
Noname manuscript No.
(will be inserted by the editor)

Practical strategies for generating rank-1 split cuts in

mixed-integer linear programming

Gerard Cornuéjols · Giacomo Nannicini

July 14, 2011

Abstract In this paper we propose practical strategies for generating split
cuts, by considering integer linear combinations of the rows of the optimal
simplex tableau, and deriving the corresponding Gomory mixed-integer cuts;
potentially, we can generate a huge number of cuts. A key idea is to select
subsets of variables, and cut deeply in the space of these variables. We show
that variables with small reduced cost are good candidates for this purpose,
yielding cuts that close a larger integrality gap. An extensive computational
evaluation of these cuts points to the following two conclusions. The first is that
our rank-1 cuts improve significantly on existing split cut generators (Gomory
cuts from single tableau rows, MIR, Reduce-and-Split, Lift-and-Project, Flow
and Knapsack cover): on MIPLIB instances, these generators close 24% of
the integrality gap on average; adding our cuts yields an additional 5%. The
second conclusion is that, when incorporated in a Branch-and-Cut framework,
these new cuts can improve computing time on difficult instances.

1 Introduction

Although solving mixed-integer linear programs (MILPs) is NP-hard [22],
there exist both commercial and free software packages that are able to ef-
ficiently solve many MILPs arising from real-life applications. A dramatic im-
provement in the performance of this software came from the introduction of
general cutting planes, such as Gomory mixed-integer (GMI) cuts [18], and
Mixed-Integer Rounding (MIR) cuts [21]. Indeed, computational experiments
reported in [9] show that, on a set of benchmark instances, disabling cutting
plane generation in the commercial software Cplex yields a slow down of the

Corresponding author

Gerard Cornuéjols · Giacomo Nannicini
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

E-mail: {gc0v,nannicin}@andrew.cmu.edu

2

solution process by more than a factor of 50. The most effective cuts, accord-
ing to [9], fall into the category of split cuts [15], that is, cutting planes that
can be derived from the LP relaxation together with a disjunction of the form
π⊤x ≤ π0 ∨ π⊤x ≥ π0 + 1 with (π, π0) integer. Any such cut derived from the
original LP relaxation is said to be rank-1.

In this paper, we investigate efficient algorithms for the generation of rank -
1 split cuts from the optimal simplex tableau. The reason for focusing on these
cuts is that several computational studies [8,11,17] show that the split closure
(i.e. the intersection of all rank-1 split cuts) often provides a tight approxima-
tion of the convex hull of feasible solutions; yet available cut generators are still
far from achieving the full potential of split cuts. An objective of this paper is
to see how much we can add to the existing families of split cuts, in reasonable
computational time. Existing split cut generators in the Branch-and-Cut code
COIN-OR Cbc [12] (GMI, MIR, Reduce-and-Split, Lift & Project, Knapsack
cover, Flow cover) close 24% of the integrality gap1 on average on MIPLIB
instances, of which 11% is contributed by GMI cuts alone. Adding our new cut
generation strategies, we can close 29% of the gap on average. A characteristic
of our cuts is that they are valid for the corner polyhedron associated with the
optimal LP basis.

The cut generation algorithm that we propose computes integral linear
combinations of the rows of the optimal simplex tableau, with the aim of re-
ducing the cut coefficients on the continuous nonbasic variables, in the spirit of
the Reduce-and-Split algorithm [3,16]. In this paper, we build upon this idea,
by proposing and evaluating several strategies to choose the simplex tableau
rows involved in the linear combinations, and the columns affected by the re-
duction algorithm. These strategies aim to generate cuts with the following
desirable properties: they are sparse, they have small coefficients, and they
are mutually orthogonal. Although some of these ideas have already been pro-
posed in the literature, their effectiveness in practice has never been thoroughly
studied. Computational experiments show that our strategies outperform the
implementation of Reduce-and-Split [3] currently available in COIN-OR Cgl
[13]. The methods that we propose can potentially generate a very large num-
ber of split cuts, therefore we study policies to generate only a manageable
number of strong cuts. Our computational experiments show that, using our
cuts, we can improve the computing time (or gap closed in a fixed amount of
time) in a Branch-and-Cut algorithm on difficult MIPLIB instances.

The rest of this paper is organized as follows. First, we provide the nec-
essary theoretical background (Section 2). Then, we discuss the coefficient
reduction algorithm with all its variants (Section 3), which is the main contri-
bution of this paper. An extensive experimental evaluation of the proposed cut
generation strategies is provided in Section 4. Section 5 concludes the paper.

1 For a minimization problem, the integrality gap closed is defined as:
(objective after cuts− objective LP)/(objective integer optimum− objective LP).

3

2 Theoretical backgound

Consider the following Mixed Integer Linear Program in standard form:

min c⊤x
Ax = b
x ≥ 0

∀j ∈ NI xj ∈ Z,















P

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n and NI ⊂ N = {1, . . . , n}. The LP

relaxation of P is the linear program obtained by dropping the integrality
constraints, and is denoted by P̄. Let B ⊂ N be an optimal basis of P̄, and
J = N r B the set of nonbasic variables. The corresponding simplex tableau
is given by:

xi = x̄i −
∑

j∈J

āijxj ∀i ∈ B. (1)

Consider an arbitrary equality
∑

j∈N gjxj = d satisfied by all feasible solutions
to P. Define f0 := d− ⌊d⌋ and fj := gj − ⌊gj⌋ for all j ∈ NI . Suppose f0 > 0;
the GMI cut associated with this equation is:

∑

j∈NI :fj≤f0

fj
f0

xj +
∑

j∈NI :fj>f0

1− fj
1− f0

xj+

∑

j∈N\NI :gj≥0

gj
f0

xj −
∑

j∈N\NI :gj<0

gj
1− f0

xj ≥ 1.
(2)

It can be shown that (2) is valid for P [18]. Let BI = B ∩ NI , JI = J ∩ NI ,
JC = J\NI be the sets of integer basic variables, integer nonbasic variables and
continuous nonbasic variables respectively. Now consider a linear combination
with integer coefficients λi of those rows of (1) where i ∈ BI :

∑

i∈BI

λixi = x̃−
∑

j∈J

ãjxj , (3)

where
x̃ =

∑

i∈BI
λix̄i

ãj =
∑

i∈BI
λiāij for j ∈ J.

(4)

(3) is an equation satisfied by all feasible solutions to P, which yields f0 =
x̃ − ⌊x̃⌋, fj = ãj − ⌊ãj⌋ for all j ∈ J according to the definition above. Note
that in order to generate a GMI cut we need x̃ 6∈ Z and therefore λ 6= 0.
Applying (2) to (3) we obtain:

∑

j∈JI :fj≤f0

fj
f0

xj +
∑

j∈JI :fj>f0

1− fj
1− f0

xj+

∑

j∈JC :ãj≥0

ãj
f0

xj −
∑

j∈JC :ãj<0

ãj
1− f0

xj ≥ 1.

(5)

4

This is the GMI cut associated with the row obtained through the row multi-
pliers λ. Clearly, (5) cuts off the optimal basic solution x̄. In order to generate
a deep cut, we want to find integer multipliers λi for all i ∈ BI such that the
resulting coefficients in (5) are as small as possible.

In this paper, we work with an optimal basis B of P̄, and our cuts are
valid for the corresponding corner polyhedron. In principle, cutting planes of
the form (5) can be generated from other bases as well, but this faces the
problem of selecting a promising basis from which the current fractional point
x̄ can be cut off. This topic is not investigated here.

3 The reduction algorithm

In order to obtain cutting planes with small coefficients (and hopefully zeroes)
on the continuous nonbasic columns, we select JW ⊆ JC , and we attempt to
minimize ãj for j ∈ JW over vectors λ ∈ Z

|BI |. More specifically, we would

like to minimize ‖d̃‖, where

d̃ = (ãj)j∈JW
. (6)

Here, the choice of the L2 norm of d̃ is motivated by the fact that it yields sim-
pler norm minimization problems. As can be seen from (5), small ‖(ãj)j∈JW

‖
is likely to translate into better cut coefficients on the continuous variables in
JW . On integer variables, this is not true because of the modular arithmetic
applied, so that a smaller row coefficient ãj on an integer variable offers no
prospect of a better corresponding cut coefficient. This explains why we focus
on continuous nonbasic variables only. This idea has been pursued also in [3,
16] in the special case whereJW ≡ JC . Our algorithm to compute λ, which we
call coefficient reduction algorithm, is described next.

Choose JW ⊆ JC ; apply a permutation to the simplex tableau in order
to obtain BI = {1, . . . , |BI |}, JW = {1, . . . , |JW |}, and define the matrix D ∈
R

|BI |×|JW |, dij = āij . Thus, we can rewrite the problem of minimizing ‖d̃‖ as

min
λ∈Z

|BI |\{0}
‖
∑

i∈BI

λidi‖. (7)

This is a shortest vector problem in the additive group generated by the rows
of D. Assuming linear independency between the rows, the group defines a
lattice, and (7) becomes the shortest vector problem in a lattice, which is
NP-hard under randomized reductions [2].

The approach of Andersen, Cornuéjols and Li [3] consists in applying to D
(with JW ≡ JC) an iterative algorithm which is related to the basis reduction
algorithm of Lenstra, Lenstra and Lovász [19]. Given two rows di and dj ,
the optimal integer coefficient δij such that ‖di + δijdj‖ is minimum can be
computed in closed form. Therefore, for each row dk they choose, among the
remaining rows, the row dj such that ‖dk+δkjdj‖ is minimum, and replace dk
with dk + δkjdj in D. The process is iterated until no rows can be combined

5

together to reduce the norm of the first one by at least a given factor 1−σ with
0 ≤ σ < 1. This yields a new matrix D whose rows form an angle between 60◦

and 120◦ with each other. By recording the row operations performed, i.e. the
valued of δkj used in the combinations, it is easy to recover the corresponding
row multipliers λ that can be applied to the original simplex tableau to derive
GMI cuts (5).

In [16], for each row dk of D, a subset Rk ⊂ BI of the rows of the simplex
tableau with dk ∈ Rk is chosen; then, integral multipliers are calculated, in
order to reduce ‖dk‖ as much as possible with a linear combination of the rows
di for all i ∈ Rk \ {k}. Relaxing the integrality requirements on λ, for each
row dk that we want to reduce we have the following convex minimization
problem:

min
λk∈R

|Rk|,λk
k
=1

‖
∑

i∈Rk

λk
i di‖. (8)

An integer (not necessarily optimal) solution can be found by rounding each
coefficient λk

i of the continuous solution to the nearest integer
⌊

λk
i

⌉

. The op-
timal continuous multipliers λ that solve (8) can be obtained by solving a
|Rk| × |Rk| linear system. Note that, in order to avoid the trivial solution
λk = 0, we impose a normalization constraint λk

k = 1. This way, the initial
row dk has unitary coefficient in the linear combination, and we obtain differ-
ent optimization problems for each row k = 1, . . . , |BI |.

Another reason to impose a normalization is that we are interested in
vectors of row multipliers λ with small norm. This was already observed in [16],
and will be further discussed in Section 4. Computational experiments suggest
that the most interesting split cuts are those generated from disjunctions with
a small absolute sum of the components. In particular, Balas and Saxena [8]
observe that, on a standard set of benchmark instances (MIPLIB 3.0 [10]), in
order to separate over the first split closure, only disjunctions with support ≤
20 are needed in practice, with very few exceptions. Furthermore, the average
integer coefficient appearing in the split disjunctions is typically small. There
is a direct relationship between our vector of row multipliers λ and the split
disjunction π associated with the corresponding split cut: indeed, the GMI cut
derived from a linear combination of rows with multipliers λ is the same as a
split cut derived from the disjunction π⊤x ≤

⌊

π⊤x̄
⌋

∨π⊤x ≥
⌊

π⊤x̄
⌋

+1, where
the basic part of the disjunction is given by πi = λj if xi is basic in the j-th
row, and the nonbasic part can be computed by strengthening the disjunction
exploiting integrality of the nonbasic integer variables [5,7]. Hence, we are
only interested in generating integer vectors λ with small absolute sum of the
coefficients. Transforming (8) into a constrained optimization problem adding
some condition on ‖λ‖ would increase the difficulty of solving the problem.
Therefore, we opted for simply penalizing large values of ‖λ‖ in the objective
function; that is, we replace (8) with:

min
λk∈R

|Rk|,λk
k
=1

‖
∑

i∈Rk

λk
i di‖

2 + γ′‖λ‖2, (9)

6

where γ′ is a given parameter that weights the normalization. In practice, our
approach is to first solve (9) with γ′ = 0, and if the solution λ does not satisfy
a criterion

∑

i |λi| ≤ Λ, we resolve (9) with γ′ > 0. We chose to penalize the
L2 norm of λ instead of the L1 norm in (9) because it gives rise to a quadratic
convex minimization problem, which is easy to solve.

We solve (9) by vanishing the derivatives of ‖
∑

i∈Rk
λk
i di‖

2 + γ′‖λ‖2 with

respect to λk
i , i ∈ Rk. This amounts to solving the following linear system for

k ∈ {1, . . . , |BI |}:
Akλk = bk, (10)

where Ak ∈ R
|Rk|×|Rk| and bk ∈ R

|Rk| are defined as follows:

Ak
ij =



















1 if i = j = k
0 if i = k or j = k but not both
∑|JC |

h=1 dihdjh + γ′ if i = j 6= k
∑|JC |

h=1 dihdjh otherwise,

bki =

{

1 if i = k

−
∑|JC |

h=1 dihdkh otherwise.

