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Abstract. The matrix completion problem is to recover a low-rank matrix from a subset of its entries. The main solution strategy for this

problem has been based on nuclear-norm minimization which requires computing singular value decompositions – a task that isincreasingly costly

as matrix sizes and ranks increase. To improve the capacity of solving large-scale problems, we propose a low-rank factorization model and construct

a nonlinear successive over-relaxation (SOR) algorithm that only requires solving a linear least squares problem per iteration. Convergence of this

nonlinear SOR algorithm is analyzed. Numerical results showthat the algorithm can reliably solve a wide range of problemsat a speed at least

several times faster than many nuclear-norm minimization algorithms.
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1. Introduction. The problem of minimizing the rank of a matrix arises in many applications, for example,

control and systems theory, model reduction and minimum order control synthesis [20], recovering shape and motion

from image streams [25, 32], data mining and pattern recognitions [6] and machine learning such as latent semantic

indexing, collaborative prediction and low-dimensional embedding. In this paper, we consider the Matrix Completion

(MC) problem of finding a lowest-rank matrix given a subset ofits entries, that is,

(1.1) min
W∈Rm×n

rank(W ), s.t.Wij = Mij , ∀(i, j) ∈ Ω,

where rank(W ) denotes the rank ofW , andMi,j ∈ R are given for(i, j) ∈ Ω ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Although problem (1.1) is generally NP-hard due to the combinational nature of the functionrank(·), it has been

shown in [28, 3, 4] that, under some reasonable conditions, the solution of problem (1.1) can be found by solving a

convex optimization problem:

(1.2) min
W∈Rm×n

‖W‖∗, s.t.Wij = Mij , ∀(i, j) ∈ Ω,

where thenuclearor trace norm ‖W‖∗ is the summation of the singular values ofW . In particular, Cand̀es and

Recht in [3] proved that a given rank-r matrixM satisfying certain incoherence conditions can be recovered exactly

by (1.2) with high probability from a subsetΩ of uniformly sampled entries whose cardinality|Ω| is of the order

O(r(m + n)polylog(m + n)). For more refined theoretical results on matrix completion we refer the reader to

[2, 4, 11, 14, 15, 27, 40].

Various types of algorithms have been proposed to recover the solution of (1.1) based on solving (1.2). One

method is the singular value thresholding algorithm [13] using soft-thresholding operations on the singular values

of a certain matrix at each iteration. Another approach is the fixed-point shrinkage algorithm [22] which solves the
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regularized linear least problem:

(1.3) min
W∈Rm×n

µ‖W‖∗ +
1

2
‖PΩ(W −M)‖2F ,

wherePΩ is the projection onto the subspace of sparse matrices with nonzeros restricted to the index subsetΩ. An

accelerated proximal gradient algorithm is developed in [31] based on a fast iterative shrinkage-thresholding algorithm

[1] for compressive sensing. The classical alternating direction augmented Lagrangian methods have been applied to

solve (1.2) in [8, 36] and the closely related sparse and low-rank matrix decomposition in [37]. Other approaches

include [16, 19, 24, 23, 5, 18]. All of these algorithms bear the computational cost required by singular value decom-

positions (SVD) which becomes increasingly costly as the sizes and ranks of the underlying matrices increase. It is

therefore desirable to exploit an alternative approach more suitable for solving large-scale problems.

In this paper, we investigate solving a more explicit model other than minimizing the nuclear norm in (1.2), thus

avoiding SVD computation all together. Our goal is simply finding a low-rank matrixW so that‖PΩ(W −M)‖2F
is minimized. Obviously, any matrixW ∈ R

m×n of a rank up toK has a matrix product formW = XY where

X ∈ R
m×K andY ∈ R

K×n. Now we propose the following non-convex model

(1.4) min
X,Y,Z

1

2
‖XY − Z‖2F s.t. Zij = Mij , ∀(i, j) ∈ Ω,

whereX ∈ R
m×K , Y ∈ R

K×n, Z ∈ R
m×n, and the integerK will be dynamically adjusted. The premise of

introducing the low-rank factorization model (1.4) is thathopefully it is much faster to solve this model than model

