Skip to main content
Log in

Hybrid local boosting utilizing unlabeled data in classification tasks

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

In many real life applications, a complete labeled data set is not always available. Therefore, an ideal learning algorithm should be able to learn from both labeled and unlabeled data. In this work a two stage local boosting algorithm for handling semi-supervised classification tasks is proposed. The proposed method can be simply described as: (a) a two stage local boosting method, (b) which adds self-labeled examples of unlabeled data and (c) employ them on semi-supervised classification tasks. Grounded on the local application of the boosting-by-reweighting version of AdaBoost, the proposed method utilizes unlabeled data to enhance it’s classification performance. Simulations on thirty synthetic and real-world benchmark data sets show that the proposed method significantly outperforms nine other well-known semi-supervised classification methods in terms of classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Based on negative ranks

References

  • Alcalá-Fdez J, Sánchez L, García S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC, Herrera F (2008) KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307–318. doi:10.1007/s00500-008-0323-y

    Article  Google Scholar 

  • Alcalá-Fdez J, Fernandez A, Luengo J, Derrac J, Garcia S (2011) KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Multiple Value Logic Soft Comput 17(2–3):255–287

    Google Scholar 

  • Angluin D, Laird P (1988) Learning from noisy examples. Mach Learn 2(4):343–370. doi:10.1023/A:1022873112823

    Google Scholar 

  • Aridas C, Kotsiantis S (2015) Combining random forest and support vector machines for semi-supervised learning. In: Proceedings of the 19th Panhellenic Conference on Informatics, ACM, pp 123–128

  • Aridas CK, Kotsiantis SB, Vrahatis MN (2016) Combining prototype selection with local boosting, IFIP advances in information and communication technology, vol 475. Springer International Publishing, Switzerland, pp 94–105

    Google Scholar 

  • Blum A, Chawla S (2001) Learning from Labeled and Unlabeled Data Using Graph Mincuts. In: Proceedings of the eighteenth international conference on machine learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ICML ’01, pp 19–26

  • Blum A, Mitchell T (1998) Combining Labeled and Unlabeled Data with Co-training. In: Proceedings of the eleventh annual conference on computational learning theory, ACM, Madison, Wisconsin, USA, COLT’ vol 98, pp 92–100. doi:10.1145/279943.279962

  • Bottou L, Vapnik V (1992) Local learning algorithms. Neural Comput 4(6):888–900. doi:10.1162/neco.1992.4.6.888

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32. doi:10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  • Chapelle O, Schlkopf B, Zien A (2010) Semi-supervised learning, 1st edn. MIT, Cambridge, MA

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines: and other kernel-based learning methods. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  • Deng C, Guo M (2011) A new co-training-style random forest for computer aided diagnosis. J Intell Inf Syst 36(3):253–281. doi:10.1007/s10844-009-0105-8

    Article  Google Scholar 

  • Didaci L, Fumera G, Roli F (2012) Analysis of co-training algorithm with very small training sets. In: Gimelfarb G, Hancock E, Imiya A, Kuijper A, Kudo M, Omachi S, Windeatt T, Yamada K (eds) Structural, syntactic, and statistical pattern recognition, vol 7626. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 719–726

    Chapter  Google Scholar 

  • El Gayar N, Shaban SA, Hamdy S (2006) Face Recognition with Semi-supervised Learning and Multiple Classifiers. In: Proceedings of the 5th WSEAS international conference on computational intelligence, man-machine systems and cybernetics, world scientific and engineering academy and society (WSEAS), Venice, Italy, CIMMACS’06, pp 296–301

  • Freedman DA (2009) Statistical models: theory and practice. Cambridge University Press, Cambridge

  • Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: ICML, vol 96, pp 148–156. http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAPERS/boosting-icml.pdf

  • Garcia S, Derrac J, Cano JR, Herrera F (2012) Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans Pattern Anal Mach Intell 34(3):417–435. doi:10.1109/TPAMI.2011.142

    Article  Google Scholar 

  • Guo T, Li G (2012) Improved tri-training with unlabeled data. In: Wu Y (ed) Software engineering and knowledge engineering: theory and practice, advances in intelligent and soft computing, vol 115. Springer, Berlin Heidelberg, pp 139–147

    Google Scholar 

  • Hady M, Schwenker F (2008) Co-training by Committee: A New Semi-supervised Learning Framework. In: Data Mining Workshops, 2008. ICDMW ’08. IEEE International Conference on, pp 563–572. doi:10.1109/ICDMW.2008.27

  • Holte RC (1993) Very simple classification rules perform well on most commonly used datasets. Mach Learn 11(1):63–90. doi:10.1023/a:1022631118932

    Article  MathSciNet  MATH  Google Scholar 

  • Iba W, Langley P (1992) Induction of One-Level Decision Trees. In: Proceedings of the Ninth International Workshop on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ML ’92, pp 233–240

  • Kim M (2011) Discriminative semi-supervised learning of dynamical systems for motion estimation. Pattern Recogn 44(1011):2325–2333. doi:10.1016/j.patcog.2010.12.002

    Article  MATH  Google Scholar 

  • Kotsiantis S, Pintelas P (2004) Local boosting of weak classifiers. In: Proceedings of intelligent systems design and applications (ISDA 2004), pp 26–28

  • Kotsiantis SB, Kanellopoulos D, Pintelas PE (2006) Local boosting of decision stumps for regression and classification problems. J Comput. doi:10.4304/jcp.1.4.30-37

