Skip to main content
Log in

Dendrite ellipsoidal neurons based on k-means optimization

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Dendrite morphological neurons are a type of artificial neural network that can be used to solve classification problems. The major difference with respect to classical perceptrons is that morphological neurons create hyperboxes to separate patterns from different classes, while perceptrons use hyperplanes. In this paper, we introduce an improved version of dendrite morphological neural networks, which we have called dendrite ellipsoidal neuron that employs hyperellipsoids instead of hyperboxes. This ellipsoidal neuron is presented with a new training algorithm, to set the covariance matrix and the centroid of each hyperellipsoid based on k-means++, by applying hill climbing to search for an optimum number of hyperellipsoids. The main advantage of this approach is that dendrite ellipsoidal neuron creates smoother decision boundaries. The proposed neural model was tested on synthetic and real datasets from the UCI machine learning repository (in a paired t-test) achieving an average accuracy of 80.7%, while multi-layer perceptrons gave 78.4%, support vector machines obtained 74.2%, and radial basis networks 72.7%. Lastly, to test the proposed method performance in solving real practical problems, our model was used to detect lane lines on an urban highway, for classifying figures with a Nao robot and for traffic detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

Download references

Acknowledgements

E. Zamora and H. Sossa would like to acknowledge the support provided by UPIITA-IPN and CIC-IPN in carrying out this research. This work was economically supported by SIP-IPN (grant numbers 20170836 and 20170693), and CONACYT grant number 65 (Frontiers of Science). F. Arce and C. Fócil-Arias acknowledge CONACYT for the scholarship granted towards pursuing their PhD studies. All the authors thank to the students exchange program Delfín and to the exchange students for implementing some DEN applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Arce.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arce, F., Zamora, E., Fócil-Arias, C. et al. Dendrite ellipsoidal neurons based on k-means optimization. Evolving Systems 10, 381–396 (2019). https://doi.org/10.1007/s12530-018-9248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-018-9248-6

Keywords

Navigation