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Abstract
As an emerging trend in big data science, applications based on the Quantified-Self (QS) engage individuals in the self-
tracking of any kind of biological, physical, behavioral, or environmental information as individuals or groups. There are 
new needs and opportunities for recommender systems to develop new models/approaches to support QS application users. 
Recommender systems can help to more easily identify relevant artifacts for users and thus improve user experiences. Cur-
rently recommender systems are widely and effectively used in the e-commerce domain (e.g., online music services, online 
bookstores). Next-generation QS applications could include more recommender tools for assisting the users of QS systems 
based on their personal self-tracking data streams from wearable electronics, biosensors, mobile phones, genomic data, and 
cloud-based services. In this paper, we propose three new recommendation approaches for QS applications: Virtual Coach, 
Virtual Nurse, and Virtual Sleep Regulator which help QS users to improve their health conditions. Virtual Coach works 
like a real fitness coach to recommend personalized work-out plans whereas Virtual Nurse considers the medical history and 
health targets of a user to recommend a suitable physical activity plan. Virtual Sleep Regulator is specifically designed for 
insomnia (a kind of sleep disorder) patients to improve their sleep quality with the help of recommended physical activity 
and sleep plans. We explain how these proposed recommender technologies can be applied on the basis of the collected QS 
data to create qualitative recommendations for user needs. We present example recommendation results of Virtual Sleep 
Regulator on the basis of the dataset from a real world QS application.

Keywords  Internet of things · Artificial intelligence · Quantified self

1  Introduction

It is a well-known fact that the average human lifetime is 
increasing. Living longer implies the risk of age related 
health problems that reduce significantly the quality of life. 
Therefore, many people need to improve and maintain their 
independence, capabilities, health status as well as their 
physical, cognitive, mental and social wellbeing. Modern 
mobile and sensor technologies enable the recording of 
all kinds of data related to a person’s daily lifestyle, such 
as exercises, steps taken, body weight, food consumption, 
blood pressure, cigarettes smoked. This type of self-data 
tracking is often referred as the Quantified-Self concept 
(Swan 2012). Empowering and motivating people for physi-
cal activities is a major challenge. This becomes especially 
crucial when it comes to the health and the physical condi-
tion of an individual (Swan 2012).

Recent works have shown that tracking measurements 
such as step counts, spent calories and body weight are 
very effective in lifestyle changes by motivating a person to 
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engage in physical exercise (McGrath and Scanaill 2013). 
Additionally, by tracking measurements over time, he/she 
gets insights regarding his/her progress and he/she is able 
to experience the direct relation between his efforts and the 
actual outcome. For instance, going for jogging twice a week 
leads to a decrease of body fat percentage (Munson and Con-
solvo 2012).

As an emerging topic, the Internet of Things (IoT) (Atzori 
et al. 2010; Greengard 2015; Miorandi et al. 2012) repre-
sents a networked infrastructure of connected different types 
of devices. In this context, a huge amount of services and 
applications is created which makes the identification of the 
relevant ones a challenging task.

Several IoT solutions have been proposed to implement 
various Quantified-Self applications in the areas of health 
care and assisted living (Maglogiannis et al. 2016; Menych-
tas et al. 2016; Wei 2014). AGILE1 is an EU-funded project 
aiming to build a modular hardware and software gateway 
for IoT with support for protocol interoperability, device and 
data management, IoT applications execution, and external 
cloud communication. The main concept behind AGILE is 
to enable users to easily build IoT applications and control 
connected devices through a modular IoT gateway and a set 
of full stack (OS, runtime and applications) IoT software 
components. One of five pilot projects of AGILE is Quan-
tified-Self which is an IoT enabled m-health (mobile health) 
system based on the AGILE gateway environment.

In the AGILE project, we have developed new recom-
mendation approaches especially useful in IoT scenarios 
(Felfernig et al. 2016a, 2017; Valdez et al. 2016). Recom-
mender systems (Jannach et al. 2010) suggest items (alter-
natives, solutions) which are potential interests for a user. 
Examples of related questions are: which book should be 
purchased?, which test method should be applied?, which 
method calls are useful in a certain development context? 
or which applications are of potential interest for the current 
user? A recommender system can be defined as any system 
that guides a user to interesting or useful objects for the user 
in a large space of possible options or that produces such 
objects as output (Felfernig and Burke 2008).

In this paper, we propose three new recommendation 
approaches on the basis of Quantified-Self:

•	 Virtual Coach,
•	 Virtual Nurse, and
•	 Virtual Sleep Regulator.

Virtual Coach is developed to motivate the users of Quan-
tified-Self by recommending new activities on the basis of 

their demographic information and past activities. On the 
other hand, Virtual Nurse helps chronic patients for reach 
their targets by recommending an activity plan on the basis 
of their medical history. We have implemented our pro-
posed Virtual Coach approach and evaluated the test results 
of Virtual Coach based on our real-world dataset. Virtual 
Sleep Regulator provides walking and sleeping time recom-
mendations for insomnia patients in order to improve their 
sleep qualities. Insomnia (Fox 1999; Zammit et al. 1999) is 
a sleep disorder that is characterized by difficulty falling and/
or staying asleep. These people can not have a good quality 
sleep easily.

The remainder of this paper is organized as follows. First 
of all, we introduce details about the QS concept in Sect. 2. 
Then, we provide a short overview of basic recommenda-
tion approaches (Sect. 3). In Sect. 4, we give an overview of 
the state of the art in recommendation technologies in IoT 
enabled m-health. In Sect. 5, we introduce an example QS 
application Agile Quantified-Self, thereafter, in Sect. 6, we 
explain our proposed recommendation approaches based on 
real-world datasets from Quantified-Self. Finally, in Sect. 7, 
we conclude our work with discussions of our proposed 
approaches and issues for future work.