(1.2). However, there are two potential drawbacks of the low-rank factorization model (1.4): (a) the non-convexity

in the model may prevent one from getting a global solution, and (b) the approach requires an initial rank estimate

K. In this paper, we present convincing evidence to show that (a) on a wide range of problems tested, the low-

rank factorization model (1.4) is empirically as reliable as the nuclear norm minimization model (1.2); and (b) the

initial rank estimate need not be close to the exact rankr of M (though one can benefit computationally from a good

estimate). For example, we allow a strategy of starting fromK = 1 and gradually increasingK. We observe that

the global optimal value of (1.4) is monotonically non-increasing with respect toK. In principle, if K is smaller

than the unknown rankr, the quality of the solution in terms of the objective function value can be improved by

minimizing (1.4) again, starting from the current point, with an appropriately increased rank estimate. We mention

that the introduction of the (splitting) variableZ is for a computational purpose that should become clear later.

A recent work in [14, 16] is also based on a low-rank factorization model closely related to (1.4) where the

factorization is in the form ofUSV T whereU andV have orthonormal columns. The authors derived a theoretical

guarantee of recovery with high probability for their approach that consists of three steps. The first step is called

trimming that removes from the samplePΩ(M) “over-represented” rows or columns. The second step finds the best

rank-r approximation matrix to the remaining sample matrix via singular value decomposition (SVD) wherer is the

true rank and assumed to be known. In the final step, starting from the computed SVD factor as an initial guess, they

solve the factorization model via a special gradient descent method that keeps the variablesU andV orthonormal.

The key intuition for their theoretical result is that the initial guess is so good that it falls into a certain neighborhood

of the global minimum where there exists no other stationarypoint with high probability. This enables the authors to

prove that their gradient descent method generates a sequence residing within this small neighborhood and converging

to the global solution in the limit, despite the non-convexity of the factorization model. Given that our factorization

model (1.4) is essentially the same as theirs, our approach should be able to benefit from the same initial point and

possibly attain a similar theoretical guarantee. However,the proofs in [14] are specially tailored to the particularities of
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their algorithm and do not apply to our algorithm presented in this paper. Extending a similar theoretical result to our

case is a topic of interest for future research. Meanwhile, the present paper concentrates on algorithm construction,

convergence (to stationary point) analysis and performance evaluations. A low-rank factorization method based on

the augmented Lagrangian framework is proposed in [28] for an equivalent quadratic formulation of the model (1.2).

However, this method is only conceptual and the authors usedSeDuMi to solve the SDP formulation of (1.2) in their

numerical experiments.

Our main contribution is the development of an efficient algorithm for (1.4) that can reliably solve a wide range

of matrix completion and approximation problems at a speed much faster than the best of existing nuclear norm min-

imization algorithms. Like in many other similar cases, thestructure of (1.4) suggests an alternating minimization

scheme. In this case, one can update each of the variablesX, Y or Z efficiently while fixing the other two. The

subproblems with respect to either the variableX or Y are linear least squares problems only involvingK ×K coef-

ficient matrices in their normal equations, and the solutionof the subproblem forZ can also be carried out efficiently.

This alternating minimization procedure is also called a nonlinear (block) Gauss-Seidel (GS) scheme or a block co-

ordinate descent method. In this paper, we propose a more sophisticated nonlinear successive over-relaxation (SOR)

scheme with a strategy to adjust the relaxation weight dynamically. Numerical experiments show that this new scheme

is significantly faster than the straightforward nonlinearGS scheme. The convergence of nonlinear GS (coordinate

descent) methods for several optimization problems has been studied, for example, in [10, 21, 33, 34]. However, we

are unaware of any general convergence result for nonlinearSOR methods on non-convex optimization that is directly

applicable to our nonlinear SOR algorithm. In this paper, weproved that our approach converges to a stationary point

under a very mild assumption.