(11)

Once the linear systems are solved and the optimal continuous coefficients
λk ∈ R

|Rk| for all k ∈ {1, . . . , |BI |} are available, they are rounded to the near-
est integer. Then, consider the norm of

∑

i∈Rk

⌊

λk
i

⌉

di. If ‖
∑

i∈Rk

⌊

λk
i

⌉

di‖ <
(1 − σ)‖dk‖, where 0 ≤ σ < 1 is a given parameter, there is an improvement
with respect to the original row of the simplex tableau, and we expect the
associated GMI cut to be stronger, at least on the working set of columns JW ;
in this case, the equation

∑

i∈Rk

λk
i xi =

∑

i∈Rk

λk
i x̄i −

∑

j∈J

∑

i∈Rk

λk
i āijxj , (12)

is used in order to compute a GMI cut according to (5).
We now propose several strategies to choose the set of working variables

JW , and a corresponding set of rows Rk for the coefficient reduction algorithm.

3.1 Selection of the working set of nonbasic continuous variables

In order to generate a large number of split cuts, we work on different sets of
continuous nonbasic variables, aiming each time to reduce the coefficients for
the variables in the working set JW . This serves two purposes: one is to gen-
erate more cuts, and the second is to obtain more orthogonal cutting planes.
We generate more cuts because, given a reduction algorithm to compute the
row multipliers λ (such as the one described above) and a set of rows Rk, we
potentially obtain one new cut for each different JW . We obtain more orthogo-
nal cutting planes because we generate cuts with small coefficients, potentially
zeroes, on the columns in the set JW ; by iterating the cut generation algorithm

7

choosing disjoint sets JW at each iteration, we obtain a collection of cutting
planes which should be more orthogonal with each other than the GMI cuts
obtained from the original simplex tableau rows.

We take into account the reduced costs of the variables with index set JC
for choosing JW . The motivation is that there is a direct relationship between
the improvement in the objective function given by a cut, its coefficients, and
the reduced costs of the variables. Consider the current solution to the LP
relaxation x̄ and the extreme rays rj , j ∈ J of the cone C = {Ax = 0, xj ≥
0 ∀j ∈ J} associated with the corresponding basic solution. Note that c⊤rj

is the reduced cost associated with xj ; we denote it by c̄j in the following.
Given a GMI cut (5), rewrite it as an intersection cut

∑

j∈J

xj

αj
≥ 1, so that

the cutting plane supports the points xj = x̄ + αjr
j (see [4] for details).

Now the objective function value of P after the addition of the cut is at least
minj∈J c⊤xj = minj∈J(c

⊤x̄ + αjc
⊤rj). In order to maximize this quantity, it

is clear that for the variables with small reduced cost we should aim for a large
αj , i.e. a small cut coefficient. We give another reason for taking into account
reduced costs. Variables with large reduced costs are likely to stay nonbasic
even after the addition of cutting planes, whereas variables with small reduced
costs have a larger probability of entering the basis; therefore, cutting planes
that cut deeply on variables with small reduced costs are more likely to have
a large effect on the solution to the LP relaxation, i.e. they “move” x̄ by a
larger amount.

We choose the working sets JW by partitioning the set of continuous non-
basic columns into k disjoint sets; each of these partitions gives rise to k
disjoint JW ’s, hence a collection of potentially orthogonal cuts. However, we
do not always partition the whole set of continuous nonbasic columns JC : in
some cases, we only consider the variables with smallest reduced costs. When
computing the partitions, we always sort the variables in JC by increasing
reduced costs; we denote by S the ordered set obtained by sorting JC by in-
creasing reduced costs c̄j . We distinguish between contiguous k-partitions and
k-partitions with interleaving pattern. By contiguous k-partition we denote a
partition S1, S2, . . . , Sk such that for i < j, ∀p ∈ Si, q ∈ Sj we have c̄p ≤ c̄q,
and the cardinality of Si differs by at most one from the cardinality of any
other set Sj . In other words, each set of the partition contains variables which
are contiguous in S. By k-partition with interleaving pattern we denote a par-
tition S1, S2, . . . , Sk of the first r|JC | variables of S where 0 < r ≤ 1, the
cardinality of Si differs by at most one from the cardinality of any other set
Sj , and from each set of 2k contiguous variables, we assign 2 variables to each
of the k sets Si. We denote a contiguous k-partition by C-kP, and a k-partition
with interleaving pattern by I-kP-r or simply by I-kP if r = 1. We consider the
following 7 partitions: C-3P, C-5P, I-2P-1/2, I-2P-2/3, I-2P-4/5, I-3P, I-4P.

We believe that the particular pattern used to generate the interleaving
partitions does not affect their usefulness. Indeed, preliminary computational
tests conducted by comparing partitions with randomly generated interleaving
patterns to partitions with fixed interleaving patterns showed very similar re-

8

sults. We chose to eliminate the computational overhead of generating random
interleaving partitions by hard-coding different variable selection patterns. We
reach a different conclusion for contiguous partitions: the first set of the par-
tition should give stronger cutting planes, whereas the remaining sets of the
partition should yield progressively weaker cuts. This allows to verify our claim
that reduced costs play an important role in determining the quality of a cut;
a computational analysis of this conjecture is given in Section 4.

3.2 Selection of the rows for the reduction algorithm

In order to reduce the norm of row dk, the reduction algorithm of Section 3
needs a set of candidate rows Rk for the linear combination. Here we propose
several different criteria to choose Rk. There are two natural objectives for
an effective row selection strategy: on the one hand, we want to select rows
which allow for a large reduction of the coefficients on the continuous nonbasic
variables; on the other hand, we do not want to deteriorate the cut on the
integer nonbasic variables, as those are not taken into consideration when
solving the optimization problem (8). For each row selection strategy we have
a parameter µ, which represents the maximum number of rows that should
be selected; that is, |Rk| ≤ µ. We have 3 basic strategies, which we describe
below, that are applied to different sets of columns to yield a total of 8 row
selection strategies. We now give details on the 3 basic strategies, relative to
a generic set of nonbasic columns S ⊆ J .

1. The first basic row selection strategy (BRS1) derives from the original one
proposed in [16], and it consists in ranking the rows with index set BI \{k}
by increasing number of nonzeroes on the nonbasic columns S where dk is
zero (in this section we always use the row number as a tie breaker), and
picking the first µ such rows.

2. The second basic row selection strategy (BRS2) is a variant of the first
one: we employ a greedy algorithm to select, at each iteration, the row
which introduces the smallest number of nonzeroes on the columns with
index set S where the original row dk is zero and we did not introduce a
nonzero at previous iterations. We use the row number as a tie breaker.
The greedy algorithm is iterated until µ rows are selected. This strategy
is computationally more expensive than the first one, but should result in
a smaller number of nonzeroes in the linear combinations of the selected
rows.

3. The third basic row selection strategy (BRS3) chooses the first µ rows with
index in BI \ {k} such that their angle with respect to dk in the space of
columns with index set S is the smallest.

Each of the 3 basic strategies described above is applied to different choices
of S. In order to choose S, we make the following observations. Our coefficient
reduction algorithm only takes into account the continuous nonbasic columns
in the set JW for the optimization problem (9); therefore, we hopefully generate

9

cuts which are strong on the continuous nonbasic variables. However, at the
same time we would like the coefficients on the integer nonbasic variables
not to deterioriate as an effect of the linear combination (even though these
coefficients are bounded). Clearly, when the coefficient reduction algorithm is
applied to a row dk, there is no interest in choosing rows which have all zero
coefficients in the columns with index set JW where dk has a nonzero: in all
basic strategies BRS1, BRS2, BRS3, we only consider rows which have at least
one nonzero coefficient on the columns with index set JW where dk is nonzero.

There are 3 natural choices for S: S = JI (we try not to deriorate the cut
coefficients on the integer nonbasic variables, by introducing few nonzeroes),
S = JW (we focus on reducing the coefficients on the columns (j ∈ JW), while
introducing few nonzeroes) and S = JI ∪ JW (we combine both goals). Both
BRS1 and BRS2 are applied with all these possibilities. For BRS3, our intuition
is that using S = JI would not produce good results: as the coefficients of the
cut on the integer nonbasic variables after combining several rows together
are difficult to control (because of the modular arithmetic involved), choosing
rows which have similar coefficients on the columns (j ∈ JI) does not seem a
good idea. Therefore, for BSR3 we only pick S = JW and S = JI ∪ JW . This
leaves us with a total of 8 row selection strategies, which we label as follows:

1. RS1: BRS1 with S = JI
2. RS2: BRS1 with S = JW
3. RS3: BRS1 with S = JI ∪ JW
4. RS4: BRS2 with S = JI
5. RS5: BRS2 with S = JW
6. RS6: BRS2 with S = JI ∪ JW
7. RS7: BRS3 with S = JW
8. RS8: BRS3 with S = JI ∪ JW

4 Computational experiments

In this section we provide a computational evaluation of the ideas discussed in
Section 3. It should be noted that, as with most codes involving floating point
computations, our computational results depend on the platform on which
they are run (architecture, compiler, libraries). However, despite differences in
the numbers when executed on different platforms, we found the conclusions
that could be drawn to be consistent. The experiments reported in this paper
were perfomed on a 32-bit machine equipped with an Intel Xeon X3220 clocked
at 2.40 Ghz and 8 GB RAM, running Linux. We employed COIN-OR Cbc 2.3.0
[12] as Branch-and-Cut software, with COIN-OR Clp 1.10.0 [14] as underlying
LP solver. Our cut generator was implemented within the COIN-OR Cgl [13]
framework, and is available in Cgl. We remark that the combination of our
code and the COIN-OR framework can prove numerically unstable, and we
experienced some failures of the Branch-and-Cut code during our tests. We
found Cplex to be more stable in this respect, but we decided to use the COIN-

10

OR framework because of greater flexibility and the possibility of finely tuning
the cut generators.

We employ several cut generators available in COIN-OR Cgl 0.55.0, and in
particular: MIR (CglMixedIntegerRounding12), Two-step MIR (CglTwomir),
the original Reduce-and-Split (CglRedSplit), Lift and Project (CglLandP),
Knapsack cover (CglKnapsackCover) and Flow cover (CglFlowCover). We also
use our own implementation of a GMI cut generator (CglGMI). The union of
all these cut generators, which represents our baseline and is a superset of the
generators employed in Cbc by default3, will be called CglAllCuts in the
following.

The reason for using our implementation of a GMI cut generator is that
we have more flexibility in determining the cut acceptance/rejection criteria
than with the existing implementation (CglGomory), and slightly faster com-
putation times.

In almost all experiments we will test our cut generator on top of CglAll-

Cuts. This is because our heuristics are not designed to be faster than existing
cut generators: they are designed to find split cuts which cannot be obtained
through existing methods. For difficult MILPs, investing a few more seconds
in cut generation at the root can bring a large reduction in the enumeration
tree. For easy problems, this approach may not be the most effective one, as
simple enumeration is often faster than Branch-and-Cut.

In this paper, all average values are reported as geometric averages. Since
the set of values that we want to average frequently contains zero, we add
1 to each value before computing the average, and then subtract 1 from the
final result. Instances for which all tested method close zero integrality gap are
excluded from the averages reported at the end of the corresponding tables.

4.1 Test instances

We tested our cut generation algorithm on mixed-integer benchmark prob-
lems taken from MIPLIB 3.0 [10], MIPLIB 2003 [1], and difficult problems
from the University of Bologna as available at: http://plato.asu.edu/sub/
testcases.html. All of these problems were processed to find a feasible solu-
tion guaranteed to be within 1% of the optimum, using the procedure described
in [20]. The value of these optima was employed to compute integrality gaps
and provided as cutoff to the Branch-and-Cut solver, if not otherwise stated.
For one instance (t1717), where the optimal solution is not known and we
could not find a solution within 1% of the lower bound, we took the best so-
lution found by Cplex 12.1 after 6 hours of computation using 2 cores of an
Intel Xeon clocked at 3.20 Ghz running Linux (note that this is not the same
machine where the remaining experiments are run).

2 We employed CglMixedIntegerRounding1 instead of its variant CglMixedIntegerRound-
ing2 (which generates the same cuts) because we found it to be slightly faster.

3 Excluding CglClique, whose implementation is not sufficiently general.

11

Our instance selection criterion is as follows: we exclude instances with
more than 500000 nonzeroes in the constraint matrix, and those instances
such that solving the LP relaxation at the root took more than 30 seconds, or
Clp encountered numerical difficulties.

We distinguish between instances with continuous structural variables, and
instances where the only continuous variables are artificial (i.e. slacks intro-
duced to deal with inequalities). We first focus on instances with continuous
structural variables. These instances have more continuous variables to which
our coefficient reduction algorithm can be applied; furthermore, continuous
variables play a more important role, because they appear in the original for-
mulation and typically also in the objective function. Therefore, for testing
purposes, these instances are more meaningful for this paper, in particular
for rank-1 cuts. On pure integer instances, continuous artificial variables may
or may not be present in the first round of cutting planes, depending on the
presence of inequalities in the original problem, but the introduction of cutting
planes ensures the presence of slacks in the following rounds.