2 � Quantified self

The Quantified Self (QS) concept refers to the use of tech-
nologies for collecting data about peoples’ daily activities. 
Smartphone apps, physical activity trackers, biometric sen-
sors, and IoT devices allow people to monitor important 
aspects of their daily lives, such as their physical activity, 
heart rate, and mood, with the aim to learn more about 
themselves, improve their well-being and adopt a healthier 
lifestyle. In this context, the user is capable of not only stor-
ing their data to a location of their choice, such as their 
own server or private cloud, but also sharing their data with 
whomever they choose, such as their social circle or their 
physician. However, the process of sharing this data remains 
complex, mainly due to the fact that each vendor uses dif-
ferent communication mechanisms and requires a separate 
application for the persistent storage and visualization of 
data.

QS is targeting data acquisition on aspects of a person’s 
daily life in terms of inputs (e.g., food consumed, quality of 
surrounding air), states (e.g., mood, arousal, blood oxygen 
levels), and performance (mental and physical activities) 
through a modern, health centric, social and mobile ena-
bled, communication platform that resides in the gateway 
(in terms of collecting and visualizing data). The application 
is developed using the AGILE environment and uses the 
communication modules of the gateway to collect data from 
self-tracking devices of users: wristbands or smart watches, 

1  AGILE (An Adaptive & Modular Gateway for the IoT) is an EU-
funded H2020 project 2016–2018—see http://agile​-iot.eu/.

http://agile-iot.eu/
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weighting scales, oximeters, and blood pressure monitors. 
In addition, the cloud integration modules are exploited for 
periodically importing activity data and biosignals from 
other providers and applications through their public APIs 
(Menychtas et al. 2016; Panagopoulos et al. 2017).

According to Swan (2013), QS is starting to be a main-
stream phenomenon as 60% of U.S. adults are currently 
tracking their weight, diet, or exercise routine, and 33% are 
monitoring other factors such as blood sugar, blood pressure, 
headaches, or sleep patterns. Further, 27% of U.S. Inter-
net users track health data online, 9% have signed up for 
text message health alerts, and there are 40,000 smartphone 
health applications available. Diverse publications have cov-
ered the quantified self movement and it was a key theme at 
CES 2013, a global consumer electronics trade show. Com-
mentators at a typical industry conference in 2012, Health 
2.0, noted that more than 500 companies were making or 
developing self-management tools, up 35% from the begin-
ning of the year, and that venture financing in the commen-
surate period had risen 20%. At the center of the quantified 
self movement is, appropriately, the Quantified Self com-
munity, which in October 2012 comprised 70 worldwide 
meet-up groups with 5,000 participants having attended 
120 events since the community formed in 20082. At the 
“show-and-tell” meetings, self-trackers come together in 
an environment of trust, sharing, and reciprocity to discuss 
projects, tools, techniques, and experiences. There is a stand-
ard format in which projects are presented in a simplified 
version of the scientific method, answering three questions: 
“What did you do?” “How did you do it?” and “What did 
you learn?” The group’s third conference was held at Stan-
ford University in September 2012 with over 400 attendees. 
Other community groups address related issues, for example 
Habit Design3, a U.S.-based national cooperation for shar-
ing best practices in developing sustainable daily habits via 
behavior-change psychology and other mechanisms (Swan 
2013).

A variety of quantified self-tracking projects have been 
conducted, and a few have been selected and described here 
to give an overall sense of the diverse activity. One example 
is design student Lauren Manning’s year of food visualiza-
tion, where every type of food consumed was tracked over 
a one-year period and visualized in different infographic 
formats.4 Another example is Rosane Oliveira’s multiyear 
investigation into diabetes and heart disease risk, using her 

identical twin sister as a control, and testing vegan dietary 
(not consuming animal products, not only meat but also eggs 
and dairy products) and metabolism markers such as insulin 
and glucose.5

The range of tools used for QS tracking and experimenta-
tion extends from the pen and paper of manual tracking to 
spreadsheets, mobile applications, and specialized devices. 
Standard contemporary QS devices include pedometers, 
sleep trackers and fitness trackers. The Quantified Self 
web site6 listed over 500 tools, mostly concerning exercise, 
weight, health, and goal achievement. Unified tracking for 
multiple activities is available in mobile applications such 
as Track and Share7 and Daily Tracker8. Many QS solu-
tions pair the device with a web interface for data aggre-
gation, infographic display, and personal recommendations 
and action plans. At present, the vast majority of QS tools 
do not collect data automatically and require manual user 
data input. A recent emergence in the community is tools 
created explicitly for the rapid design and conduct of QS 
experiments, including the Personal Analytics Companion 
(PACO)9 and studycure10.

Consequently, QS projects are becoming an interesting 
data management and manipulation challenge for big data 
science in the areas of data collection, integration, and anal-
ysis. Therefore, recommender technologies are also becom-
ing very important in many QS applications.

3 � Basic recommendation approaches

In the IoT context, recommender systems can support sce-
narios such as the recommendation of apps, services, sensor 
equipment, and IoT workflows (Felfernig et al. 2016b). In 
this section, we introduce basic recommendation algorithms. 
For a detailed discussion of recommendation algorithms we 
refer to Jannach et al. (2010).

Collaborative filtering (Konstan et al. 1997) is based on 
the idea of word of mouth promotion, i.e., the opinion of 
users with similar preferences plays a major role in a deci-
sion. These users are also denoted as nearest neighbors, i.e., 
users with similar preferences compared to the current user. 
The first step of a collaborative filtering recommender is to 
identify the k-nearest neighbors11 and to extrapolate from 
the ratings of these users the preferences of the current user.

2  http://quant​ified​self.com/.
3  https​://www.habit​desig​n.org.
4  https​://flowi​ngdat​a.com/2011/06/29/a-year-of-food-consu​mptio​
n-visua​lized​/.

