 500 28989 28988 9 5
Bank 500 22606 22605 16 2
Pendigits 500 5496 5496 16 10
Letter 500 10000 10000 16 26
MAGIC 500 9510 9510 10 2
Optical Digits 281 2810 2810 64 10
Semeion 80 797 796 256 10

the hash values of two different RBF centers c1 and c2 are h(c1) = {5, 12, 7, 1}
and h(c2) = {6, 2, 1, 9}, respectively. Therefore, the LSH distance d∗j between
a training data x and RBF centers c1 and c2 are d∗1 = |6− 5|+ |3− 12|+ |1−
7|+ |10−1| = 25 and d∗

2 = |6−6|+ |3−2|+ |1−1|+ |10−9| = 2, respectively.
Hence for θp = 3, RBF center c2 would be selected. This strategy to select RBF
bases is expected to be fast because the hash functions are not recalculated but
instead are recalled from the hash table which had been constructed during
data selection. Besides that, it is assumed that more learning time would be
reduced especially for large dimensions dataset, since the number of projection
vectors are much smaller than the number of feature vectors.

4 Experimental Results and Discussions

4.1 Experimental Setup

To evaluate the performance of the proposed method, we use the nine bench-
mark datasets in the University of California at Irvine (UCI) Machine Learning
Repository (Bache and Lichman 2013). The dataset information is shown in
Table 1. Although training and test data are separately provided in some data
sets, they are merged and randomly divided into two subsets to evaluate the
average performance through the two-fold cross-validation. Since the perfor-
mance generally depends on the sequence of training data, 30 sequences in
total are trained incrementally and the average performance is evaluated for
the test data. For the first seven datasets in Table 1, 500 initial training data
are randomly selected from the training data. For the other datasets (Optical
Digits and Semeion), 10% of the training data are randomly selected as initial
data. After the initial learning, it is assumed that a large chunk of data is
given sequentially in the incremental learning phase. The number of data in
a chunk is set to 1,000 at every learning stage except for the last stage. Since
training data are assumed to be given only once, the data chunk given at the
last stage may consist of less than 1,000 data.

In the following experiments, we evaluate the proposed RAN-LSH from
the following three points: (1) appropriateness of the granularity in the hash
encoding, (2) effectiveness of the data selection, and (3) the effectiveness of
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the local learning in modified RAN. For the notational convenience, let us
denote modified RAN with the margin-based data selection as RAN-MRG.
The experiments are carried out on a personal computer with Intel Core Quad
(3.4 GHz) CPU and 32 GB main memory. We estimate the computational costs
based on the actual learning time measured by the Matlab stopwatch timer
function.

In RAN-LSH, the three parameters on accumulation ratio θa, output mar-
gin θm, and tolerant distance θp should be determined empirically. In this
experiment, we use the following parameter settings: θa = 0.7, θm = 0.05, and
θp = 3. Meanwhile, the error threshold ε is set to 0.5. The other parameters,
RBF width σ and the number of partitions P , are determined in the initial
learning phase through the cross-validation.

4.2 Granularity in Hash Encoding

To avoid unnecessary calculations of output margins in the data selection,
similar data are associated with the same partition to represent the learning
status (i.e., well-trained or untrained). As easily expected, if the number of
partitions is small, a state space is roughly represented in the hash encoding
and the collision probability of dissimilar data tends to be high. On the con-
trary, if the number of partitions is large, the collision probability would be
low (i.e., data are sparsely allocated to each segment/bucket of P partition),
while the size of a hash table would be large, resulting in the increase of the
memory and computational costs.

To find a suitable granularity in the hash encoding (i.e., a proper num-
ber of partitions P ), let us introduce the following Davies-Bouldin index IDB

(Davies and Bouldin 1979):

IDB =
1
P

P∑
i=1

max
j:i̸=j

Si + Sj

∥x̄i − x̄j∥
(11)

where x̄i and Si are the centroid and the variance of data allocated to the ith-
segment of P partition, respectively. The numerator in Eq. (11) corresponds
to the within-cluster scatter for the segments i and j, which should be as small
as possible. The denominator corresponds to the between-cluster separation
between the centroids x̄i and x̄j . This Davies-Bouldin index IDB depends on
the data as well as the hash encoding method, and ideally has to be as small
as possible. However, as mentioned above, too small IDB leads to the sparse
data allocation in the hash encoding and results in the increase in computation
and memory costs. Therefore, we need to find a proper value of P such that
a moderate value of IDB with less memory and computational costs can be
obtained.