We label the first set of test instances MILP C; the list of instances is given in
Table 1. MILP C contains mixed-integer instances with more than 2 continuous
structural variables. The second set of test instances is labeled ILP C; it con-
tains mixed-integer instances with at most 2 continuous structural variables,
and pure integer instances. The list of instances in ILP C is given in Table 2.
For each instance we give the number of continuous and integer structural vari-
ables, the number of artificial variables for inequalities or ranged constraints
introduced when the problem is reformulated in standard form (which can be
exploited by our coefficient reduction algorithm), and the number of rows.

4.2 Implementation

Our cut generator is implemented within the COIN-OR Cgl framework as a
CglCutGenerator called CglRedSplit2; thus, it can be used within any project
that supports Cgl. The linear systems involved for the solution of (9) are solved
via LU decomposition and backward substitution, using our own implemen-
tation based on [23]. The option to use LAPACK for this task is available;
however, after a brief computational evaluation we decided to employ our
code. The reason for this is that LAPACK typically provides better numerical
accuracy at the cost of some speed, but in our case, there is no need for high
accuracy. Indeed, the solution of each linear system is rounded to the nearest
integer, therefore we decided to favour speed.

Our cut generator has several parameters required by the coefficient re-
duction algorithm (Section 3): the maximum number of rows µ that can be
combined in a linear combination (|Rk| ≤ µ, in the notation of Section 3.2), the
column selection strategy (Section 3.1), and the row selection strategy (Sec-
tion 3.2). Two additional parameters play a role in the cut acceptance/rejection
criteria: the minimum norm reduction factor σ to accept a vector of row multi-
pliers, and the maximum accepted value Λ of ‖λ‖1. Finally, the last parameter

12

Variables
Name Cont. Int. Slacks Constr.

10teams c 225 1800 95 230
a1c1s1 c 3456 192 2072 3312
aflow30a c 421 421 421 479
aflow40b c 1364 1364 1364 1442
arki001 c 877 511 1048 1048
b1c1s1 c 3584 288 2624 3904
b2c1s1 c 3584 288 2624 3904
bell3a c 62 71 123 123
bell4 c 53 64 105 105
bell5 c 46 58 91 91
bg512142 c 552 240 1071 1307
blend2 c 97 256 185 274
danoint c 465 56 577 664
dcmulti c 473 75 212 290
dg012142 c 1440 640 5670 6310
dsbmip mod c 1717 160 854 1182
egout c 86 55 56 98
fiber c 44 1254 0 363
fixnet3 c 500 378 378 478
fixnet4 c 500 378 378 478
fixnet6 c 500 378 378 478
flugpl c 7 11 13 18
gen c 720 150 630 780
gesa2 c 816 408 1345 1392
gesa2 o c 504 720 1196 1248
gesa3 c 768 384 1323 1368
gesa3 o c 480 672 1174 1224
glass4 mod c 19 302 361 396
khb05250 c 1326 24 24 101
misc06 c 1696 112 601 820
mod011 c 10862 96 248 4480
modglob c 324 98 226 291
momentum c 2825 2349 42421 42680
net12 c 12512 1603 13469 14021
noswot c 28 100 180 182
pk1 c 31 55 30 45
pp08a c 176 64 72 136
pp08aCUTS c 176 64 182 246
qiu c 792 48 1064 1192
qnet1 c 124 1417 176 503
qnet1 o c 124 1417 129 456
rgn c 80 100 4 24
roll3000 c 428 738 2120 2294
rout c 241 315 261 291
set1ch c 472 240 252 492
swath c 81 6724 381 884
timtab1 c 239 158 4 171
timtab2 c 398 277 15 294
tr12-30 c 720 360 390 750
vpm1 c 210 168 195 234
vpm2 c 210 168 201 234

Table 1 Instances in the test set MILP C

Variables
Name Cont. Int. Slacks Constr.

air04 c 0 8904 0 823
air05 c 0 7195 0 426
cap6000 c 0 6000 2053 2176
disctom c 0 10000 0 399
ds c 0 67732 0 656
enigma c 0 100 0 21
fast0507 c 0 63009 507 507
gt2 c 0 188 29 29
harp2 c 0 2993 39 112
l152lav c 0 1989 1 97
lseu c 0 89 28 28
manna81 c 0 3321 6480 6480
mas74 c 1 150 13 13
mas76 c 1 150 12 12
misc03 c 1 159 69 96
misc07 c 1 259 177 212
mitre c 0 10724 1671 2054
mkc c 2 5323 3410 3411
mod008 c 0 319 6 6
nsrand-ipx c 1 6620 735 735
nw04 c 0 87482 0 36
opt1217 c 1 768 16 64
p0033 c 0 33 15 15
p0201 c 0 201 133 133
p0282 c 0 282 241 241
p0548 c 0 548 176 176
p2756 c 0 2756 755 755
protfold c 0 1835 2075 2112
seymour c 0 1372 4944 4944
sp97ar c 0 14101 1761 1761
stein27 c 0 27 118 118
stein45 c 0 45 331 331
t1717 c 0 73885 0 551

Table 2 Instances in the test set ILP C

is the weight that penalizes ‖λ‖ whenever (9) is resolved because the first solu-
tion does not satisfy ‖λ‖1 ≤ Λ. In particular, we set γ′ = γ‖dk‖ in (9), where
γ is a parameter.

In our experiments, we tested 6 possible values for µ: 3, 5, 10, 15, 20, 50.
As µ determines the size of the linear system (11), and therefore the compu-
tational effort required to generate each cut, we did not try values above 50.
Additionally, there are 21 possible column selection strategies, as described in

13

Section 3.1, and 8 row selection strategies which are discussed in Section 3.2.
This gives a total of 1008 combinations, meaning that for each row of the
simplex tableau where the basic integer variable takes on a fractional value,
we can potentially generate 1008 different vectors of row multipliers λ, hence
1008 different cuts. Several combinations of these will typically give rise to the
same vector of row multipliers.

Cuts are generated using the standard Gomory formula for GMI cuts (see
e.g. [24]) only when the fractionality of the right hand side of the equality
(i.e. f0 in (5)) exceeds a given value, which was set to 0.01 for these exper-
iments. This parameter is typically called Away in the integer programming
community. Additionally, cuts are rejected if they are violated by the current
solution of the LP relaxation by less than 10−7, or if their support exceeds
1000 + n′/5, where n′ is the number of structural variables. Note that we set
the same value of Away, minimum violation and maximum support for all cut
generators employed in this paper, in order to have a fair comparison.

4.3 Comparison with the split closure

The aim of this section is to evaluate the quality of the cuts computed by exist-
ing cut generators as compared to the split closure, and assess the contribution
provided by our cut generation heuristics. It is known that the first split clo-
sure gives a tight approximation of the integer hull [8,11,17]; but what is the
integrality gap closed by existing cut generators? Do the heuristics presented
in this paper help in obtaining a better approximation of the split closure?
These are the questions that we attempt to answer.

In particular, we compare with the results reported by Balas and Saxena
[8], who optimize over the split closure, and [17], who consider the (equiv-
alent) MIR closure, but with different techniques. Since our cut generation
algorithm requires the presence of nonbasic continuous variables, we only use
mixed-integer instances. Our test set, for Section 4.3 only, consists in the
mixed-integer instances of the original MIPLIB 3.0, without preprocessing.
This coincides with the instances reported in Table 1 of [8], and Table 2 of
[17]. We excluded 5 instances from the set: dsbmip and noswot, which have
zero integrality gap; markshare1, markshare2, and pk1, for which neither pa-
per reports a positive amount of gap closed.

The setup for this experiment is as follows. We test GMI cuts alone, and
three different sets of cut generators; we generate one round of cutting planes
from each generator from the initial LP relaxation of the test instances. The
first set of cut generators is Existing Split Cuts, which includes all rank-1
split cuts generators in Cgl (i.e. CglAllCuts except CglTwomir). The second
set consists in Existing Split Cuts and our CglRedSplit2. The third set
consists again in Existing Split Cuts and CglRedSplit2, but with a different
configuration that we call “CglRedSplit2 light”. Since in this experiment we
are not interested in computing time, in the second set of cut generators we
parameterized CglRedSplit2 in such a way that it generates all cuts that can

14

Split GMI Existing Existing Existing

Closure Split Cuts Split Cuts Split Cuts

+ CglRedSplit2 + CglRedSplit2
light

Instance Gap % Gap % # Cuts Gap % # Cuts Gap % # Cuts Gap % # Cuts
10teams 100.00 57.14 2 100.00 32 100.00 286 100.00 49
arki001 83.05 32.97 68 33.18 210 41.77 2691 39.78 752
bell3a 99.60 32.36 18 52.50 48 63.92 176 63.92 93
bell5 92.95 5.61 14 85.37 47 85.79 192 85.79 132
blend2 46.52 15.98 6 16.04 32 19.07 245 16.04 54
dano3mip 0.22 0.01 2 0.02 9 0.10 671 0.04 28
danoint 8.20 0.26 31 0.68 117 1.36 2249 1.29 543
dcmulti 100.00 27.68 31 44.51 110 49.18 930 48.22 262
egout 100.00 35.95 27 61.83 131 68.70 446 67.89 194
fiber 99.68 64.27 46 79.57 171 80.68 888 79.59 368
fixnet6 99.75 10.74 33 71.22 135 72.72 1244 72.23 236
flugpl 100.00 10.93 6 11.17 19 93.02 300 92.69 143
gen 100.00 60.69 43 74.24 164 79.66 1843 74.65 465
gesa2 99.70 10.95 12 69.36 273 69.42 550 69.41 443
gesa2 o 99.97 29.95 71 33.22 288 65.44 725 55.97 454
gesa3 95.81 5.42 11 72.99 233 86.21 793 76.50 387
gesa3 o 95.20 49.07 96 77.43 278 88.97 1222 84.42 556
khb05250 100.00 74.91 19 74.91 51 82.55 109 81.86 59
mas74 14.02 6.67 12 6.83 26 9.03 552 8.34 250
mas76 26.52 0.00 11 0.00 29 0.00 251 0.00 144
misc06 100.00 25.80 5 34.62 41 34.62 109 34.62 54
mkc 36.16 7.59 80 10.16 188 10.16 1800 10.16 610
mod011 72.44 9.72 15 35.64 65 35.64 88 35.64 76
modglob 92.18 16.33 23 17.35 69 28.46 328 24.53 122
pp08aCUTS 95.81 33.31 46 41.61 199 50.88 2784 50.77 517
pp08a 97.03 54.69 53 62.59 214 84.64 676 84.00 318
qiu 77.51 0.00 2 4.20 42 4.47 1451 4.31 169
qnet1 100.00 15.63 47 32.13 312 36.89 3736 36.74 495
qnet1 o 100.00 43.55 11 56.08 54 59.94 607 57.09 242
rentacar 23.40 0.00 2 0.00 7 0.00 33 0.00 21
rgn 100.00 3.15 17 37.56 82 40.28 437 38.00 158
rout 70.70 0.67 32 4.21 187 5.19 3430 4.21 548
set1ch 89.74 39.09 135 39.30 528 57.94 2041 57.94 726
swath 33.93 2.54 7 26.02 119 26.02 1193 26.02 334
vpm1 100.00 26.91 18 83.64 107 94.55 198 83.64 141
vpm2 81.05 15.94 33 46.49 175 47.52 512 46.98 329
Average 63.77 11.95 18.93 24.39 89.51 29.53 592.24 28.36 206.89

Table 3 Comparison between the amount of integrality gap closed by the split closure and
by existing cut generators, on the mixed-integer instances of MIPLIB 3.0.

be obtained by combining the heuristics discussed in this paper. That is, we
generate cuts using all combinations of the values listed in Section 4.2 for the
three main parameters: µ, the column selection strategy, and the row selection
strategy. Furthermore, σ was set to 0.001, so as to accept almost all generated
cuts, while Λ was set to 20, as suggested in [8]. Recall that we first solve
(9) with γ = 0; whenever the solution λ is such that ‖λ‖1 ≥ 20, we resolve
(9) using γ = 0.0001‖dk‖

2. This parameterization of our cut generator is not

15

meant to be used for practical purposes, since it generates an unnecessarily
large number of cuts. Thus, we also consider a “light” version of CglRedSplit2
in the third set of cut generators. The light version uses µ = 3, 5 and row
strategies RS7 and RS8 only (all column selection strategies); this choice of
the parameters is dictated by our experiments in Section 4.4.1, and should
produce a smaller number of cuts. Finally, for the experiments in this section
only, instead of using default parameters for CglLandP we employ a more
aggressive parameterization: we set the option generateExtraCuts to “all
violated GMI cuts” (i.e. we generate all violated GMI cuts from the Lift-and-
Project tableaux obtained at the end of a pivoting sequence), and employ two
different pivoting strategies: “most negative reduced cost” and “best pivot”
(see [6] for details). In conjunction with the “best pivot” strategy, we apply
the iterative modularization heuristic proposed in the same paper. This should
produce a more diverse set of cuts.

Results are reported in Table 3. For each instance, we report the percentage
of integrality gap closed by the split closure (i.e. the best bound given in [8,
17]), and for GMI cuts and each of the three sets of cut generators which are
tested we report the percentage of integrality gap closed and the number of
generated cuts.