5  http://quant​ified​self.com/2014/04/rosan​e-olive​ira-quant​ified​-doubl​
e-self/.
6  http://quant​ified​self.com/guide​/.
7  www.track​andsh​areap​ps.com.
8  www.theda​ilytr​acker​.com/.
9  https​://quant​ified​self.appsp​ot.com/.
10  http://study​cure.com/.
11  k represents the number of users with similar ratings compared to 
the current user.

http://quantifiedself.com/
https://www.habitdesign.org
https://flowingdata.com/2011/06/29/a-year-of-food-consumption-visualized/
https://flowingdata.com/2011/06/29/a-year-of-food-consumption-visualized/
http://quantifiedself.com/2014/04/rosane-oliveira-quantified-double-self/
http://quantifiedself.com/2014/04/rosane-oliveira-quantified-double-self/
http://quantifiedself.com/guide/
http://www.trackandshareapps.com
http://www.thedailytracker.com/
https://quantifiedself.appspot.com/
http://studycure.com/
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Content-based filtering (Pazzani and Billsus 1997) is 
based on the assumption of monotonic personal interests. 
For example, users interested in the topic Internet of Things 
are typically not changing their interest profile from one day 
to another but will also be interested in the topic in the (near) 
future. The basic approach of content-based filtering is to 
compare the content of already consumed items with new 
items that can potentially be recommended to the user, i.e., 
to find items that are similar to those already consumed (and 
positively rated) by the user.

Knowledge-based recommendation (Burke 2000; 
Felfernig and Burke 2008) does not rely on item ratings and 
textual item descriptions but on deep knowledge about the 
offered items represented in terms of constraints, rules, or 
similarity metrics. Such deep knowledge (semantic knowl-
edge) describes an item in more detail and thus allows for 
a different recommendation approach. The current user 
articulates his/her requirements in terms of item property 
specifications which are internally as well represented as 
rules (constraints). Constraints are interpreted and the result-
ing items are presented to the user. Such items can also be 
interpreted as cases (consistent with the constraints) which 
are recommended to the current user as solutions for his/
her current requirements (problem setting). The underlying 
recommendation process is also denoted as case-based rec-
ommendation (a kind of knowledge-based recommendation 
approach) (Felfernig and Burke 2008).

Utility-based recommendation (Felfernig and Burke 
2008) is based on the idea that – given a set of items—
item ranking is determined on the basis of multi-attribute 
utility theory (MAUT) (Winterfeldt and Edwards 1986). 
In this case, each item is evaluated with regard to a set of 
interest dimensions. In the context of optimizing the used 
data transfer protocols, example dimensions could be effi-
ciency (measured in terms of transfer rates) and economy 
(measured in terms of costs for data connections). Utility-
based recommendation is often combined with knowledge-
based recommendation since item ranking is needed after 
constraints (rules) have pre-selected the items of potential 
relevance for the user. In this context, customer-individual 
preferences can also be learned by analyzing existing user 
interaction data (Jannach et al. 2010).

Hybrid recommendation (Burke 2002) is based on the 
idea of combining basic recommendation approaches in such 
a way that one helps to compensate the weaknesses of the 
other. For example, when combining content-based filtering 
with collaborative recommendation, content-based recom-
mendation helps to recommend items which were not rated 
up-to-now. If a user has already consumed some items (e.g., 
purchased some IoT apps), the content description of a new 
item can be compared with the descriptions of items already 
purchased by the user. If the new item is similar to some of 
the already consumed ones (e.g., installed apps), it can be 

recommended to the user. Hybrid recommendation can also 
combine recommendation approaches to increase prediction 
quality. Combining the recommendations of different algo-
rithms, for example, on the basis of a voting mechanism, 
can help to significantly increase prediction quality (Jannach 
et al. 2010).

Group recommender systems (Felfernig et al. 2018) are 
based on the idea that recommendations are not determined 
for single users but for a whole group, i.e., not a single 
user but the whole group should be satisfied with the given 
recommendation (e.g., a group decision regarding a smart 
home solution). Recommendations in this context are often 
determined on the basis of group decision heuristics (Mas-
thoff 2011). For example, least misery is a heuristic that 
recommends items which minimize the misery of all group 
members. In contrast, most pleasure tries to maximize the 
pleasure of individual group members. Also in the context 
of group recommender systems, hybrid approaches can be 
developed, i.e., individual group recommendation heuristics 
can be combined with each other.

4 � Existing applications of recommender 
systems in health‑IoT

IoT-based applications enable a deeper understanding for 
recommender systems which can primarily be explained 
by the availability of heterogeneous information sources 
(Amato et  al. 2013; Frey et  al. 2015; Yao et  al. 2016). 
Thanks to this ongoing IoT revolution, huge amounts of 
data are being collected in clinical databases represent-
ing patients’ health states. Sensor-based internet-enabled 
devices equipped with radio frequency identification (RFID) 
(Want 2006) tags and other communication enablers (Chen 
et al. 2012) are opening up exciting new ways of innovative 
recommendation applications in the health domain. Hence, 
required digital information is already available for patient-
oriented decision making. This means, when this data can be 
used by recommendation algorithms, very important results 
can be obtained (Chen et al. 2012).

Casino et al. (2015) show how recommender systems 
could be used to provide healthcare services within the con-
text of a smart city in which citizens collaborate with the city 
to improve their quality of life. It is observed that many citi-
zens perform physical activities in the city, namely walking, 
running, and cycling. With the aim to promote these healthy 
habits, it would be desirable to count with a system that 
could dynamically adapt to the needs of the citizens. The 
system would consider real-time constraints and information 
from several sources: (1) citizens’ preferences, (2) citizens’ 
health conditions and, (3) real-time information provided by 
the smart city infrastructure. They propose the design of a 
system that fulfills the following properties:
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–	 Citizens can obtain recommendations of routes that best 
fit their needs and preferences using regular smartphones. 
No other special devices are required.

–	 The system will be dynamic and collaborative, and it will 
adapt to real-time environmental changes.

–	 Citizens will be allowed to contribute with their sensing 
capabilities, knowledge and experience to the system. 
Also they can inform about dangerous situations.

–	 Citizens can provide the system with new routes.

In the area of patient health monitoring, Sharma and Kaur 
(2017) discuss how web-based tools can be used for dis-
semination of health related information and for providing 
a better quality of care to patients. It concludes that patients 
are more probable to follow advice from peers and patients 
with similar diseases.