Figure 2 illustrates IDB and the memory size for different numbers of par-
titions P . We use Shuttle, Pendigits and MAGIC Gamma Telescope (MAGIC)
datasets for the evaluation. As seen in Fig. 2, when P increases, IDB decreases;
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Fig. 2 Effect of the number of partitions P to the Davies-Bouldin index IDB and the memory
consumption for (a) Shuttle, (b) Pendigits, and (c) MAGIC datasets.

Table 2 Effect of the number of partitions P to learning time [sec.]

Methods Shuttle Pendigits MAGIC
RAN-MRG 1.6±0.4 1.2±0.1 13.8±1.7
RAN-LSH (P = 2) 0.6±0 0.3±0.1 0.3±0.2
RAN-LSH (P = 4) 1.0±0.1 0.9±0.1 4.4±0.8
RAN-LSH (P = 8) 1.0±0.1 1.4±0.1 10.0±1.6
RAN-LSH (P = 16) 1.0±0.1 1.6±0.1 14.4±1.9
RAN-LSH (P = 32) 1.3±0.2 1.6±0.1 14.7±1.8
RAN-LSH (P = 64) 3.3±0.5 2.2±0.1 16.5±1.7

that is, the collision probability of dissimilar data is getting low. In contrast,
the required memory size is increased due to the increase in the number of hash
entries. Meanwhile, Table 2 shows the learning time for different numbers of
partitions. Obviously, when the number of partitions increases, the time for
incremental learning becomes long.
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Table 3 Effectiveness of introducing the data selection. The performance is compared among
three models; modified RAN, RAN-MRG and RAN-LSH. Note that modified RAN has no
data selection mechanism. In the incremental learning phase, a chunk of 1,000 data is given
at every learning stage. The performance measures are (a) the final recognition accuracy [%],
(b) learning time [sec.], and (c) the total number of selected data, which are averaged over
30 trials with different data sequences. The results are represented in the form of (average)
± (standard deviation). The single asterisk (*) and the double asterisk (**) mean that the
average difference against modified RAN (no data selection) is statistically significant under
p-value is less than 5% and 1% level, respectively.

(a) Recognition accuracy [%]

Dataset RAN RAN-MRG RAN-LSH
Shuttle 98.4±1.8 98.9 ± 1.1 98.6 ± 0.9
Pendigits 98.9±0.2 98.3 ± 0.3∗∗ 98.3 ± 0.3∗∗

MAGIC 76.5±0.8 74.6 ± 2.1∗∗ 75.1 ± 2.1∗

(b) Learning time [sec.]

Dataset RAN RAN-MRG RAN-LSH
Shuttle 151.2±20.7 1.6 ± 0.4∗∗ 1.3 ± 0.5∗∗

Pendigits 134.7±9.8 1.9 ± 0.1∗∗ 1.7 ± 0.1∗∗

MAGIC 10,808±809 18.8 ± 1.7∗∗ 16.2 ± 2.2∗∗

(c) Total number of selected data

Dataset RAN RAN-MRG RAN-LSH
Shuttle 28,488 216 ± 101∗∗ 95 ± 28∗∗

Pendigits 4,996 67 ± 8∗∗ 57 ± 10∗∗

MAGIC 9,010 380 ± 27∗∗ 249 ± 30∗∗

From the results in Fig. 2 and Table 2, one can say that an optimal value
of P exists between 4 and 16. Therefore, let us find a suitable number of
partitions P within this range by applying the cross-validation to an initial
dataset.

4.3 Effectiveness of Data Selection

To see the effectiveness of the data selection in RAN-LSH, we compare the per-
formance with the other two modified RAN models, in which no data selection
mechanism is introduced (RAN model) and a margin-based data selection is
introduced (RAN-MRG model). Table 3 shows the results of the performance
comparison based on the following measures: (a) the final recognition accu-
racy [%], (b) learning time [sec.], and (c) the total number of selected data.
The final recognition accuracy is examined for the test dataset after the incre-
mental learning phase is completed, and the learning time only includes the
computational time for incremental learning.

As seen in Table 3(a), the recognition accuracies of RAN-MRG and RAN-
LSH are slightly dropped compared with that of modified RAN because many
training data are discarded in the data selection (see Table 3(c)). For Shuttle,
only 0.3% of training data are used for learning in RAN-LSH on average. Thus,
99.7% training data are discarded by the proposed LSH-based data selection,
although the performance seems to be relatively decreased by 0.1%. On the
other hand, although small performance drops are recognized for Pendigits
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Fig. 3 Effect of RBF bases selection with different θp. Best viewed in color.

and MAGIC, the percentages of the data reduction are 98.9% and 97.2%,
respectively. Obviously, this data reduction results in significant speed-up in
learning (see Table 3(b)). Compared with RAN-MRG, the proposed RAN-LSH
can reduce more training data without deteriorating the recognition accuracy.
Therefore, we can conclude that the proposed LSH-based data selection works
properly.