We can see that on average, the split closure closes 63.77% of the inte-
grality gap, whereas existing cut generators do not even exploit half of this
potential, closing 24.39%, of which 11.95% is contributed by GMI cuts alone.
Adding the Reduce-and-Split heuristics proposed in this paper increases this
value to 29.53%, which represents almost half of the potential of split cuts.
Notice that we generated a large number of cuts to achieve this results, but
as shown by CglRedSplit2 “light”, we can generate considerably fewer cuts,
while losing very little in terms of integrality gap closed: only 1.2%. On the
instances mas76 and rentacar, all split cut generators perform very poorly.
If we compute the average closed gap without taking these two instances into
account, the split closure yields 67.35%, GMI cuts alone yield 14.05%, exist-
ing cut generators yield 29.71%, and adding CglRedSplit2 achieves 36.33%;
hence, on this reduced test set we exploit more than half of the potential of
split cuts, and our cut generator contributes more than 6.5% on top of the
generators in Cgl. CglRedSplit2 “light” contributes 5% on top of existing split
cut generators, but instead of adding ≈ 550 cuts on average, it generates only
≈ 100.

On some instances, our Reduce-and-Split cuts are very strong: examples
are arki001, flugpl, gesa2 o, gesa3, gesa3 o, pp08a, set1ch. On the other
hand, there are problems for which they do not seem to help: mas76, rentacar,
swath. Note that mas74, mas76 only have one continuous structural variable
in the initial formulation. In conclusion, there is still a large potential for split
cuts. It would be interesting to know how much of the remaining integrality
gap can be closed with cutting planes that are valid for the corner polyhedron
PC(B

∗) associated with the optimal basis B∗ of the original LP relaxation.
Most of the existing cut generators, including ours, derive valid inequalities for
PC(B

∗), whereas [8,17] do not have this restriction. Therefore, an interesting

16

question for future research is to investigate how much can we still hope to
achieve by exploiting PC(B

∗).

4.4 Further experiments with rank-1 cuts

In this section we still consider rank-1 cuts only; that is, we generate a single
round of cutting planes from the initial LP relaxation. We measure the con-
tibution of our cut generation heuristics, both when used in conjunction, and
individually. We also investigate the effect of the parameters σ, Λ and γ. All
experiments are performed on the set of test instances MILP C.

We concentrate on rank-1 cuts for two main reasons. The first reason is that
the computational experiments can be carried out in reasonable time. Since we
combine all our heuristics together, for a total of 1000 different combinations,
generating all the cuts for several rounds takes a significant amount of time,
also because the size of the LP increases after each round. The second reason
is that more factors come into play when generating several rounds of cuts
(for instance, how many rounds do we generate? Do we discard inactive cuts
after each pass, or keep them in the LP for some rounds?) Thus, here we only
compare results for the first round of cutting planes. Iterated cut generation
will be discussed in the remaining sections.

4.4.1 Analysis of cut generation parameters and strategies

In this section we analyze the effect of the parameters and algorithmic options
available in our cut generator. For the sake of brevity, here we report just a
summary of our findings. The interested reader can find detailed results and
comments in the Appendix, Section A.

First, we investigated the role of the parameters σ and Λ. As expected [8,
16], we found that using small valued for Λ (between 10 and 20) is the best
choice. Indeed, cuts which are accepted only if Λ is large close a marginal
amount of integrality gap on average. In our experiments, almost all useful
cutting planes stem from disjunctions whose 1-norm is not larger than 10, and
in the majority of cases we only need Λ = 5. We also observed that large values
of σ can significantly reduce the number of generated cuts, at the expense of
the amount of closed gap; however, for σ < 0.1 we lose very little (compared to
σ = 0.001, which is a very loose acceptance threshold). Values in the interval
[0.01, 0.1] seem to achieve the best tradeoffs.

We also analyzed the effect of a nonzero γ. Recall that, whenever the solu-
tion to (9) does not satisfy ‖λ‖1 ≤ Λ (after rounding to the nearest integer),
we resolve the optimization problem, penalizing ‖λ‖2. In particular we solve
the following problem:

min
λk∈R

|Rk|,λk
k
=1

‖
∑

i∈Rk

λk
i di‖

2 + γ‖dk‖‖λ‖
2.

17

We found that penalizing the norm of λ has an almost negligible, although
positive, effect: the amount of integrality gap closed increases, on average, by
a very small fraction. We expect this positive effect to be more significant
when generating cuts using fewer values for µ, column selection strategy and
row selection strategy. The reason is that in the current experiment there is
much redundancy; that is, it is very likely that each cut could be obtained
through different combinations of the parameters. Therefore, there are fewer
additional good cuts that we can discover by resolving (9) with γ > 0 when
we fail the test on ‖λ‖1, simply because these cuts can also be obtained with
another combination of the parameters. In a practical Branch-and-Cut setting,
we will aim for little redundancy to improve computational times, hence there
will be more useful cuts that can potentially be generated by our generator,
but which are “missed” when using γ = 0. In our experiments we saw that
good cuts are associated with λ’s with small norm; we hope to recover some
of the “missed” cuts by using γ > 0.

Then, we tried to assess the effectiveness of our various cut generation
heuristics; in particular, the effect of the parameter µ (maximum number of
rows that can are involved in each linear combination), of the column selection
strategy, and of the row selection strategy. Our results clearly show that small
values of µ (µ = 3, 5), which are associated with split disjunction with small
support, yield the best results. This is not a surprising finding. Concerning
row selection strategies, we found that RS7 and RS8 are yield stronger cuts
than the remaining ones. RS1 and RS4, which consider the nonzeroes on the
integer nonbasic variables only, are weaker than the rest. In general, the best
strategies seem to be those that take into account the coefficient on both the
integer and the continuous nonbasic variables, so that at the same time we
try to reduce the cut coefficients on the continuous columns, and keep the
coefficients on the integer columns under control. There is no clear winner
among the column selection strategies: almost all seem to be roughly equally
effective, and almost all provide at least a marginal contibution that cannot
be obtained through other means. On the other hand, there are two column
selection strategies that are clearly less effective: those that select columns
corresponding to variables with the largest reduced costs.

To confirm the effect of reduced costs, we performed an additional exper-
iment: we applied 10 rounds of cutting planes on the set of instances MILP C,
where at each round we apply GMI cuts and our Reduce-and-Split cuts gen-
erated with µ = 5, 10, 15, 20, 50, RS1 through RS8, and one among the three
column selection strategies of C-3P. The average amount of integrality gap
closed after 10 rounds by GMI cuts only is 34.71%; adding Reduce-and-Split
cuts where the coefficient reduction algorithm is applied to the first set of
columns of C-3P (variables with smallest reduced costs) yields 48.68%, to the
second set of C-3P yields 49.26%, to the third set of C-3P (variables with
largest reduced costs) yields 43.99%. These experiments confirm that cuts
which cut deeply on variables with large reduced costs are less effective than
those that focus on small reduced costs when employed alone: since cuts are
typically generated in rounds with other cuts, and geometrical intuition sug-

18

gests that sets of orthogonal cuts perform well, these “weaker” cuts may prove
useful in practice when used in combination with other cuts if they are or-
thogonal to them.

4.4.2 Parameters for efficient computation

After discussing the effect of each parameter for our cut generation algorithm,
we turn our attention to a practical setting, where we ideally want to generate
good split cuts in a short CPU time, and possibly in small numbers. Thus,
we are interested in finding a parameter combination aimed at these objec-
tives. Based on the experiments analyzed in Section A.1 and Section A.2, we
decided to employ our CglRedSplit2 cut generator with the following param-
eters: σ = 0.01, Λ = 10, γ = 0.0001, and to generate cuts using µ = 5, row
selection strategies RS7 and RS8, and all column selection strategies. We put
a time limit of 30 seconds for our cut generation algorithm. We will label Cgl-

Cuts the set containing all cut generators in CglAllCuts except the original
Reduce-and-Split (CglRedSplit). In Table 4 we compare CglAllCuts, Cgl-

Cuts + CglRedSplit2 and CglAllCuts + CglRedSplit2.

Observe that the average CPU time required by CglRedSplit2 to generate
one round is 2 seconds, which corresponds to slightly more than double the
time employed by all cut generators in CglAllCuts. For hard problems with
a solution time in the order of minutes or hours, this extra computational
effort at the root represents a very small fraction of the total CPU time. More
importantly, we are able to close, on average, an additional 5% of integrality
gap, while generating ≈ 70% more cuts. Comparing with Table 10, we see that
we have lost 2% of integrality gap that we could achieve by applying all our
heuristics; however, at the same time we generate significantly fewer cuts (a
reduction by a factor of 2.5, on average), which is a great advantage from a
practical point of view.

On several instances, the improvement in the lower bound that we can
obtain with rank-1 cuts only generated by our heuristics is large; to name a few
of the difficult ones: a1c1s1 c, arki001 c, b2c1s1 c, roll3000 c, timtab2 c.

We also see that CglRedSplit2 is more effective than CglRedSplit, at least
for the first round of cuts: indeed, employing CglRedSplit2 instead of CglRed-
Split yields an additional 4% of integrality gap closed (32.5% instead of 28.7%),
at the cost of an increase in computing time.

Summarizing, these results show that on mixed-integer instances, our cut
generation heuristic have the potential to generate strong split cuts and to be
useful from a practical standpoint: we are able to close an additional 5% of
integrality gap compared to existing split cut generators (an improvement of
15% in relative terms), while requiring a very short CPU time.

19

CglAllCuts CglCuts CglAllCuts

+ CglRedSplit2 + CglRedSplit2
Instance Gap % Time # Cuts Gap % Time # Cuts Gap % Time # Cuts

10teams c 100.00 2.34 11 100.00 18.61 25 100.00 20.32 28
a1c1s1 c 20.29 5.60 382 26.88 18.33 500 26.88 19.45 507
aflow30a c 22.83 0.05 132 22.87 0.25 140 22.92 0.26 161
aflow40b c 24.56 0.25 157 24.68 1.55 203 24.71 1.57 229
arki001 c 34.47 0.44 264 40.89 1.72 610 40.89 2.66 646
b1c1s1 c 23.15 10.13 559 28.34 43.53 639 28.34 42.44 641
b2c1s1 c 15.00 10.37 556 21.95 39.46 736 21.81 40.33 726
bell3a c 51.58 0.01 78 63.76 0.03 82 63.76 0.02 90
bell4 c 27.52 0.02 150 27.70 0.04 169 27.70 0.04 197
bell5 c 85.37 0.01 73 85.79 0.02 85 85.79 0.02 96
bg512142 c 2.38 2.15 412 2.43 10.15 1458 2.44 10.10 1559
blend2 c 16.04 0.01 39 15.99 0.03 43 16.04 0.03 48
danoint c 1.74 0.43 139 1.74 0.81 352 1.74 0.75 381
dcmulti c 48.09 0.07 168 49.09 0.27 261 49.09 0.29 293
dg012142 c 0.45 17.57 189 0.45 51.18 301 0.45 51.37 318
dsbmip mod c -0.00 0.95 161 -0.00 2.16 116 0.00 2.18 174
egout c 69.87 0.01 168 72.35 0.03 216 72.35 0.04 220
fiber c 79.57 0.10 226 79.57 5.33 355 79.57 5.34 387
fixnet3 c 88.60 0.04 215 88.60 0.27 269 88.60 0.27 274
fixnet4 c 69.08 0.04 206 69.67 0.24 325 69.73 0.26 331
fixnet6 c 71.32 0.03 181 71.89 0.20 257 72.01 0.21 262
flugpl c 11.74 0.00 28 92.69 0.00 100 92.69 0.00 105
gen c 72.59 0.17 165 73.48 0.34 365 73.48 0.36 375
gesa2 c 70.40 0.41 333 70.88 1.17 419 70.88 1.17 471
gesa2 o c 33.22 0.21 264 53.86 1.49 357 53.86 1.55 417
gesa3 c 67.01 0.72 278 73.79 2.40 338 75.43 2.42 382
gesa3 o c 74.55 0.40 261 74.84 2.68 415 75.18 2.63 469
glass4 mod c 0.00 0.03 292 0.00 0.05 277 0.00 0.05 315
khb05250 c 74.91 0.02 69 81.86 0.06 64 81.86 0.05 76
misc06 c 11.89 0.04 24 10.90 0.10 27 11.89 0.11 33
mod011 c 23.15 1.15 35 18.06 5.51 39 23.15 6.23 45
modglob c 17.34 0.02 95 23.69 0.08 132 23.69 0.09 148
momentum1 c 47.68 321.62 266 47.68 343.37 286 47.68 345.58 308
net12 c 8.25 48.45 2266 8.25 89.97 2330 8.25 88.30 2351
noswot c 0.00 0.01 53 0.00 0.02 98 0.00 0.02 104
pk1 c 0.00 0.01 60 0.00 0.03 164 0.00 0.03 179
pp08a c 62.59 0.02 261 83.00 0.09 312 83.00 0.08 359
pp08aCUTS c 41.61 0.11 189 50.76 0.23 383 50.76 0.25 425
qiu c 1.00 0.86 51 1.00 0.98 119 1.00 1.18 126
qnet1 c 36.28 0.65 152 36.15 30.60 235 36.34 31.13 258
qnet1 o c 64.09 0.05 57 57.94 22.83 152 65.00 15.87 163
rgn c 47.73 0.01 88 33.15 0.03 149 47.73 0.03 161
roll3000 c 13.95 2.57 663 22.09 32.58 1837 22.09 32.72 1922
rout c 3.13 0.14 160 3.13 0.40 398 3.13 0.43 423
set1ch c 39.30 0.07 580 57.94 1.01 657 57.94 1.06 772
swath c 27.83 0.64 100 27.83 9.49 258 27.83 9.20 285
timtab1 c 34.17 0.05 579 44.15 0.75 1203 44.34 0.67 1337
timtab2 c 24.93 0.09 781 33.78 2.97 1977 34.01 13.65 2097
tr12-30 c 60.27 0.11 1146 84.50 14.44 1558 84.50 11.59 1610
vpm1 c 83.64 0.01 81 83.64 0.05 107 83.64 0.06 116
vpm2 c 49.81 0.02 193 51.16 0.10 278 51.16 0.09 303

Avg. 28.72 0.85 172.92 32.54 2.72 270.13 33.14 2.83 293.81

Table 4 Results obtained on MILP C using our cut generator with sigma = 0.01, Λ = 10, γ =
0.0001, µ = 5, RS7-RS8 and all column selection strategies. CPU time is in seconds.