Anumala and Busetty (2015) propose a distributed health 
platform using IoT devices. User health goals are specified 
and home smart appliances (e.g., microwave oven, smart 
TV) are all involved in monitoring the user health goals. 
However, their model does not support users in decision 
making.

Datta et al. (2015) propose the application of IoT for per-
sonalized healthcare in smart homes. An IoT architecture is 
presented which enables such healthcare services. Continu-
ous monitoring of physical parameters and processing of 
the medical data form the basis of smarter, connected and 
personalized healthcare. The core functionalities of the IoT 
architecture are exposed using Restful web services.

On the other hand, we also observe recommender systems 
in traditional healthcare systems (without IoT usage). These 
approaches (Hu et al. 2016; Schäfer et al. 2017; Valdez et al. 
2016) generally use the data stored in the centralize per-
sonal health records (PHR). PHR management systems may 
fail to satisfy the individual medical information needs of 
their users. Personalized recommendations could solve this 
problem. In Wiesner and Pfeifer (2010), a ranking procedure 
based on a health graph is proposed which enables a match 
between entries of a PHR management system and health 
information artifacts. This way, the user of such a system 
can obtain individualized health information he might be 
interested in. Nursing care plan recommender systems can 
provide clinical decision support, nursing education, clini-
cal quality control, and serve as a complement to existing 
practice guidelines (Duan et al. 2011). Based on rule-based 
expert system, recommending clinical examinations for 
patients or physicians is also possible (Pattaraintakorn et al. 
2007).

Recent researches also include recommender systems in 
QS applications. Schäfer (2016) proposed a decision support 
system that engages users with in- and output functionalities, 
such as gamified/ automated data insertion and intrigues him 
with avatar-based self-quantification or explanations. It also 

motivates users by personalizing on specific user needs and 
applying social pressure to ensure long term habit develop-
ment. The system provides both crowd based and expert 
based recommendations, as well as hybrid recommendations 
tailored to the users needs and contexts.

This paper differs from all cited above in that we aim to 
achieve an effective decision making system in QS applica-
tions by utilizing both physical activity and health moni-
toring data. Our proposed recommendation approaches can 
answer a wide range of QS user questions, such as which 
new biosignal sensors to buy?, which new apps to install?, 
when to go for a walk?, how long to go for a walk?, when 
to go to sleep?. This means, our proposed approaches are 
helping QS application users in multi-dimensions. For exam-
ple, in this paper, we propose a recommender called Virtual 
Sleep Regulator which recommends a daily walking and 
sleeping plan for insomnia patients (people with sleep dis-
order) based on their and similar users’ QS data. As far as we 
know, there is not such a QS application based recommenda-
tion approach up to now to support these insomnia patients. 
Therefore, our proposed recommender approaches aims to 
carry the recommendation systems in QS applications one 
step further than the state-of-the-art.

5 � An example QS application: AGILE 
quantified‑self

In this paper, we describe and test our recommendation 
approaches on the basis of AGILE Quantified-Self (see 
Fig. 1). Within the frame of AGILE Quantified-Self, AGILE 
gateway addresses this issue by creating a single point of 
communication for these devices, to facilitate their integra-
tion into QS concept, and provide advanced functionalities 
for the utilization and secure sharing of the acquired data, 
demonstrating the applicability of AGILE in home/personal 
use (Menychtas et al. 2017).

As illustrated in Fig. 1, each user of the Quantified-Self 
application is provided with a set of activity tracking devices 
and biosignals sensors (such as oximeters12, blood pressure 
monitors13 or glucometers14), to monitor their daily physi-
cal activity and physical condition. All activity data and 
biosignal measurements are stored locally, on the user’s 
gateway. Users are able to visualize and manage their data, 
create reports and export the data from the gateway. Fur-
thermore, they can even import past data from other cloud 
services they might have used before, such as Fitbit15 and 

12  https​://en.wikip​edia.org/wiki/Pulse​_oxime​try.
13  http://bestr​eview​s.com/best-blood​-press​ure-monit​ors.
14  https​://en.wikip​edia.org/wiki/Gluco​se_meter​.
15  https​://www.fitbi​t.com/at/home.

https://en.wikipedia.org/wiki/Pulse_oximetry
http://bestreviews.com/best-blood-pressure-monitors
https://en.wikipedia.org/wiki/Glucose_meter
https://www.fitbit.com/at/home
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GoogleFit16. In parallel, motion and lifestyle data can be 
processed and analyzed on the gateway, so as personal-
ized recommendations are sent to the user’s smart phone 
in order to encourage them to reach their physical activity 
goals. Moreover, users are able to share their activity data 
and achievements with certain people/users from their social 
circle, including relatives, friends and most importantly their 
physicians.

In this paper, we explain and test our recommendation 
approaches on the basis of AGILE Quantified-Self which 
requires the integration of several m-health and IoT elements 
(see Fig. 1), where proposed applications are orchestrated 
around the AGILE Gateway (Menychtas et al. 2017). The 
gateway connects to the home network and through the gate-
way’s management user interface, the owner has access to all 
provided features, such as reporting and visualization tools, 
can manage (store/view/edit) their data and define an access 
policy to share data with their social network contacts. 
Wearable activity trackers and medical sensors automati-
cally communicate with the gateway whenever within range, 
and upload the most recent data. Integration with cloud plat-
forms allows data synchronization between the gateway and 
the owner’s online profile, which enables the user to access 
their data through a web application. In addition, health and 
activity data can be downloaded to the gateway from the 
owner’s personal accounts on relevant platforms.