4.4 The Effect of RBF Bases Selection

To investigate the efficiency of RAN-LSH with RBF selection, we carried out
two observations as follows: (1) identify the effect of selecting RBF bases using
different values of θp, and (2) examine the performance regarding (a) the
recognition accuracy and (b) learning time. Figure 3 and Table 4 show the
above findings respectively.

Figure 3 illustrates the effects of using different values of θp towards number
of RBFs selected for two datasets (a) Optical Digits and (b) Semeion. In Fig.
3 (without RBFs selection), it can be seen that the number of RBF bases
increases gradually in proportion to the number of training data. As previously
stated in Algorithm 1, the RBF center would be added if the current model
is not well-trained and thus RAN-LSH model without RBFs selection is not
suitable for large-scale data sequences. This is because the learning time would
take an eternity to update the weights of a very large RBF outputs matrix
Φ. As a result, the model could not catch up with the speed of the next data
chunk. However, we can reduce the influence of expansion on hidden units’
size by learning only RBF bases which are located near to the training data.

Learning a training sample along with near RBF bases could prevent catas-
trophic forgetting in the incremental learning. However, learning all RBF bases
would cause a new interference due to the distribution of the RBF bases that
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Table 4 The effect of selecting RBF centers using different threshold values θp namely
through; (a) recognition accuracy [%], (b) incremental learning time [s], and (c) the total
number of RBF bases selected. The values represented are the mean and standard deviation
of each method.

(a) Recognition accuracy [%]

Dataset RAN-MRG RAN-LSH RAN-LSH RAN-LSH
θp = ∞ θp = 10 θp = 3

Hiragana 96.8±0.4 96.6±0.4 96.8±0.4 96.7±0.4
Adult 78.1±1.2 78.0±1.2 78.1±1.0 77.8±1.3
Shuttle 98.9±1.1 98.6±0.9 98.3±1.4 98.1±1.3
Bank 84.1±1.8 84.4±1.7 83.9±1.9 84.6±1.5
Pendigits 98.3±0.3 98.3±0.3 98.3±0.3 97.8±0.4
Letter 86.6±0.5 86.4±0.5 86.5±0.5 86.4±0.8
MAGIC 74.6±2.1 75.1±2.1 75.7±1.8 73.9±2.0
Optical Digits 97.7±0.5 97.7±0.5 97.7±0.5 97.7±0.5
Semeion 90.4±0.1 90.4±0.1 90.4±0.1 90.4±0.1

(b) Incremental learning time [sec.]

Dataset RAN-MRG RAN-LSH RAN-LSH RAN-LSH
θp = ∞ θp = 10 θp = 3

Hiragana 48.0±4.5 42.9±4.0 10.5±1.6 7.4±1.1
Adult 102.4±10.8 90.1±9.0 30.0±6.2 14.9±2.6
Shuttle 1.6±0.4 1.3±0.5 1.2±0.5 1.2±0.4
Bank 17.3±1.7 15.7±1.8 15.2±1.9 6.8±1.0
Pendigits 1.9±0.1 1.7±0.1 1.0±0.0 0.9±0.0
Letter 218.1±13.8 179.0±16.4 156.0±8.9 8.5±0.3
MAGIC 18.8±1.7 16.2±2.2 4.5±0.8 2.6±0.3
Optical Digits 65.8±3.2 63.2±2.9 18.2±2.4 9.3±4.3
Semeion 124.5±1.2 121.9±3.1 8.9±1.2 4.1±0.6

(c) Total number of RBF bases

Dataset RAN-MRG RAN-LSH RAN-LSH RAN-LSH
θp = ∞ θp = 10 θp = 3

Hiragana 559.9±17.5 557.7±16.8 575.0±19.0 572.2±19.1
Adult 670.2±21.0 688.0±23.8 757.3±54.0 608.4±19.6
Shuttle 97.0±5.1 56.5±10.6 60.1±14.7 53.9±10.4
Bank 274.1±15.2 277.2±16.4 273.6±17.3 268.1±40.9
Pendigits 176.6±6.7 176.7±6.7 176.2±6.7 159.4±6.5
Letter 818.6±16.4 817.2±13.9 814.9±15.2 832.2±32.3
MAGIC 352.6±13.4 374.1±13.8 401.7±28.7 333.7±11.9
Optical Digits 727.4±10.4 727.9±10.1 727.7±10.2 728.3±10.3
Semeion 792.1±2.1 792.1±2.1 792.1±2.1 792.1±2.1