4.5 Comparison with the original Reduce-and-Split

In this section we compare CglRedSplit2, the cut generator based on the strate-
gies proposed in this paper, with CglRedSplit, the Reduce-and-Split generator

20

based on [3]. The two algorithms are described in Section 3. Let x̄ be the opti-
mal LP solution, and let F = {i ∈ BI : x̄i 6∈ Z}. We remark that CglRedSplit2
implements a large number of cut generation strategies that can be combined
together, with the result that more than 1000|F | cuts can potentially be gen-
erated at each round. On the other hand, the algorithm described in [3] and
implemented in CglRedSplit produces at most |F | cuts. There is another im-
portant difference between the two generators: whenever CglRedSplit fails to
improve a row k with associated basic variable i ∈ F (i.e. it cannot find another
row that can be combined with k to reduce the row coefficients), it generates
a simple GMI cut from k. On the other hand, in our current implementation
CglRedSplit2 only generates those cuts that are not simple GMI cuts; in other
words, it only generates cuts obtained from linear combinations of at least two
rows. In order to compare CglRedSplit and CglRedSplit2, we must take into
account these differences. Through all this section, CglRedSplit2 uses param-
eters σ = 0.01, Λ = 10, γ = 0.0001, and a time limit of 30 seconds for cut
generation.

The comparison is performed on the set MILP C, by measuring the integral-
ity gap closed by the tested cut generators after 10 rounds of cutting planes.
After each round of cut generation, we reoptimize the LP and remove inactive
cuts; these inactive cuts are stored into a pool, and at subsequent rounds we
add back into the LP all cuts that are found to be violated. To generate a
similar number of cuts from both generators, we proceed as follows. For each
instance, we first apply 10 rounds of cutting planes with CglRedSplit, yielding
p cuts. Then, we generate cuts with CglRedSplit2, with a limit of p cuts in
total. This way, the number of cuts generated by CglRedSplit2 does not exceed
that of CglRedSplit.

We test two versions of CglRedSplit2. The first one mimicks the cut gener-
ation algorithm of CglRedSplit: for each row whose associated basic variable
is in F , we perform only one attempt to compute a combination of rows that
yields improved cut coefficients; if this process fails, we generate the GMI cut
from the unmodified row. The single combination is computed using µ = 5,
the first column selection strategy of C-3P (smallest reduced costs), and row
selection strategy RS8. We label this version Single Cut. Single Cut is
designed to allow a fair comparison with CglRedSplit, as it generates at most
|F | cuts per round. In order to measure how many “good” cutting planes we
are missing by generating |F | cuts per round only, we also test a Default

version of CglRedSplit2, which uses all column selection strategies, row se-
lection strategies RS7-RS8, and µ = 3, 5. This is the a similar configuration
to the one used in our Branch-and-Cut experiments (Section 4.6), but here
we allow CglRedSplit2 to generate a GMI cut from a single row whenever its
coefficients cannot be reduced with our algorithm.

Furthermore, we design an experiment to assess the importance of the coef-
ficient reduction algorithm. The purpose of this experiment is to verify whether
the cutting planes obtained through our method are effective thanks to the row
selection procedures only, or if the coefficient reduction algorithm also plays
an important role. Therefore, we generate split cuts obtained using our usual

21

row selection strategies, but instead of computing the multipliers through (9),
we generate random integer row multipliers for the linear combinations. To do
this, we need a procedure to randomly sample an integral vector λ of dimen-
sion k = µ− 1 such that ‖λ‖1 ≤ Λ− 1; this is because one component of the
vector of row multipliers (the one corresponding to the initial row being mod-
ified) has to be equal to 1. We proceed as follows. First we uniformly sample
a direction λ̃ ∈ R

k at random in the unit L∞ ball; then we sample a length
ℓ from a uniform distribution over the interval [0, (Λ − 1)/‖λ̃‖1)]. Finally, we
obtain an integral vector by rounding each component of ℓλ̃ to the nearest
integer. This yields a procedure to obtain integral row multipliers. We use it
instead of our usual algorithm in Single Cut, i.e. for each row whose basic
integer variable is fractional, we select µ = 5 rows with the RS8 strategy, and
generate a random integer combination. Hence, we generate at most |F | cuts
per round, and we stop after generating as many cuts as CglRedSplit over 10
round. We call this generator Random.

Results are reported in Table 5; for each cut generation algorithm, we
report the gap closed at the root node after 10 rounds, the required CPU
time, and the number of generated cuts. Geometric averages can be found in
the last row.

Table 5 shows that our Reduce-and-Split algorithm is more effective than
the one described in [3], when compared on equal ground. Indeed, CglRedSplit2
Single Cut closes more gap than CglRedSplit on average while generating
approximately the same number of cuts: the improvement is of ≈ 10% in rela-
tive terms. At the same time, Random is weaker than both CglRedSplit and
CglRedSplit2 Single Cut on average, showing that the coefficient reduction
algorithm is an important component of our procedure. Finally, CglRedSplit2
Default generates roughly twice as many cuts as Single Cut, but closes sig-
nificantly more gap over 10 rounds. This suggests that using a larger family of
cuts than those generated by Single Cut (which mimicks the original Reduce-
and-Split algorithm implemented in CglRedSplit) has some advantages: at the
cost of increased CPU time and a larger number of cuts, we are able to close
more gap. On some of the larger instances (e.g. momentum1), our cut generator
required too much time, partly because of the LP solver taking longer than
usual to provide the optimal tableau, and the time limit was exceeded; in a
practical framework, this behavior should be detected in order to stop using
the generator.

4.6 Branch-and-Cut: mixed-integer instances

We now test the cut generation strategies proposed in this paper on the test
set MILP C within a Branch-and-Cut framework. We employ a Branch-and-Cut
code based on COIN-OR Cbc. The setup is as follows: we apply 10 rounds of
cutting planes at the root node, then we branch until optimality is proven or
a time limit of two hours (including cut generation) is hit, with node selection
criterion set to best bound. The value of the optimal solution minus a small

22

CglRedSplit CglRedSplit2 CglRedSplit2 CglRedSplit2
Single Cut Random Default

Instance Gap % Time # cuts Gap % Time # cuts Gap % Time # cuts Gap % Time # cuts

10teams c 100.00 2.78 4 100.00 0.47 4 85.71 1.17 4 100.00 302.49 19
a1c1s1 c 6.75 1.94 198 27.69 2.14 198 27.69 2.08 198 64.22 306.36 1180
aflow30a c 29.77 0.27 305 29.87 0.30 305 26.04 0.24 305 33.03 31.10 3428
aflow40b c 23.53 0.43 81 17.61 0.27 81 16.72 0.23 81 25.41 83.57 345
arki001 c 39.97 0.48 187 46.43 0.37 187 42.99 0.37 187 61.43 98.81 4903
b1c1s1 c 29.66 6.89 449 30.62 6.07 449 30.43 6.08 449 46.01 322.50 1657
b2c1s1 c 25.50 8.65 428 27.15 5.31 428 25.28 5.08 428 42.86 326.97 1730
bell3a c 53.82 0.00 17 25.84 0.00 17 21.34 0.01 17 72.34 0.99 335
bell4 c 57.76 0.02 199 76.00 0.02 199 80.67 0.01 199 94.55 2.00 2742
bell5 c 40.29 0.01 76 24.88 0.01 76 23.12 0.01 76 27.70 0.94 1161
bg512142 c 3.64 4.00 1621 2.21 3.25 1621 1.77 2.78 1621 1.91 284.77 19914
blend2 c 23.98 0.03 86 33.22 0.05 86 25.64 0.03 86 31.55 5.84 1398
danoint c 0.45 0.16 280 0.90 0.19 280 0.57 0.17 280 0.95 12.25 5047
dcmulti c 65.45 0.24 462 70.95 0.19 462 68.56 0.16 462 71.45 16.86 5705
dg012142 c 0.28 32.12 1315 0.51 39.20 1315 0.45 31.08 1315 0.60 377.29 4539
dsbmip mod c 0.00 0.35 412 0.00 1.35 152 0.00 1.37 137 0.00 105.66 487
egout c 28.91 0.01 97 73.09 0.02 97 65.65 0.01 97 83.65 2.59 2325
fiber c 89.68 0.20 130 80.89 1.59 130 70.68 1.71 130 91.89 304.15 1641
fixnet3 c 7.02 0.05 58 67.82 0.05 58 49.69 0.03 58 85.66 36.11 3091
fixnet4 c 10.33 0.08 93 42.34 0.10 93 30.32 0.06 93 73.58 87.78 5503
fixnet6 c 11.96 0.09 128 60.48 0.18 128 33.67 0.09 128 66.15 54.95 3929
flugpl c 14.23 0.00 66 67.77 0.00 66 13.84 0.00 66 99.82 0.09 726
gen c 75.51 0.10 124 70.29 0.06 124 69.01 0.06 124 79.71 15.50 3575
gesa2 c 93.48 0.21 337 94.07 0.58 337 77.02 0.54 337 95.39 87.69 5938
gesa2 o c 92.49 0.39 408 77.91 1.09 408 76.14 0.80 408 97.11 166.03 5996
gesa3 c 79.31 0.32 211 55.06 0.39 211 55.26 0.27 211 82.44 99.36 1820
gesa3 o c 76.46 0.39 199 57.75 0.40 199 62.94 0.30 199 83.44 161.96 2717
glass4 mod c 0.00 0.05 631 0.00 0.05 631 0.00 0.05 631 0.00 4.69 878
khb05250 c 74.98 0.06 93 94.53 0.07 56 84.53 0.06 93 96.44 3.61 308
misc06 c 17.60 0.02 16 39.63 0.02 16 9.63 0.02 16 74.01 3.44 601
mod011 c 35.14 0.96 136 3.42 3.26 129 15.41 4.97 136 15.76 298.92 568
modglob c 21.13 0.06 176 61.51 0.10 176 42.96 0.07 176 74.47 9.95 2736
momentum1 c 47.68 2.86 68 22.51 271.38 68 11.00 207.85 68 47.51 5842.28 715
net12 c 14.85 576.61 3675 13.28 1021.29 3675 12.14 879.24 3675 13.63 2029.76 7068
noswot c 0.00 0.01 114 0.00 0.02 114 0.00 0.01 114 0.00 1.77 2458
pk1 c 0.00 0.01 143 0.00 0.01 142 0.00 0.01 143 0.00 0.58 1614
pp08a c 91.21 0.07 367 94.55 0.07 331 82.27 0.06 367 95.85 5.16 2937
pp08aCUTS c 70.84 0.09 359 69.29 0.10 359 55.26 0.07 359 83.07 6.12 4617
qiu c 12.41 0.30 193 13.99 0.18 193 12.95 0.17 193 12.16 19.77 1805
qnet1 c 32.19 0.63 333 37.84 11.93 333 25.95 6.82 333 37.99 313.42 1780
qnet1 o c 66.11 0.54 333 61.03 17.27 333 53.66 13.50 333 64.04 310.51 1133
rgn c 98.80 0.01 53 52.95 0.00 53 5.65 0.01 53 77.52 0.78 1654
roll3000 c 57.04 4.13 1297 3.79 16.56 1297 4.37 13.68 1297 38.06 320.07 4803
rout c 9.54 0.17 269 12.74 0.13 269 7.83 0.12 269 9.70 12.75 3551
set1ch c 83.66 0.59 929 88.10 0.95 911 74.55 0.73 929 86.06 79.49 13836
swath c 28.93 0.90 93 22.67 2.89 93 22.67 3.04 93 29.84 309.02 781
timtab1 c 42.44 0.29 1029 43.99 0.23 1029 42.53 0.20 1029 58.05 25.59 11263
timtab2 c 32.14 1.86 1878 32.66 1.15 1878 31.64 1.23 1878 49.76 160.66 21396
tr12-30 c 82.22 2.20 1265 98.22 14.07 1265 95.21 13.86 1265 97.63 309.15 2644
vpm1 c 76.36 0.01 97 85.45 0.02 97 49.13 0.02 97 100.00 2.67 624
vpm2 c 63.27 0.06 253 42.73 0.06 253 40.32 0.04 253 59.47 7.88 3738