Since the implementation of the aforementioned applica-
tion is ongoing and the number of users who are currently 
using it is limited, an extended dataset from an established 
m-health solution (Menychtas et al. 2016; Panagopoulos 

et al. 2017) has been used as the knowledge base for our 
recommender. The main dataset consists of the “biosignal” 
measurements of patients and elders, which are acquired 
directly from the biosignal sensors that users are equipped 
with. Supported biosignal sensors are the following: activity 
trackers, pulse oximeters, blood pressure monitors, weighing 
scales, spirometers, glucometers, and thermometers. These 
sensors measure the following biosignal types: step count, 
heart rate (bpm), oxygen saturation (%), blood pressure 
(mmHg), FEV1 (L), peak flow (L/min), blood glucose levels 
(mg/dL), and body temperature (Celsius). It should be noted 
that the modular design that has been followed, enables the 
potential integration of additional devices in the same appli-
cation, which may require different operational workflows 
and communication patterns.

The biosignals’ dataset includes approximately half mil-
lion records of the aforementioned biosignals from one 
hundred users in a time frame of three years. Besides the 
biosignal data, the knowledge base includes information for 
users’ demographics (gender, age, location), as well as their 
personal health record (lab results, medication and allergies). 
In order to ensure the smooth communication between the 
different components of the system (and for the smooth data 
integration with external systems), well established data 
models have been used. Therefore, in the proposed approach, 
all components and workflows which require data exchange 
and/or storage follow the Fast Healthcare Interoperability 
Resources Specification (FHIR)17.

Fig. 1   Software architecture of 
Quantified-Self on the basis of 
the AGILE gateway

17  https​://www.hl7.org/fhir/.16  https​://www.googl​e.com/fit/.

https://www.hl7.org/fhir/
https://www.google.com/fit/
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6 � Proposed recommendation approaches 
in quantified‑self

The utilization of recommendation technologies is essential 
for improving the health conditions of individuals. Users 
of IoT enabled m-health applications can get recommenda-
tions for new activity plans, IoT enabled m-health devices, 
applications, healthy nutritions. All these recommendations 
help users to enhance their life style and reach their targeted 
health conditions easier than before. These recommenda-
tions indeed play an important role like a personal trainer 
or personal coach.

We explain our proposed three recommendation 
approaches for IoT enabled m-health applications based on 
our QS application Agile Quantified-Self in the following 
subsections.

6.1 � Virtual coach

In order to motivate subscribers/users for sport activities, Vir-
tual Coach collects demographic information (age, location, 
physical condition, medical history, and chronic diseases) 
of each user. It stores user profiles on its online server and a 
recommender engine calculates the similarities between users 
based on their demographic data. Using the similar users’ 
information, a new activity plan (how often, what to measure, 
which activities) or a new IoT device (e.g., a wristband, a step 
counter watch) can be recommended to users.

In this case, a recommender engine uses collaborative fil-
tering as the recommendation technology to find similarities 
between users. Virtual Coach recommends new activities or 
new devices to users based on these similarities.

There are several similarity metrics in the context of col-
laborative filtering scenarios for determining nearest neigh-
bors (Jannach et al. 2010). For the purposes of our example, 
we use a simplified formula that supports the identification 
of k-nearest neighbors18 (see Formula 1 Felfernig et al. 
2019).

(1)

similarity(usera, userb) =
1

1 + �
n
property=1

|eval(usera) − eval(userb)|

When Formula 1 is applied to the example of Table 1, prop-
erty in Formula 1 is standing for demographics and devices 
of users. Thus, for the seven properties (age, gender, loca-
tion, chronic diseases, oximeter, wristband, BPM (hearth 
beats per minute) device) of each user, the calculation result 
of eval(user_a) − eval(user_b) for the ith property is 0 if 
their values are same, otherwise it is 1. For instance, for 
the first property age, the calculation result of eval(user1 ) 
− eval(user2 ) is 1, because age of user1 is young whereas 
age of user2 is middle. Since they do not have the same val-
ues, their difference is 1. For another instance, for the sixth 
property wristband, the calculation result of eval(user1 ) 
− eval(user2 ) is 1, because the usage of oximeter of user1 is 
✓ whereas for user3 it is ✓ . Since they have the same values, 
when property = 5 , the result of eval(user1 ) - eval(user3 ) 
is 0.

In order to find a recommendation for the active user 
userx in Table 1, we first find the nearest neighbor based 
on demographics. The user user1 is the most similar user to 
the active user userx . Consequently, a collaborative recom-
mender suggests new devices to the current user which have 
been used by the nearest neighbor (e.g., an oximeter device 
is recommended to userx).

6.2 � Virtual nurse

Virtual Nurse motivates different types of chronic patients 
(e.g., diabetes, asthma, cancer, cardiovascular) to reach their 
targets on the basis of a recommended plan. It collects the 
measured data of patients and checks their health condi-
tional targets. If the measured values are very far from their 
expected (target) values, then some specific recommenda-
tions can be placed for those patients. The recommendations 
should be personalized and related to the base line of each 
user’s data, which will be permanently updated.

The patient medical data includes the personalized 
models that shows the behavioral responses of the patients 
versus the coach interventions to discover best-practices 
and measure adherence. The recommender could act as a 
decision support system that gathers information from the 
patient, finds an activity plan that matches with the available 
objectives and offers a personalized list. A physician might 

Table 1   Profiles of users are 
stored in the online server of 
the recommender engine in 
anonymous mode (without their 
names and addresses)

Profiles of Users

Demographics Devices

Age Gender Location Diseases Oximeter Wristband BPM

user1 Young Male Urban Asthma ✓ ✓ –
user2 Middle Female Suburban Diabetics – – ✓

user3 Elder Male Suburban Diabetics – ✓ –
user

x
Young Female Urban Asthma – ✓ –

18  For simplicity we assume k = 1.
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intervene (semi-supervised recommendation) to select the 
collected information that are more related with the well-
being of the patient. In this case, the recommender engine 
uses Content-based Filtering as the recommendation tech-
nology to find a related plan based on the user data. Virtual 
Nurse recommends new activity plans to users based on their 
actual and expected measurements.