is sparsely distributed. One of the RBF bases selection strategy is to choose
the active RBFs using Euclidean distance. Conversely, in our approach, the
LSH distance is used to choose RBF bases that are near to the given training
data. In this present study, we used θp to select the maximum LSH distance
between a training data and all RBF centers in the hidden layer nodes. When
a small value of θp is used, only a small area of the near RBF bases to a train-
ing data is involved and thus a few RBF centers would be selected and used
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to update the weights. Meanwhile, when θp approached ∞, RAN-LSH model
would act as such there is no RBF bases selection since the area of the nearest
RBF centers would cover almost all regions in the input space. The advantage
of our approach is evident through this experiment in that; it selects only one
nearest RBF bases during learning by using θp = 3, thus enabling this model
to learn a large-scale data sequence in high-speed.

By selecting near RBF, we assumed that the active RBF bases would be
selected to be learned together with a training data. To evaluate the perfor-
mance of the proposed method, we compared the performance of four models;
conventional RAN-MRG (without RBFs selection), RAN-LSH without RBFs
selection (θp = ∞), RAN-LSH with RBFs selection using θp = 10 and RAN-
LSH that selects the nearest RBFs (θp = 3). Nine UCI datasets are used to
evaluate the performance of these models.

Table 4 demonstrates (a) the final recognition accuracy, (b) the incremen-
tal learning time and (c) the final number of RBF bases created. In Table 4
(a) and (c), for RAN-LSH with θ = ∞ (without RBF selection) model, it can
be seen that the LSH-based data selection is comparable to the conventional
margin-based data selection. This can be justified from the findings of recogni-
tion accuracy and final number of RBF bases created that are almost similar.
Nevertheless, RAN-LSH with θ = ∞ is capable to speed up the learning where
all datasets show a time reduction during learning.

To shorten more learning time in RAN-LSH, we adopt the locally learning
model (RAN-LSH with RBF selection). Local RAN-LSH model can avoid the
high computional of SVD calculation because only a few RBFs in the hidden
layer are selected to update the weight. For RAN-LSH with θp = 10 model,
the recognition accuracy and the final number of RBF bases are able to be
maintained as previously models, RAN-MRG and RAN-LSH without RBF
selection. Furthermore, the incremental learning time is successfully reduced
to 35% of the incremental learning in RAN-MRG on average for five datasets
which are Hiragana, Adult, MAGIC, Optical Digits and Semeion datasets
using RAN-LSH (θp = 10) model.

On the other hand, RAN-LSH with θp = 3 is able to achieve at most 0.9%
difference of recognition rate for Shuttle dataset compared to RAN-MRG.
Whereas for the other datasets, the recognition accuracy shows a difference
of only 0.5% or lower. This shows that it is sufficient to use only one nearest
RBF center to be learned together with a given training data. In term of
incremental learning time (see Table 4 (b)), six datasets, which are Hiragana,
Adult, Letter, MAGIC, Optical Digits and Semeion datasets would require
only 20% of the incremental learning in RAN-MRG on average, where 84.6%,
85.4%, 96.1%, 81.2%, 85.9% and 96.7% of learning times are speeden up,
respectively. Whereas, for Shuttle, Bank and Pendigits datasets, at least 25%
of the incremental learning time is shortened compare to RAN-MRG. Another
advantage of RAN-LSH with θp = 3 model is the final number of RBF bases
shown to be lower than RAN-MRG for all datasets except Hiragana, Letter
and Optical Digits where an extra 20 RBF bases are created at most. This
result indicates that for especially large scale dataset, RAN-LSH using θp = 3



18

model can effectively be used to reduce the learning time without sacrificing
the recognition accuracy.

5 Conclusions

In this paper, we propose a fast incremental learning algorithm of modified
RAN namely RAN-LSH which can be used to select essential data and near
RBF bases. By utilizing this, the high cost for calculating high dimensional
data can be lowered, as we can avoid the repetition of output margins and
weights update calculations. In the present study, we introduced the LSH-
based data selection and LSH-based RBF selection in the modified RAN clas-
sifier to solve two major issues in large-scale data sequences. Through our
experiment, we managed to show that our proposed method of RAN-LSH
with θp = 3 is capable to learn a large chunk of data within a short period
of time. This can be seen when only 20% of RAN-MRG’s learning time on
average is used by the proposed method, while keeping a similar accuracy rate
to the conventional method.