Avg. 31.54 0.90 206.41 34.10 1.53 203.45 27.42 1.44 206.41 45.20 45.71 2164.86

Table 5 Comparison of CglRedSplit and CglRedSplit2 after 10 rounds of cut generation
at the root node.

tolerance is given as a cutoff; the tolerance on integrality gap to prove opti-
mality of a solution is set to zero. The reason for using a cutoff value slightly
below the optimal solution value is that we want to make sure that the time
of discovery of an integer solution does not have an influence on the size of the

2
3

CglAllCuts CglCuts + CglRedSplit2 CglAllCuts + CglRedSplit2

Cuts at root Total Cuts at root Total Cuts at root Total

Instance Gap % Time # cuts Gap % Time # nodes Gap % Time # cuts Gap % Time # nodes Gap % Time # cuts Gap % Time # nodes

10teams c 100.00 2.31 12 100.00 2.36 0 100.00 30.71 26 100.00 30.81 0 100.00 31.58 29 100.00 31.68 0

a1c1s1 c 53.56 131.25 1239 72.95 7202.00 71826 55.24 382.11 1630 73.72 7201.21 42877 57.09 369.26 1626 74.68 7201.61 55890

aflow30a c 54.19 8.97 1692 100.00 453.98 35430 52.96 17.82 4786 100.00 359.95 31038 54.05 18.65 4862 100.00 430.59 34464

aflow40b c 44.30 29.49 617 82.67 7204.36 149196 44.57 95.93 773 77.70 7204.66 129700 45.33 101.59 781 79.18 7205.04 139194

arki001 c 60.92 12.20 934 83.49 7204.25 419779 74.88 33.44 4139 94.13 7201.99 237575 74.43 29.93 4284 95.87 7202.82 296738

b1c1s1 c 41.37 220.27 1626 65.86 7201.92 62689 39.76 466.91 1890 62.14 7202.67 74328 39.22 471.03 1864 61.90 7202.44 75087

b2c1s1 c 32.28 182.98 1710 59.72 7202.43 51149 36.56 508.61 1856 55.97 7201.92 31410 36.94 522.03 2000 58.11 7202.18 37686

bell3a c 70.74 0.04 132 100.00 20.47 29004 75.44 0.30 367 100.00 17.45 24942 75.35 0.33 378 100.00 16.40 23552

bell4 c 95.88 0.41 682 100.00 46.65 53232 95.22 1.01 1475 100.00 44.34 36754 95.19 1.14 1852 100.00 49.41 47562

bell5 c 94.58 0.14 355 100.00 69.12 149708 96.22 0.48 1197 100.00 3.19 5474 95.53 0.48 1399 100.00 3.57 5618

bg512142 c 3.96 64.10 1994 27.70 7202.40 163180 5.76 197.22 11737 28.81 7201.07 86664 5.06 147.40 9857 37.53 7201.50 93719

blend2 c 40.08 0.51 603 100.00 3003.58 2044 36.85 1.70 1308 100.00 5895.07 2290 36.77 1.71 1479 100.00 1375.89 1276

danoint c 2.03 7.97 954 43.82 7202.95 207174 1.74 12.61 3831 45.22 7203.76 209074 1.63 12.91 4204 48.07 7202.90 213601

dcmulti c 90.23 4.64 1265 100.00 7.89 202 93.91 7.18 3281 100.00 10.60 22 90.25 9.20 4218 100.00 13.70 22

dg012142 c 0.76 435.30 3450 25.05 7202.45 47996 0.82 720.66 4462 21.31 7202.42 42416 0.85 722.37 4470 19.78 7202.06 38655

dsbmip mod c 0.00 10.03 326 100.00 36.48 127 0.00 39.05 311 100.00 84.00 453 0.00 28.64 399 100.00 56.70 266

egout c 100.00 0.04 288 100.00 0.05 0 100.00 0.14 483 100.00 0.16 0 100.00 0.15 505 100.00 0.16 0

fiber c 93.43 4.37 1208 100.00 6.03 288 95.85 123.77 2372 100.00 126.29 78 95.57 126.47 2609 100.00 131.28 270

fixnet3 c 100.00 0.23 378 100.00 0.27 0 100.00 2.62 679 100.00 2.68 0 100.00 2.70 749 100.00 2.76 0

fixnet4 c 90.55 3.56 942 100.00 12.96 596 91.34 13.22 2147 100.00 27.59 1072 89.88 13.32 2257 100.00 28.98 1064

fixnet6 c 83.58 3.80 738 100.00 13.01 564 87.16 12.08 2705 100.00 20.61 886 83.82 14.44 3024 100.00 714.47 112574

flugpl c 76.26 0.02 253 100.00 1124.84 486 99.53 0.05 607 100.00 0.07 16 100.00 0.03 378 100.00 0.03 0

gen c 100.00 0.16 220 100.00 0.18 0 100.00 0.72 559 100.00 0.77 0 100.00 0.94 549 100.00 1.01 0

gesa2 c 98.20 4.71 867 100.00 14.24 1356 99.29 19.90 2382 100.00 22.71 114 99.14 22.72 2855 100.00 25.36 118

gesa2 o c 98.65 9.22 1398 100.00 15.57 328 99.29 39.85 4566 100.00 45.73 214 100.00 33.01 2836 100.00 33.42 0

gesa3 c 86.95 12.40 960 100.00 16.51 56 91.73 30.66 1514 100.00 32.43 12 88.89 32.14 1422 100.00 33.68 26

gesa3 o c 95.20 7.22 924 100.00 10.17 20 95.71 39.62 1766 100.00 43.05 26 95.67 37.01 1928 100.00 42.51 66

glass4 mod c 0.00 3.92 3511 65.00 7216.29 2048985 0.00 11.42 10694 56.25 7210.59 2031187 0.00 11.14 11104 50.00 7215.34 1886240

khb05250 c 99.32 0.82 259 100.00 1.33 20 99.40 1.48 324 100.00 1.91 14 99.32 1.43 346 100.00 1.94 14

misc06 c 95.94 0.57 134 100.00 0.90 4 98.90 1.53 382 100.00 1.93 2 99.59 1.58 441 100.00 1.92 0

mod011 c 35.01 178.48 227 100.00 5144.85 22824 31.33 373.14 580 100.00 2676.06 6014 41.35 313.62 730 100.00 2861.35 5036

modglob c 78.82 1.62 586 100.00 79.95 23856 71.23 6.21 1454 96.94 7225.39 2069437 69.74 5.50 1470 100.00 781.65 201912

momentum1 c 47.68 423.10 356 47.68 7244.67 40 47.68 694.35 379 47.68 7223.66 29 47.68 823.58 385 47.68 7222.20 39

net12 c 25.03 1518.89 23069 25.03 7210.83 0 26.45 2160.60 22027 26.45 7318.06 0 23.44 2485.44 23321 23.44 7444.05 0

noswot c 0.00 1.76 837 0.00 7272.93 4628492 0.00 4.90 4476 0.00 7279.19 5164617 0.00 4.71 4972 0.00 7259.09 4957567

pk1 c 0.00 0.52 764 100.00 248.84 309336 0.00 0.91 3620 100.00 235.93 294036 0.00 1.02 2996 100.00 221.98 269874

pp08a c 93.27 1.53 1236 100.00 12.28 3246 96.62 2.78 1965 100.00 9.30 1756 96.66 3.53 3132 100.00 11.49 1794

pp08aCUTS c 88.25 2.67 1131 100.00 20.56 4200 83.31 4.38 3402 100.00 20.14 3612 84.28 4.86 4203 100.00 22.66 4248

qiu c 18.87 14.51 604 100.00 4686.73 111816 19.89 17.87 1471 100.00 3732.19 122658 17.71 20.28 1413 93.93 7200.83 158034

qnet1 c 99.48 18.60 702 100.00 20.89 2 100.00 309.63 2877 100.00 312.37 0 100.00 313.31 3465 100.00 315.76 0

qnet1 o c 100.00 9.71 1291 100.00 11.38 0 100.00 300.53 3092 100.00 302.80 0 100.00 294.01 3866 100.00 296.37 0

rgn c 96.88 0.13 446 100.00 0.77 276 75.72 0.69 1808 100.00 3.52 2278 98.80 0.37 1409 100.00 0.55 26

roll3000 c 76.14 71.01 4452 87.88 7201.10 46539 74.84 346.20 12084 91.22 7201.42 44375 79.18 377.64 9648 89.74 7202.38 59226

rout c 33.47 4.82 1495 100.00 1015.86 132920 40.62 11.59 5232 100.00 2426.48 252694 37.67 9.74 5265 100.00 1391.91 166928

set1ch c 95.55 10.91 2752 100.00 120.75 12054 92.40 27.57 8973 98.88 7212.58 680921 91.35 29.64 9722 97.68 7213.31 543346

swath c 29.91 26.82 492 37.15 7240.37 177197 30.37 288.59 1995 38.23 7234.21 168198 29.87 305.33 1595 53.23 7225.77 183080

timtab1 c 63.62 6.41 4036 85.35 7220.74 1506843 56.85 18.60 12240 76.56 7227.45 1522520 60.85 20.42 13474 75.66 7221.10 1102357

timtab2 c 43.54 28.75 6030 50.71 7207.17 461949 50.24 99.29 21448 54.99 7211.52 463484 48.14 120.17 22293 52.07 7206.00 273056

tr12-30 c 96.00 74.83 3916 97.17 7200.95 26852 95.04 350.33 7068 95.85 7200.49 19055 95.08 330.41 7149 95.93 7200.60 20453

vpm1 c 89.65 0.28 392 100.00 1.28 174 100.00 0.25 275 100.00 0.27 0 100.00 0.29 360 100.00 0.33 0

vpm2 c 76.82 1.89 1231 100.00 46.05 20176 96.47 5.22 2920 100.00 6.94 22 95.43 5.29 3325 100.00 7.54 70

Avg. 40.55 8.23 841.83 75.59 181.35 2614.26 41.51 22.56 1957.24 75.22 249.77 1761.62 41.57 22.81 2046.49 75.67 247.34 1507.97

Table 6 Results obtained in a Branch-and-Cut framework over the set of test instances MILP C; CPU time is in seconds.

24

Easy Instances
Cuts at root Total

Gap % Time # cuts Gap % Time # nodes
CglAllCuts 93.53 2.43 493.49 100.00 5.43 62.13
CglCuts + CglRedSplit2 94.13 9.21 1108.94 100.00 14.21 33.85
CglAllCuts + CglRedSplit2 94.84 9.51 1208.95 100.00 16.58 29.16

Medium Instances
Cuts at root Total

Gap % Time # cuts Gap % Time # nodes
CglAllCuts 56.79 3.86 716.51 100.00 411.28 21891.21
CglCuts + CglRedSplit2 58.88 7.56 1896.76 99.62 324.49 12766.84
CglAllCuts + CglRedSplit2 59.20 7.45 1978.87 99.22 244.50 8256.71

Medium Instances (without outliers)
Cuts at root Total

Gap % Time # cuts Gap % Time # nodes
CglAllCuts 56.30 3.95 723.21 100.00 378.06 32128.91
CglCuts + CglRedSplit2 58.06 7.90 1925.26 100.00 213.45 6517.84
CglAllCuts + CglRedSplit2 59.74 7.64 2185.68 100.00 172.12 6841.40

Hard Instances
Cuts at root Total

Gap % Time # cuts Gap % Time # nodes
CglAllCuts 26.89 73.43 1950.15 54.18 7209.89 35047.60
CglCuts + CglRedSplit2 28.10 207.68 4066.61 53.95 7215.71 28634.76
CglAllCuts + CglRedSplit2 27.82 212.71 4010.94 55.64 7222.60 29877.28

Table 7 Average values for Table 6, grouped by the difficulty of the instances

enumeration tree. Independent testing was conducted on our cut generator to
ensure the validity of the cutting planes. For the experiments in this section,
since we generate a large number of cuts, we used a safer set of parameters for
all cut generators in order to avoid numerical troubles: cuts were discarded if
they were violated by less than 10−4 or if the ratio between the largest and
the smallest coefficients exceeded 106. Note that by default, Cbc does not pro-
vide advanced cut management techniques: whenever a cut becomes inactive,
it is removed from the LP. Thus, we implemented a simple cut management
mechanism: all generated cuts (up to 20000) are stored into a cut pool, and at
selected nodes in the enumeration tree, we add back into the LP any violated
cut that is found. We call this a cut pool iteration. If a cut is found to be
inactive for a total of 10 cut pool iterations, then it is permanently removed
from the cut pool. Cut pool iterations are performed at the root node after
each round of cut generation, and in the enumeration tree at all nodes whose
depth is multiple of 4.