A simplified example of a related recommendation 
approach is given in Table 2. When applying a content-
based filtering based approach, recommended items (plans) 
are determined on the basis of the similarity of the patient’s 
targets and available plans. Similar to collaborative filter-
ing, there are different types of similarity metrics (Jannach 
et al. 2010). For the purposes of our examples, we introduce 
a simplified formula that supports the identification of, for 
example, relevant plans for the patient-1 (see Formula 2 
Felfernig et al. 2019).

Formula 2 determines the similarity on the basis 
of the targets of plans and targets of patient-1. For 
instance, the similarity between targets of patient-1 
and targets of plan-3 is calculated as 0.33 where 
#(targets(patient − 1) ∩ targets(plan − 3)) = 1 since there is 
only one common target which is decreasing the hearth-rate 
and #(targets(patient − 1) ∪ targets(plan − 3)) = 3 where 
all targets include systolic blood pressure, hearth-rate, and 
weight. In our example of Table 2, targets of plan-1 has the 
highest similarity with targets of patient-1, therefore targets 
of plan-1 is recommended to patient-1.

(2)

similarity(patient, plan) =
#(targets(patient) ∩ targets(plan))

#(targets(patient) ∪ targets(plan))

6.3 � Virtual sleep regulator

Chronic insomnia, defined as difficulty initiating or main-
taining sleep, awakening too early in the morning, or non-
restorative sleep, is the most common sleep disorder among 
adults. Though exercise has long been assumed to improve 
sleep, surprisingly little research has been conducted on the 
effect of exercise on chronic insomnia.

Related studies (Guilleminault et al. 1995; Passos et al. 
2011, 2010; Reid et al. 2010) show that exercise significantly 
improves the sleep of people with chronic insomnia. The only 
study that looked at the effects of a single exercise session 
found that about of moderate-intensity exercise (e.g., walking) 
reduced the time it took to fall asleep and increased the length 
of sleep of people with chronic insomnia compared to a night in 
which they did not exercise. However, in the same study, vigor-
ous exercise (e.g., running) or lifting weights did not improve 
sleep. Similar results have been found for studies that examined 
the effects of long-term exercise on sleep in adults with insom-
nia. In these studies, after 4 to 24 weeks of exercise, adults with 
insomnia fell asleep more quickly, slept slightly longer, and had 
better sleep quality than before they began exercising.19

Virtual Sleep Regulator helps insomnia patients to 
improve their sleep qualities. It uses collaborative filtering 
techniques to recommend an appropriate walking/sleeping 
plan for the patients.

6.3.1 � Recommendation technology

We used collaborative filtering approach to recommend a 
steps & sleep plan for users based on the recommendable 
activities of other users’. As aforementioned, the first step 
of a collaborative filtering recommender is to identify the 
k-nearest neighbors20 and to extrapolate from the ratings of 
these users the preferences of the current user.

Table 2   Actual and expected (targets) measurements of patient-1

The targets of the available activity plans are also represented. 
Arrows denote increase(↑)/decrease(↓)/stay(⟷ ) targets of a plan. 
For instance, plan-2 is targeting to decrease the blood pressure and 
weight. Therefore, plan-2 includes activities which can decrease these 
two parameters

Medical data of a patient and possible activity plans

Sys. blood 
pres. (mm 
Hg)

Heart-rate (bpm) Weight (kg)

Targets of plan-1 ↓ ↓ ↓

Targets of plan-2 ↓ ⟷ ↓

Targets of plan-3 ⟷ ↓ ⟷

Targets of plan-4 ⟷ ⟷ ↑

Targets of patient-1 120.00 ( ↓) 70.00 ( ↓) 80.00 ( ↓)
Actuals of patient-1 142.00 91.00 108.00

Table 3   An example < user,item,value > Dataset for Mahout: Movie 
Ratings Dataset

User ID Item ID Rating (value)

1 10 1.0
1 11 2.0
1 12 5.0
1 18 5.0
2 10 1.0
2 15 5.0
2 18 5.0
3 10 5.0
3 14 5.0

19  https​://www.sleep​found​ation​.org/ask-the-exper​t/how-does-exerc​
ise-help-those​-chron​ic-insom​nia.
20  k represents the number of users with similar ratings compared to 
the current user.

https://www.sleepfoundation.org/ask-the-expert/how-does-exercise-help-those-chronic-insomnia
https://www.sleepfoundation.org/ask-the-expert/how-does-exercise-help-those-chronic-insomnia
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We have used the collaborative filtering recommenda-
tion library of Apache-Mahout (Schelter and Owen 2012). 
Apache Mahout is an Apache-licensed, open source library 
for scalable machine learning. It is well known for algo-
rithm implementations that run in parallel on a cluster of 
machines. Besides that, Mahout offers one of the most 
mature and widely used frameworks for non-distributed 
Collaborative Filtering. We give an overview of this frame-
work’s functionality, API and featured algorithms. At the 
heart of Collaborative filtering applications lie user-item 
interactions. Mahout models those as a < user,item,value > 
triple. Mahout’s recommenders expect interactions between 
users and items as input. The easiest way to supply such data 
to Mahout is in the form of a textfile, where every line has 
the format < user,item,value >. Here userID and itemID 
refer to a particular user and a particular item, and value 
denotes the strength of the interaction (e.g., the rating given 
to a movie). An example of Mahout data file is shown in 
Table 3. Based on the ratings of users for the movies, for the 
user with userID=2, the movie with the itemID=12 can be 
recommended (due to the similarities between the ratings of 
users userID=1 and userID=2).

6.3.2 � Dataset

From 26 users, during six months, we have collected number 
of steps (see Table 4) and quality of sleep (see Table 5) data. 
In Table 4, each row is identified with a unique Activity ID 
and the duration of each activity is 5 minutes. Number of 
steps are the taken steps during a 5 minutes period which 
starts at given Date/time.

In Table 5, each row is identified with a unique Activity 
ID and the duration of each activity is 5 minutes. Quality 

of Sleep is the measured sleep quality during a 5 min-
utes period which starts at given Date/time. Sleep Quality 
domain is [ −10,−20,−30,−40 ] where −40 is the highest 
quality (the deepest) sleep whereas −10 is the lowest quality 
(the lightest) sleep.