Furthermore, the proposed learning scheme provides desirable characteris-
tics for large-scale data sequences application. First, the learning is conducted
in one-pass; which is only new training data would be used to be learned by the
classifier, whereas the previous training data were discarded after the learning.
This property is very important for learning large-scale data sequences where
the data are growing in size, thus it is nearly impossible to learn and store
a massive data without using one-pass learning. The other property is that
the learning time is fast although large data chunk are given in every learn-
ing stage. From several experiments using nine datasets in the UCI Machine
Learning Repository, we verify that the proposed scheme has the above desired
characteristics.

There still remains several open problems in the proposed RAN-LSH. We
can see that the fastest learning time is achieved by using LSH with two
partitions. However, the recognition accuracy is slightly reduced if a small
number of partitions is used. The reason is because the matrix of eigenvec-
tors Ul are only determined during the initial training and does not updated
incrementally. An alternative solution is to update eigenvectors Ul incremen-
tally and adapt with the most sufficient number of partition to assign the
hash value. This can be attained by introducing Incremental PCA (IPCA)
(Ozawa et al. 2008) into the proposed RAN-LSH with two partitions. How-
ever, there is one problem for this. After updating hash functions, the hash
table should also be updated properly without unexpected forgetting of the
previous knowledge. If this problem is solved, it is expected that the idea of
fast processing for large-scale data sequences using LSH would work faster.

The above issues are left as our future work.

Acknowledgements This work was financially supported by the University of Tun Hussein
Onn Malaysia (UTHM) and the Ministry of Education (KPM).



A Fast Online Learning Algorithm of RBF Network with LSH 19

References

Attar V, Sinha P, Wankhade K (2010) A fast and light classifier for data streams.
Evolving Systems 1(3):199-207

Platt J (1991) A resource-allocating network for function interpolation. Neural
Computation 3(2):213-225

Polikar R, Udpa L, Udpa SS, Honavar V (2001) Learn++: An incremental
learning algorithms for supervised neural networks. IEEE Transactions on
Systems, Man, and Cybernetics 31:497-508

Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of Symposium on
Computational Geometry (SoCG’04):253-262

Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Communications of the ACM 51(1):117-
122

Gu X, Zhang Y, Zhang L, Zhang D, Li J (2013) An improved method of local-
ity sensitive hashing for indexing large-scale and high-dimensional features.
Signal Processing 93(8):2244-2255

Lee KM, Lee KM (2012) Similar pair identification using locality-sensitive hash-
ing technique. In: Proceedings of Joint 6th International Conference on Soft
Computing and Intelligent Systems (SCIS) and 13th International Sympo-
sium on Advanced Intelligent Systems (ISIS):2117-2119

Shen H, Li T, Li Z, Ching F (2008) Locality sensitive hashing based
searching scheme for a massive database. In: Proceedings of IEEE
SoutheastCon’08:123-128

Ozawa S, Toh SL, Abe S, Pang S, Kasabov N (2005) Incremental learning of
feature space and classifier for face recognition. Neural Networks 18(5-6):575-
584

Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall
Kobayashi M, Zamani A, Ozawa S, Abe S (2001) Reducing computational in

incremental learning for feedforward neural network with long-term memory.
In: Proceedings International Joint Conference on Neural Networks:1989-
1994

Okamoto K, Ozawa S, Abe S (2003) A fast incremental learning algorithm of
RBF networks with long-term memory. In: Proceedings of International Joint
Conference on Neural Networks:102-107

Ozawa S, Tabuchi T, Nakasaka S, Roy A (2010) An autonomous incremental
learning algorithm for radial basis function networks. Journal of Intelligent
Learning Systems and Applications 2:179-189

Dan R, Kevin S (2006) Margin-based active learning for structured output
spaces. In: Proceedings ECML’06:413-424

Chellapilla K, Mityagin A, Charles DX (2007) GigaHash: scalable minimal per-
fect hashing for billions of urls. In: Proceedings of the 16th International
Conference on World Wide Web

Bache K, Lichman M (2013) UCI machine learning repository
[http://archive.ics.uci.edu/ml]. Accessed 01 January 2013



20

Davies DL, Bouldin DW (1979) A Cluster Separation Measure. IEEE Trans. on
Pattern Analysis and Machine Intelligence 1(2):224-227

Ozawa S, Pang S, and Kasabov N (2008) Incremental learning of chunk data
for on-line pattern classification systems. IEEE Trans. on Neural Networks
19(6):1061-1074