  • Li J (2008) A two-step rejection procedure for testing multiple hypotheses. J Stat Plan Inference 138(6):1521–1527. doi:10.1016/j.jspi.2007.04.032

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Zhang W, Li K (2010) A novel semi-supervised SVM based on tri-training for intrusition detection. JCP. doi:10.4304/jcp.5.4.638-645

  • Li M, Zhou ZH (2005) SETRED: self-training with editing. In: Ho T, Cheung D, Liu H (eds) Advances in knowledge discovery and data mining, vol 3518. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 611–621

    Chapter  Google Scholar 

  • Li M, Zhou ZH (2007) Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. Syst Man Cybern Part A Syst Hum IEEE Trans 37(6):1088–1098. doi:10.1109/TSMCA.2007.904745

    Article  Google Scholar 

  • Li Y, Guan C, Li H, Chin Z (2008) A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recogn Lett 29(9):1285–1294. doi:10.1016/j.patrec.2008.01.030

    Article  Google Scholar 

  • Liu C, Yuen PC (2011) A boosted co-training algorithm for human action recognition. IEEE Trans Circ Syst Video Technol 21(9):1203–1213. doi:10.1109/tcsvt.2011.2130270

    Article  Google Scholar 

  • Maulik U, Chakraborty D (2011) A self-trained ensemble with semisupervised SVM: an application to pixel classification of remote sensing imagery. Pattern Recogn 44(3):615–623. doi:10.1016/j.patcog.2010.09.021

    Article  MATH  Google Scholar 

  • Nigam K, Ghani R (2000) Analyzing the effectiveness and applicability of co-training. In: Proceedings of the ninth international conference on information and knowledge management, ACM, New York, NY, USA, CIKM ’00, pp 86–93. doi:10.1145/354756.354805

  • Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using EM. Mach Learn 39(2–3):103–134. doi:10.1023/A:1007692713085

    Article  MATH  Google Scholar 

  • Riloff E, Wiebe J, Wilson T (2003) Learning Subjective Nouns Using Extraction Pattern Bootstrapping. In: Proceedings of the seventh conference on natural language learning at HLT-NAACL 2003—Volume 4, Association for Computational Linguistics, Edmonton, Canada, CONLL ’03, pp 25–32. doi:10.3115/1119176.1119180

  • Rosenberg C, Hebert M, Schneiderman H (2005) Semi-Supervised Self-Training of Object Detection Models. In: Application of computer vision, 2005. WACV/MOTIONS ’05 volume 1. Seventh IEEE Workshops on, vol 1, pp 29–36. doi:10.1109/ACVMOT.2005.107

  • Salzberg SL (1994) C4.5: Programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers Inc, 1993. Mach Learn 16(3):235–240. doi:10.1007/BF00993309

    MathSciNet  Google Scholar 

  • Sun S, Jin F (2011) Robust co-training. Int J Pattern Recogn Artif Intell 25(07):1113–1126. doi:10.1142/S0218001411008981

    Article  MathSciNet  Google Scholar 

  • Tanha J, v Someren M, Afsarmanesh H (2011) Disagreement-based co-training. In: 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp 803–810, doi:10.1109/ICTAI.2011.126

  • Tanha J, van Someren M, Afsarmanesh H (2015) Semi-supervised self-training for decision tree classifiers. Int J Mach Learn Cybern. doi:10.1007/s13042-015-0328-7

  • Trawiński B, Smetek M, Telec Z, Lasota T (2012) Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. Int J Appl Math Comput Sci. doi:10.2478/v10006-012-0064-z

  • Triguero I, Garcia S, Herrera F (2015) Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl Inf Syst 42(2):245–284. doi:10.1007/s10115-013-0706-y

    Article  Google Scholar 

  • Wang J, Luo Sw, Zeng Xh (2008) A random subspace method for co-training. In: Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on, pp 195–200. doi:10.1109/IJCNN.2008.4633789

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometr Bull 1(6):80. doi:10.2307/3001968

    Article  Google Scholar 

  • Xu J, He H, Man H (2012) DCPE co-training for classification. Neurocomputing 86:75–85. doi:10.1016/j.neucom.2012.01.006

    Article  Google Scholar 

  • Yarowsky D (1995) Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics, Stroudsburg, PA, USA, ACL ’95, pp 189–196. doi:10.3115/981658.981684

  • Yaslan Y, Cataltepe Z (2010) Co-training with relevant random subspaces. Neurocomputing 73(1012):1652–1661. doi:10.1016/j.neucom.2010.01.018

    Article  Google Scholar 

  • Zhang CX, Zhang JS (2008) A local boosting algorithm for solving classification problems. Comput Stat Data Anal 52(4):1928–1941. doi:10.1016/j.csda.2007.06.015

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled data using three classifiers. Knowl Data Eng IEEE Trans 17(11):1529–1541. doi:10.1109/TKDE.2005.186

    Article  Google Scholar 

  • Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. Synth Lect Artif Intell Mach Learn 3(1):1–130. doi:10.2200/s00196ed1v01y200906aim006

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank all three anonymous referees for their valuable comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos K. Aridas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aridas, C.K., Kotsiantis, S.B. & Vrahatis, M.N. Hybrid local boosting utilizing unlabeled data in classification tasks. Evolving Systems 10, 51–61 (2019). https://doi.org/10.1007/s12530-017-9203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-017-9203-y

Keywords

Navigation