Based on these two datasets, we generated a < 
user,item,value > triple style dataset (see Table  6). In 
order to do this, we have defined attributes of users as 
items. All the item values are scaled in [1..5]. For example, 
gender of user is defined as item ID = 1 with values [1.0 
(if gender = female), 3.0 (if gender = other), 5.0 (if gen-
der = male)]. Age of user is defined as item ID = 2 with 
values [1.0 (if age < 20), 2.0 (if 20 <= age > 40), 3.0 (if 
40 <= age > 60), 4.0 (if 60 <= age > 80), 5.0 (if age >= 80

)]. Other items are the steps and sleep results of users dur-
ing a day which are encoded according to Table 3 with 
values [1.0 (if sleep quality > −10 ), 2.0 (if −10 >= sleep 
quality < −20 ), 3.0 (if −20 >=sleep quality < −30 ), 4.0 (if 
−30 >= sleep quality < −40 ), 5.0 (if sleep quality =< −40 )] 
where 5.0 means the deepest sleep and 1.0 is the lightest.

As shown in Table 7, the steps and sleep plan of a day is 
encoded as an item ID which holds number of steps, dura-
tions of steps (hours) and durations of sleeps (hours). The 
first character in the item ID is ignored since it is used for 

Table 4   Example data from Steps Dataset

Activity ID User ID Gender Age Date/time Number 
of steps

as1 u1 Female 27 2018-05-21/15:05:00 267
as2 u2 Male 51 2018-05-21/15:05:00 19
as3 u1 Female 27 2018-05-21/15:10:00 267
as4 u2 Male 51 2018-05-21/15:10:00 19

Table 5   Example data from 
Sleep Quality Dataset

Activity ID User ID Gender Age Date/time Quality of sleep

aq1 u1 Female 27 2018-05-21/23:50:00 −30

aq2 u2 Male 51 2018-05-21/23:50:00 −30

aq3 u1 Female 27 2018-05-21/23:55:00 −40

aq4 u2 Male 51 2018-05-21/23:55:00 −30

aq3 u1 Female 27 2018-05-22/00:00:00 −40

aq4 u2 Male 51 2018-05-22/00:00:00 −30

Table 6   Steps/sleep quality dataset

User ID Item ID Rating (value)

1 1 1.0
1 2 3.0
1 1001102600 4.0
1 1000010820 4.0
1 1010141710 4.0
1 1000011701 4.0
1 1100100700 5.0
19 1 1.0
19 2 1.0
19 1020000700 5.0
19 1000112510 4.0
19 1030010800 5.0
20 1 1.0
20 2 1.0
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padding (to avoid the cases where the item ID starts with 0, 
because initial 0s are ignored by the recommender). The first 
row (Enc.) shows the encoding in the item ID and the second 
row (Act.) holds the actual corresponding values in number 
of steps or hours. The actual number of steps are calculated 
by adding 1 to the number of steps before multiplying with 
2000. The actual duration of steps is calculated by adding 
1 to the duration of steps. The actual duration of sleep is 
directly taken as the duration of sleep.

Based on the converted steps/sleep quality dataset in 
Table 6, we request two recommendations from the recom-
mender for the user with userID = 20 and the recommender 
finds the nearest neighbor. The most similar user (nearest 
neighbor) to userID = 20 is userID = 19, because they both 
have same gender (gender is represented with itemID = 1 
and both users have value = 1.0 which means both are 
female) and same age group (age group is represented 
with itemID = 2 and both users have value = 1.0 which 
means both are younger than 20). Therefore the items with 

Table 7   Mapping in a steps and Sleep plan

Number of steps Durations of steps Durations of sleeps

00AM-12AM 12AM-18PM 18PM-24PM 00AM-12AM 12AM-18PM 18PM-24PM 00AM-12AM 12AM-18PM 18PM-24PM

Enc. 0 0 1 1 0 2 6 0 0
Act. 2000 2000 4000 2 hours 1 hour 3 hours 6 hours 0 0

Fig. 2   An instance of the user 
dashboard of Quantified-Self 
with recommendation results 
from Virtual Sleep Regulator 
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highest ratings (values) of userID = 19 are recommended 
to userID = 20 which are 1020000700 (value = 5.0) and 
1000000800 (value = 5.0).

6.3.3 � Interface

As shown in Fig. 2, the user dashboard of Quantified-Self 
presents recommendation results from Virtual Sleep Regu-
lator based on the demographics (age and gender) and the 
current activities (the total number of steps taken during the 
day and the sleep quality values) of the user. The recommen-
dations are provided based on the similar users data and this 
data grows continuously with new activity data. Therefore, 
the output of the system evolves with the new data coming 
from all the users of this system.

The web API of Virtual Sleep Regulator provides a 
human readable version of these recommendation results in 
JSON (JavaScript Object Notation) format as follows:

{“intro1”: “Recent scientific works show that Insomnia 
(a sleep disorder)

can be solved with a personal physical activity plan.”,
“intro2”: “Therefore, according to your profile, for a 

high quality sleep,
we recommend you several walking and sleeping plans 

as below:”,
“activityRecommendation_list”: [
{ “steps1”: “take 2000 steps in 1 hours before noon”,
“steps2”: “take 6000 steps in 1 hours in the afternoon”,
“steps3”: “take 2000 steps in 1 hours in the evening”,
“sleep1”: “sleep 7 hours between 00:00-12:00”,
“sleep2”: “sleep 0 hours between 12:00-18:00”,
“sleep3”: “sleep 0 hours between 18:00-24:00” },
{ “steps1”: “take 2000 steps in 1 hours before noon”,

“steps2”: “take 8000 steps in 2 hours in the afternoon”,
“steps3”: “take 2000 steps in 1 hours in the evening”,
“sleep1”: “sleep 8 hours between 00:00-12:00”,
“sleep2”: “sleep 0 hours between 12:00-18:00”,
“sleep3”: “sleep 0 hours between 18:00-24:00” } ]}

7 � Performance evaluations

In the previous section, we have introduced the user inter-
face of Virtual Sleep Regulator. However, we could not yet 
test this interface with a dataset of real users. Therefore, in 
this section, we have evaluated the performance (in terms of 
prediction accuracy) of other two proposed methods: Virtual 
Nurse and Virtual Coach. The performance indicator Pre-
diction Accuracy (Erdeniz et al. 2019) has a generic defini-
tion in recommender systems as provided in the following 
paragraph.