Within this framework, we compare three sets of cut generators: CglAll-

Cuts, which represents our baseline, CglCuts + CglRedSplit2 (i.e. we em-
ploy CglRedSplit2 instead of CglRedSplit), and CglAllCuts + CglRedSplit2

25

(i.e. CglRedSplit2 is used in conjunction with all split cut generators in Cgl, in-
cluding CglRedSplit). The parameters for the CglRedSplit2 generator in these
experiments are as follows: Λ = 10, σ = 0.01, γ = 0.0001, µ = 5, and we employ
the row selection strategies RS7-RS8, as well as all column selection strategies
discussed in Section 3.1. We set a time limit of 30 seconds for each round of
cut generation with CglRedSplit2. For easy instances, we do not expect this
setup to perform well, since too much time is spent cutting; however, our aim
is to prove that our Reduce-and-Split cuts are advantageous for the remaining
instances, where investing more time in cut generation should prove useful.
In particular, we want to show that for difficult instances, our cut generation
algorithm is able to find useful split cuts in a reasonably small computational
time, so that we can solve those instances more quickly in a Branch-and-Cut
framework. Results are reported in Table 6. For each instance and for each
set of cut generators, we report, in the first three columns, the percentage of
integrality gap closed at the root by cutting (after 10 rounds), the time spent
in cut generation, and the total number of generated cuts; in columns 4 to 6
we report the gap closed at the end of the enumeration (i.e. after a total of
two hours, if optimality is not proven first), the total CPU time in seconds
(including cut generation), and the number of enumerated nodes. Note that in
these tables, the fraction of integrality gap closed refers to the integrality gap
remaining after preprocessing. Instance noswot c is not reported here because
none of the tested methods was able to close any integrality gap.

In Table 7 we report the geometric averages for the numbers in Table 6,
where we group the instances into 3 different sets: Easy instances (those that
can be solved in less than 30 seconds employing the baseline CglAllCuts),
Medium instances (those that can be solved in less than 2 hours employing
the baseline CglAllCuts and are not Easy), Hard instances (unsolved af-
ter 2 hours). The Easy set contains 21 instances, the Medium set contains
13 instances, the Hard set contains 16 instances. Additionally, we consider a
subset of the Medium instances, where we exclude outliers, i.e. instances for
which one the methods performs significantly worse than the remaining meth-
ods. These instances are: flugpl c, on which CglAllCuts has very poor
performance, modglob c, qiu c, and set1ch c on which at least one of the
two sets of cut generators that include CglRedSplit2 does not manage to solve
the instance within the time limit. These outliers are likely due to numerical
problems (in the case of flugpl c) and bad branching choices, possibly due to
the combination of cutting planes. By providing averages for a set of instances
without these extreme cases, we obtain a better comparison. Instances where
none of the methods in the comparison managed to close a nonzero amount
of integrality gap by cutting are not taken into account when computing the
averages in Table 7.

Table 7 suggests that the cut generation methods proposed in this paper
are useful for difficult instances. In particular, on average we consistently close
more gap at the root node on Easy, Medium and Hard instances, which results
in a smaller enumeration tree (or in a larger closed gap when the time limit is
hit). On Easy instances we reduce the number of nodes by a factor of two; how-

26

ever, this does not yield shorter computing time, because of the time required
for cut generation, which almost quadruples. Similarly, on Medium instances
we obtain a large reduction in the number of nodes, but now this is also re-
flected by a reduction of total computing time: CglAllCuts + CglRedSplit2
is 40% faster than CglAllCuts on average. The improvement in the aver-
age number of nodes and computing time is visible on the Medium (without
outliers) instances as well; this confirms our results. Observe that on Medium
instances, CglRedSplit2 generates more than 1000 cuts on average, but the
extra computing time is offset by the reduction of the enumeration tree. How-
ever, 3 out of the 4 instances that constitute the set of outliers are in general
not favorable to CglRedSplit2; this suggests that in some cases, generating too
many split cuts could lead to bad branching choices or numerical problems. In
a practical setting, care should be taken to detect this behaviour.

On Hard instances, we consistently close more gap per node: even though
by using CglRedSplit we enumerate on average fewer nodes in two hours, we
close a very similar amount of gap. This indicates that the full enumeration
tree, should the instances be solved to optimality, is likely to be smaller. Note
that to achieve this result, we invest two extra minutes of cut generation at the
root; however, this seems to pay off. The drawback of generating 2000 extra
cutting planes at the root (on average) is that the we enumrate fewer nodes
in the allotted time frame: because processing the root node takes longer, and
because cut pool iterations are more expensive, especially at the beginning of
Branch-and-Bound where all generated cuts are still in the pool.

4.7 Branch-and-Cut: integer instances

We now test the cut generation methods proposed in this paper on the in-
stances of the test set ILP C in a Branch-and-Cut framework. We use exactly

the same setup and parameters described in Section 4.6; therefore, we apply
10 rounds of cutting planes at the root node, and then branch until optimality
is proven or a time limit of 2 hours is hit.

We apply our Branch-and-Cut algorithm on the instances of the test set
ILP C. On several instances, our cut generator does not generate any cut in
10 rounds at the root node. We do not report results for these instances,
which are: air04 c, air05 c, cap6000 c, disctom c, fast0507 c, manna81 c,
nw04 c, t1717 c. On most of them, very few cuts (if any) are generated by all
cut generators, because they are too dense or have bad numerics; hence, the
cuts are discarded. Our generator displays the same behaviour. We are left
with 25 instances.

Full results are reported in Table 8; column labels are the same as in Ta-
ble 6, and we test the same set of cut generators; that is, CglAllCuts versus
CglCuts + CglRedSplit2 and CglAllCuts + CglRedSplit2. In Table 9 we
report the average values, grouped by instance difficulty, as we did for Table 7.
There are 13 Easy instances, 5 Medium instances, and 7 Hard instances.

2
7

CglAllCuts CglCuts + CglRedSplit2 CglAllCuts + CglRedSplit2
Cuts at root Total Cuts at root Total Cuts at root Total

Instance Gap % Time # cuts Gap % Time # nodes Gap % Time # cuts Gap % Time # nodes Gap % Time # cuts Gap % Time # nodes

ds c 0.15 929.06 24 0.18 7221.66 267 0.05 942.92 2 0.12 7204.29 1195 0.15 998.00 24 0.18 7201.56 293
enigma c 0.00 0.41 778 100.00 0.51 0 0.00 0.73 2905 100.00 0.81 0 0.00 0.98 3443 100.00 1.10 0
gt2 c 100.00 0.05 392 100.00 0.06 0 100.00 0.14 586 100.00 0.15 0 100.00 0.28 876 100.00 0.30 0
harp2 c 70.03 16.97 807 100.00 2816.85 461098 70.42 148.42 1105 100.00 2042.31 287514 70.76 155.00 1262 100.00 1575.47 232154
l152lav c 24.74 4.27 113 100.00 18.44 1288 21.10 23.58 149 100.00 38.53 1584 24.42 37.62 163 100.00 48.22 1128
lseu c 96.50 0.10 563 100.00 0.20 6 79.97 0.50 2497 100.00 1.17 610 93.72 0.37 2125 100.00 0.50 10
mas74 c 8.56 0.37 392 100.00 3749.19 5560154 9.39 0.90 882 100.00 3255.79 5009822 9.39 1.00 883 100.00 3341.88 5009822
mas76 c 9.20 0.33 397 100.00 196.89 324358 11.70 0.57 1435 100.00 219.11 380334 11.70 0.58 1437 100.00 222.69 380334
misc03 c 28.07 1.12 1189 100.00 6.09 846 26.82 2.18 3629 100.00 5.98 870 25.82 2.46 3964 100.00 5.99 560
misc07 c 6.52 1.91 1090 100.00 104.91 22310 6.21 3.44 2988 100.00 107.60 26724 7.97 3.60 3287 100.00 99.91 24650
mitre c 100.00 15.73 3049 100.00 16.79 0 100.00 584.08 3214 100.00 585.16 0 100.00 458.91 3288 100.00 460.25 0
mkc c 68.39 64.74 2762 94.13 7200.57 32831 58.22 483.40 2946 91.52 7202.91 17725 39.78 455.37 2843 97.53 7201.18 66019
mod008 c 88.99 0.21 450 100.00 0.48 24 65.23 0.74 1487 100.00 2.02 532 71.70 0.82 1873 100.00 1.91 320
nsrand-ipx c 78.48 116.51 1076 83.11 7202.25 41276 80.31 405.94 1487 84.47 7202.06 34201 79.97 430.79 1421 84.25 7202.05 27762
opt1217 c 57.78 3.10 1174 57.78 7228.73 1171310 58.11 9.51 2973 58.26 7241.98 1208171 62.56 9.35 3185 63.59 7239.57 1258949
p0033 c 100.00 0.03 333 100.00 0.03 0 100.00 0.15 1356 100.00 0.17 0 100.00 0.08 885 100.00 0.10 0
p0201 c 82.47 2.06 1845 100.00 6.35 330 84.42 5.88 5078 100.00 10.86 218 87.77 5.65 4814 100.00 9.37 6
p0282 c 98.44 1.24 1481 100.00 1.63 10 98.55 2.87 4959 100.00 3.96 196 98.51 3.40 5080 100.00 5.70 788
p0548 c 99.99 0.41 1021 100.00 0.47 0 100.00 6.18 1551 100.00 6.28 0 100.00 8.34 1865 100.00 8.50 0
p2756 c 99.43 1.77 1119 100.00 2.43 20 99.66 63.03 1553 100.00 63.44 4 99.58 81.53 1851 100.00 82.01 4
protfold c 26.00 28.31 1173 26.00 7207.28 145 27.17 434.56 1369 27.17 7237.58 10 27.28 410.59 1363 27.28 7216.42 161
seymour c 24.54 365.43 6282 38.57 7200.54 5295 21.07 423.99 9324 34.88 7200.84 4697 23.14 726.38 8871 38.61 7201.16 4510
sp97ar c 26.60 429.67 290 42.54 7201.99 18743 27.54 937.37 262 42.33 7202.07 10664 25.65 826.68 286 40.15 7202.20 13469
stein27 c -0.00 0.42 820 100.00 3.17 8016 -0.00 0.67 2809 100.00 3.58 8200 -0.00 0.66 2854 100.00 3.59 7880
stein45 c 0.00 1.85 1313 100.00 71.41 73052 0.00 2.82 4322 100.00 84.00 80888 0.00 2.80 4349 100.00 89.29 90888

Avg. 24.88 5.75 755.72 71.37 72.63 756.93 24.18 16.62 1416.38 71.04 115.43 967.97 24.61 17.77 1606.01 71.76 116.55 793.92

Table 8 Results obtained in a Branch-and-Cut framework over the set of test instances ILP C; CPU time is in seconds.

28

Easy Instances
Cuts at root Total

Gap % Time # cuts Gap % Time # nodes
CglAllCuts 76.07 1.24 750.64 100.00 2.27 14.73
CglCuts + CglRedSplit2 71.56 5.98 1685.97 100.00 8.19 34.01
CglAllCuts + CglRedSplit2 74.19 6.58 1776.54 100.00 8.46 16.93

Medium Instances
Cuts at root Total

Gap % Time # cuts Gap % Time # nodes
CglAllCuts 14.11 2.12 608.37 100.00 685.01 369067.11
CglCuts + CglRedSplit2 15.15 5.67 1429.87 100.00 630.54 347848.77
CglAllCuts + CglRedSplit2 16.07 5.90 1514.78 100.00 586.28 323146.14

Hard Instances
Cuts at root Total

Gap % Time # cuts Gap % Time # nodes
CglAllCuts 24.54 103.52 786.38 29.72 7209.00 9331.47
CglCuts + CglRedSplit2 23.50 318.48 747.36 29.21 7213.08 6484.89
CglAllCuts + CglRedSplit2 22.85 337.09 1015.16 30.31 7209.15 9438.53

Table 9 Average values for Table 8, grouped by the difficulty of the instances

On this set of instances, our cuts are not very effective. Good results are
obtained on Medium instances, on average, but overall, there is no clear winner
and it is hard to conclude anything. The extra computation time required to
generate Reduce-and-Split cuts does not seem to pay off. Summarizing, our
cut generator is very effective on instances with many continuous (structural)
variables, i.e. mixed-integer instances, but does not perform as well on pure
integer instances.

5 Conclusion

In this paper, we presented a cut generation algorithm based on the idea of
reducing cut coefficients on the continuous nonbasic variables, by computing
integral linear combinations of rows of the optimal simplex tableau. The coef-
ficient reduction algorithm solves a norm minimization problem through the
solution of a linear system of equations. We discussed several heuristic proce-
dures to select the rows involved in the combination, and the set of columns on
which the coefficient reduction algorithm should focus. We provided a detailed
computational testing of the proposed ideas, showing that we can generate a
large number of useful split cuts in reasonable CPU time.

Some conclusions can be drawn. Even by restricting our attention to the
corner polyhedron associated with an optimal basis, we were able to contribute
cutting planes closing an additional 5% of integrality gap, on top of all the
other existing rank-1 split cut generators. Using reduced costs information

29

to generate stronger cutting planes seems to be a promising idea in practice.
Our experiments suggest that generating a large number of cuts at the root
and managing them in an effective way could yield big improvements in the
performance of a Branch-and-Cut algorithm on difficult instances.