Prediction accuracy ( � ) A recommended product can be 
purchased by the customer or not. If the recommended prod-
uct is purchased, then it is considered as a correct recom-
mendation CR, otherwise it is not a correct recommendation 
IR. As shown in Formula 3, the prediction accuracy of a rec-
ommender is calculated by dividing the number of correct 
recommendations by the number of total recommendations.

In order to evaluate the prediction accuracy of our 
method, first we have removed a device/activity plan from 
the dataset (see Fig.  3) of each patient. Then, we have 

(3)� =
(#CR)

(#IR) + (#CR)

Fig. 3   Evaluation datasets
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calculated recommendations for those patients with sparse 
datasets. Finally, we have compared the recommended item 
with the removed item from patient’s dataset to calculate 
the accuracy.

As seen in Fig. 4, Virtual Coach can find the most accu-
rate recommendations for Patient #3, because Patient#3 uses 
many common devices with other patients. Virtual Nurse 
can find the most accurate recommendations for Patient 
#4, because Patient#4 has the richest dataset (incl. aller-
gies and medications) among other patients. According to 
our evaluation results, our health-IoT recommender helps 
users/patients to improve their health conditions by provid-
ing highly accurate recommendations ( ≥ 0.75).

8 � Further research issues

The lessons learned during the design and implementation 
of the proposed recommender approaches can be grouped 
in several further research issues as stated in the following 
paragraphs.

Datasets for evaluation purposes The development of 
recommendation technologies for QS applications is a rather 
young discipline and research in the field would strongly 
profit from the availability of more QS datasets that enable 
corresponding tests of, for example, the prediction quality 
of recommendation algorithms.

Scalability and privacy In many scenarios, recommenda-
tion algorithms, especially the ones based on collaborative 
filtering approaches, can be deployed in the cloud which has 
no serious limitations regarding computational resources. 
Typical examples of such a setting are the recommenda-
tion of QS apps (e.g., located on some sort of application 
marketplace) and the recommendation of QS devices (e.g., 
located on an online store). However, for recommendation 
functionalities that employs sensitive data (e.g., medical data 
of users), the recommendation system (e.g., Virtual Nurse) 
and the related content-based dataset (e.g., activity plan 
options) should be located directly on the local IoT gateway 
for privacy issues.

Distributed data analysis The distributed nature of the 
Internet of Things and corresponding high amounts of col-
lected data from QS applications are challenging existing 
data analysis methods (Stolpe 2016). While approaches to 
big data analytics (Chen et al. 2015; Sun et al. 2016) often 
follow the paradigm of parallel and high-performance com-
puting, analysis approaches in IoT gateways based QS appli-
cation scenarios are often limited, for example, in terms of 
bandwidth and energy supply. This is the major motivation 
for decentralized analysis algorithms that often have to work 
(partly) on QS devices.

Group recommender systems Compared to traditional 
group recommender systems, QS application scenarios 
increase the number of relevant dimensions in the corre-
sponding datasets. For example, in group-based scenarios 
(e.g., a group of tourists interested in a city round trip rec-
ommendation) example dimensions are not only related to 
the items to be recommended (e.g., tourist destinations) but 
also to additional dimensions such as information about 
health status of group members (e.g., according to the heart 
rate data of group members, some group members may need 
a short break rather than further walking).

9 � Conclusions and future work

Applications based on the Quantified-Self (QS) engage 
individuals in the self-tracking of any kind of biological, 
physical, behavioral, or environmental information as indi-
viduals or groups. Based on the collected huge amount of 
self-tracking data, there are new needs for recommender sys-
tems to support QS application users. Recommender systems 
can help to more easily identify relevant artifacts for users 
and thus improve user experiences.

In this paper, we have proposed three recommendation 
approaches Virtual Coach, Virtual Nurse, and Virtual Sleep 
Regulator which help users/patients to improve their health 
conditions. This improvement is provided by appropriate 
device or sportive activity recommendations for users by 
Virtual Coach, activity plan recommendation for patients by 
Virtual Nurse, and walking/sleeping plan recommendation 

Fig. 4   Evaluation results
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for patients by Virtual Sleep Regulator. We have explained 
these proposed approaches based on real-world datasets 
collected from a QS application AGILE Quantified-Self and 
also applied experimental evaluations on Virtual Coach and 
Virtual Nurse. Moreover, we have demonstrated how a JSON 
format and the corresponding user interface of a recommen-
dation output of Virtual Sleep Regulator look like. Finally, 
we have discussed further research issues to motivate the 
researchers working in the domain of recommender systems 
for QS.

The proposed approaches in this paper are novel in QS 
and improve the user experience with helpful recommen-
dations. State of the art applications in QS do not provide 
activity or sleep recommendations based on such datasets. 
For example, thanks to our novel bit-coded model for Vir-
tual Sleep Regulator, we could obtain a standardized dataset 
of steps/sleep qualities of various users and utilize state of 
the art recommendation algorithms (collaborative filtering 
approaches). Since in the proposed methods, all employed 
algorithms are well known algorithms in recommendation 
systems, we provide neither long algorithms descriptions 
nor a performance comparison. As mentioned, we have used 
Apache Lucene (for content based filtering) and Apache 
Mahout (for collaborative filtering) Java libraries for calcu-
lation recommendations.

As future work, we would like to extend our approaches 
by employing various correlations based on more parameters 
in datasets. Therefore, we expect to obtain more complicated 
recommendations. For example, if we can also know jobs or 
working times of the users, we could recommend more accu-
rate sleeping times to regulate the user’s sleeping quality.
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