References

1. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34(4),
361–372 (2006)

2. Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized reductions. In:
Proceedings of the 30th Annual ACM Symposium on Theory of Computing. Dallas, TX
(1998)

3. Andersen, K., Cornuéjols, G., Li, Y.: Reduce-and-split cuts: Improving the performance
of mixed integer Gomory cuts. Management Science 51(11), 1720–1732 (2005)

4. Balas, E.: Intersection cuts - a new type of cutting planes for integer programming.
Operations Research 19(1), 19–39 (1971)

5. Balas, E.: Disjunctive programming. Annals of Discrete Mathematics 5, 3–51 (1979)
6. Balas, E., Bonami, P.: Generating Lift-and-Project cuts from the LP simplex tableau:

open source implementation and testing of new variants. Mathematical Programming
Computation 1, 165–199 (2009)

7. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. European
Journal of Operations Research 4, 224–234 (1980)

8. Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical Programming
113(2), 219–240 (2008)

9. Bixby, R., Rothberg, E.: Progress in computational mixed integer programming – a look
back from the other side of the tipping point. Annals of Operations Research 149(1),
37–41 (2007)

10. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer
programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)

11. Bonami, P., Cornuéjols, G., Dash, S., Fischetti, M., Lodi, A.: Projected Chvátal-Gomory
cuts for mixed integer linear programs. Mathematical Programming 113, 241–257
(2008)

12. COIN-OR Branch-and-Cut. URL https://projects.coin-or.org/Cbc

13. COIN-OR Cut Generation Library. URL https://projects.coin-or.org/Cgl

14. COIN-OR Linear Programming. URL https://projects.coin-or.org/Clp

15. Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming
problems. Mathematical Programming 47, 155–174 (1990)

16. Cornuéjols, G., Liberti, L., Nannicini, G.: Improved strategies for branching on general
disjunctions. Mathematical Programming A (2009). Published online

17. Dash, S., Günlük, O., Lodi, A.: MIR closures of polyhedral sets. Mathematical Pro-
gramming 121(1), 33–60 (2010)

18. Gomory, R.E.: An algorithm for the mixed-integer problem. Tech. Rep. RM-2597,
RAND Corporation (1960)

19. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coef-
ficients. Mathematische Annalen 4(261), 515–534 (1982)

20. Margot, F.: Testing cut generators for mixed-integer linear programming. Mathematical
Programming Computation 1(1), 69–95 (2009)

21. Nemhauser, G.L., Wolsey, L.: A recursive procedure for generating all cuts for 0-1 mixed
integer programs. Mathematical Programming 46, 379–390 (1990)

22. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Com-
plexity. Dover, New York (1998)

23. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C, Second
Edition. Cambridge University Press, Cambridge (1992, reprinted 1997)

24. Wolsey, L.: Integer Programming. Wiley, New York (1998)

30

A Further experiments with rank-1 cuts: cut generation

parameters and strategies

Here we provide more details and comments on the experiments discussed in Section 4.4.1.
The setup for these experiments is as follows. We always test our cut generation algorithm
on top of CglAllCuts, so that we can measure how much can be added with respect to
existing cut generators. Therefore, the baseline is represented by the integrality gap closed
by CglAllCuts. On MILP C, on average CglAllCuts closes 28.72% of the integrality gap,
generating 172 cuts (rounded to the nearest integer).

A.1 Row multipliers rejection parameters

In this section we investigate the role of the parameters σ, Λ and γ. We generate cutting
planes from all possible combinations of µ, column selection strategy and row selection
strategy as listed in Section 4.2, and evaluate the effect of using different values for σ, Λ
and γ.

We start by setting σ = 0.001 and γ = 0; that is, we accept all vectors of row multipliers
that yield even a slight reduction of ‖dk‖, and we do not penalize the norm of λ in the
objective function of (9). Then we examine the effect of the parameter Λ. Results are reported
in Table 10. First, we note that the integrality gap closed by setting Λ = 1000 and Λ = 20
is almost the same: that is, cuts associated with split disjunctions with very large norm
close a very small amount of integrality gap in our experiments. This result is not surprising
(cf. [8,16]), but is additional evidence to suggest that such cuts are the first that should
be discarded. Next, we can see that decreasing Λ from 20 to 10 yields again a very small
reduction in the amount of integrality gap closed, whereas the drop is larger when going
from 10 to 5. However, it is clear from these numbers that almost all useful cutting planes
arise from disjunctions with 1-norm not larger than 10, and in the majority of cases we only
need Λ = 5. Out of the instances for which the drop in the integrality gap closed when going
from Λ = 20 to Λ = 5 is not negligible, we report: arki001 c which drops from 43.90% to
40.89%, flugpl c from 92.69% to 88.84%, gen c from 79.29% to 76.05%. On the remaining
instances, the difference is smaller than 2%.

Parameters Gap % # cuts

Λ = 1000, σ = 0.001, γ = 0 34.70 1018
Λ = 20, σ = 0.001, γ = 0 34.67 836
Λ = 10, σ = 0.001, γ = 0 34.61 721
Λ = 5, σ = 0.001, γ = 0 34.53 560
σ = 0.001, Λ = 10, γ = 0 34.61 721
σ = 0.01, Λ = 10, γ = 0 34.61 712
σ = 0.05, Λ = 10, γ = 0 34.53 683
σ = 0.1, Λ = 10, γ = 0 34.49 651
σ = 0.5, Λ = 10, γ = 0 34.02 497
γ = 0, σ = 0.01, Λ = 10 34.61 712
γ = 0.01, σ = 0.01, Λ = 10 34.68 802
γ = 0.001, σ = 0.01, Λ = 10 34.64 802
γ = 0.0001, σ = 0.01, Λ = 10 34.68 783

Table 10 Effect of Λ, σ and γ on the performance of the cut generation algorithm: average
values for the amount of integrality gap closed after 1 round, and number of cutting planes.

Next, we fix Λ = 10, γ = 0 and measure the effect of σ on the cut generator. Recall
that a vector of row multipliers λ is accepted only if ‖

∑

i∈Rk

⌊

λk

i

⌉

di‖ < (1− σ)‖dk‖; thus,

31

for larger σ we accept fewer cuts. From Table 10 we see that there is an effect by setting
σ > 0.01; in particular, changing σ from 0.01 to 0.5 we lose almost 1% of integrality gap on
average. On the other hand, we generate 200 fewer cuts. A setting of σ = 0.01 yields the
same gap as σ = 0.001.

Finally, we analyze the effect of a nonzero γ, i.e. the penalization factor in (9) which
is applied whenever the solution with γ = 0 does not satisfy ‖λ‖1 ≤ Λ (after rounding to
the nearest integer). Table 10 shows that penalizing the norm of λ has a very small (almost
negligible) positive effect: the amount of integrality gap closed increases, on average, by
a very small fraction. For the reasons discussed in Section 4.4.1, we expect this positive
effect to be more significant when generating cuts using fewer values for µ, column selection
strategy and row selection strategy.

A.2 Cut generation strategies

In this section we want to assess the effectiveness of our various cut generation heuristics. In
particular, we are interested in evaluating the effect of the parameter µ (maximum number
of rows that can are involved in each linear combination), of the column selection strategy,
and of the row selection strategy. Our aim is to select only a few combinations, that hopefully
generate most useful cuts from our cut generation methods, but in a much shorter compu-
tational time than using all possible combinations. The values of the parameters which are
tested are listed in Section 4.2; whenever we write “all possible combinations”, we refer to
all combinations of the parameter values discussed in that section. For these experiments,
we set Λ = 10, σ = 0.01, γ = 0.0001; Table 10 shows that we can close at most 34.68%
of the integrality gap, when generating cuts from all possible combinations of parameters.
We observe that adding our CglRedSplit2 cut generator (with given parameters) on top of
CglAllCuts closes, on average, an additional 6% of the integrality gap. This corresponds
to an improvement by 21% in relative terms.

We design two complementary experiments. In the first experiment we test CglAllCuts

plus the cuts computed by all possible combinations of parameters for our cut generator,
minus the combinations where a given parameter has a specified value. For instance, we
generate cuts from all combinations except those involving µ = 50. This way, we evaluate
one aspect of the individual contibution of the cuts generated with µ = 50, namely: what is
the effect of the cuts that can only be obtained by setting µ = 50? Results are reported in
Table 11. It can be observed that µ = 3 seems to generate more effective cutting planes that
cannot be obtained with all the other values of µ combined. Among row selection strategy,
RS1 through RS6 are obviously redundant: removing any one of those does not decrease the
average closed gap. This was expected, as they are very similar. RS7 and RS8 were designed
in a different way, and they seem to generate different cuts also in practice. Finally, from
the table reporting results on column selection strategy, we observe that one possible set
JW can be removed while still attaining 34.68% of integrality gap closed: the set of columns
that include the variables with large reduced cost in C-3P (cf. Section 3.1). Similarly, the set
of variables with large reduced cost in C-5P can be excluded while losing very little (0.01%
of integrality gap). This suggests that cutting planes that cut deeply on variables with large
reduced costs are not effective in practice.

In the second experiment we test CglAllCuts plus the cuts computed only from those
combinations of parameters where a given parameter has a specified value. For instance, we
generate cuts from all parameter combinations where µ = 50, and only those. This way, we
evaluate another aspect of the individual contibution of the cuts generated with µ = 50,
namely: what is the effect of the cuts that can be obtained by setting µ = 50, if they are used
alone (on top of CglAllCuts)? Results are reported in Table 12. We see that µ = 5 seems
to be a good tradeoff between closed gap and CPU time. Moreover, we have further evidence
that RS7 and RS8 generate stronger cuts than the remaining row selection strategies. RS1
and RS4, which consider the nonzeroes on the integer nonbasic variables only, are weaker
than the rest. The best strategies seem to be those that take into account the coefficient on
both the integer and the continuous nonbasic variables, so that at the same time we try to
reduce the cut coefficients on the continuous columns, and keep the coefficients on the integer

32

Number of rows µ
µ = 3: 34.36% 7
µ = 5: 34.64% 7
µ = 10: 34.66% 8
µ = 15: 34.61% 4
µ = 20: 34.66% 7
µ = 50: 34.62% 3

Row selection strategy
RS1: 34.67% 0
RS2: 34.68% 0
RS3: 34.68% 0
RS4: 34.68% 0
RS5: 34.68% 0
RS6: 34.68% 0
RS7: 34.65% 6
RS8: 34.61% 5

Column selection strategy
Single set Full part.

C-3P: 34.67% 2 34.65% 4 34.68% 1 34.64% 6
C-5P: 34.59% 5 34.66% 4 34.65% 4 34.67% 2 34.67% 1 34.54% 11
I-2P-1/2: 34.60% 4 34.63% 5 34.56% 7
I-2P-2/3: 34.65% 7 34.63% 6 34.60% 9
I-2P-4/5: 34.67% 3 34.67% 4 34.66% 6
I-3P: 34.65% 3 34.65% 2 34.65% 6 34.59% 6
I-4P: 34.65% 4 34.65% 6 34.65% 6 34.65% 5 34.55% 11

Table 11 Results obtained by excluding all cut generators with a given parameter value;
we report, for each excluded parameter, the integrality gap closed by the remaining cut
generators and the number of instances where the gap closed decreases with respect to
employing all generators. For the column selection strategy, we report on each row the
working sets of a different partition: for the contiguous partition, the sets are ordered from
lowest reduced cost (left) to largest reduced cost (right). The final column reports results
obtained excluding all working sets of the partition.

Number of rows µ
µ = 3: 33.82% 7.41
µ = 5: 33.95% 7.92
µ = 10: 33.95% 8.19
µ = 15: 33.91% 8.44
µ = 20: 33.27% 8.86
µ = 50: 33.49% 11.02

Row selection strategy
RS1: 34.06% 6.82
RS2: 34.07% 6.91
RS3: 34.06% 7.36
RS4: 34.04% 6.90
RS5: 34.06% 6.97
RS6: 34.07% 7.52
RS7: 34.31% 7.56
RS8: 34.32% 6.68

Column selection strategy
Single set Full part.

C-3P: 31.60% 2.61 31.44% 3.39 29.56% 3.41 33.00% 7.41
C-5P: 30.82% 2.14 30.53% 2.29 31.52% 2.91 30.56% 2.92 29.44% 2.99 33.40% 9.15
I-2P-1/2: 31.79% 3.58 31.90% 3.61 32.91% 5.87
I-2P-2/3: 31.86% 3.98 31.84% 3.98 33.87% 6.52
I-2P-4/5: 31.70% 2.94 31.16% 3.00 33.54% 4.87
I-3P: 31.51% 4.24 30.83% 4.18 30.81% 4.10 33.17% 9.13
I-4P: 30.09% 3.90 30.64% 3.81 30.76% 3.82 31.45% 3.91 33.20% 10.34

Table 12 Results obtained by employing only the cut generators with a given parameter
value; we report, for each parameter value, the integrality gap closed by all generators with
that parameter value, and the corresponding CPU time in seconds. For the column selection
strategy, we report on each row the working sets of a different partition: for the contiguous
partition, the sets are ordered from lowest reduced cost (left) to largest reduced cost (right).
The final column reports results obtained by generating cuts employing all working sets of
the partition.

33

columns under control. The greedy strategies RS4, RS5 and RS6 are only marginally slower
than their non-greedy counterparts RS1, RS2 and RS3, but they are not more effective.
Finally, this experiment confirms that cutting deeply on variables with large reduced costs
is less effective than cutting deeply on variables with small reduced cost: by applying the
reduction algorithm to a working set of columns JW containing variables with very large
reduced cost we lose 2% closed gap, with respect to choosing variables with small reduced
cost in JW (observe the decrease in the closed gap when moving from left to right on the
rows corresponding to C-3P and C-5P in Table 12).