The rest of this paper is organized as follows. We first present an alternating minimization scheme for (1.4) in

section 2.1 with two efficient implementation variants. Ournonlinear SOR algorithm is introduced in section 2.2. An

convergence analysis for the nonlinear SOR algorithm is given in section 3. Finally, two strategies for adjusting the

rank estimateK and numerical results are presented in section 4 to demonstrate the robustness and efficiency of our

algorithm.

2. Alternating minimization schemes.

2.1. Nonlinear Gauss-Seidel method.We start with a straightforward alternating minimization scheme for solv-

ing problem (1.4). Although alternating minimization is a common strategy widely used in many other similar situa-

tions, there is a subtlety in this case regarding efficiency.Given the current iteratesX, Y andZ, the algorithm updates

these three variables by minimizing (1.4) with respect to each one separately while fixing the other two. For example,

by fixing the values ofY andZ, we obtain the new pointX+:

X+ = ZY † = argmin
X∈Rm×K

1

2
‖XY − Z‖2F ,

whereA† is the Moore-Penrose pseudo-inverse ofA. Similarly, we can updateY and thenZ, while fixing others at

their latest available values. This procedure yields the following iterative scheme:

X+ ← ZY † ≡ ZY ⊤(Y Y ⊤)†,(2.1a)

Y+ ← (X+)
†Z ≡ (X⊤

+X+)
†(X⊤

+Z),(2.1b)

Z+ ← X+Y+ + PΩ(M −X+Y+).(2.1c)
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It follows from (2.1a) and (2.1b) that

X+Y+ =
(

X+(X
⊤
+X+)

†X⊤
+

)

Z = PX+
Z,

wherePA := A(A⊤A)†A⊤ = QQ⊤ is the orthogonal projection onto the range spaceR(A) of A andQ := orth(A)

is an orthonormal basis forR(A). The pseudo-inverse ofA, the orthonormal basis ofR(A) and the orthogonal

projection ontoR(A) can be computed from either the SVD or the QR factorization ofA. One can verify that

R(X+) = R(ZY ⊤) . Indeed, letY = UΣV ⊤ be the economy-form SVD ofY , thenX+ = ZV Σ†U⊤ and

ZY ⊤ = ZV ΣU⊤, implying thatR(X+) = R(ZY ⊤) = R(ZV ) and leading to the following lemma.

LEMMA 2.1. Let (X+, Y+) be generated by(2.1). There holds

(2.2) X+Y+ = PZY ⊤Z = ZY ⊤(Y Z⊤ZY ⊤)†(Y Z⊤)Z.

We next present two iterative schemes equivalent to (2.1). Since the objective function (1.4) is determined by

the productX+Y+, different values ofX+ andY+ are essentially equivalent as long as they give the same product

X+Y+. Lemma 2.1 shows that the inversion(Y Y ⊤)† can be saved when the projectionPZY ⊤ is computed. The

unique feature of our new schemes is that only one least square problem is involved at each iteration. The first variant

is to replace the step (2.1a) by

X+ ← ZY ⊤,(2.3a)

while Y+ andZ+ are still generated by step (2.1b) and (2.1c). The second variant computes the orthogonal projection

PZY ⊤ = V V ⊤, whereV := orth(ZY ⊤) is an orthogonal basis ofR(ZY ⊤). Hence, (2.2) can be rewritten as

X+Y+ = V V ⊤Z and one can derive:

X+ ← V,(2.4a)

Y+ ← V ⊤Z,(2.4b)

while Z+ is still generated by step (2.1c). The scheme (2.4) is often preferred since computing the step (2.4b) by QR

factorization is generally more stable than solving the normal equations. Note that the schemes (2.1), (2.3) and (2.4)

can be used interchangeably in deriving properties of the productX+Y+.

By introducing a Lagrange multiplierΛ ∈ R
m×n so thatΛ = PΩ(Λ), the Lagrangian function of (1.4) is defined

as

(2.5) L(X,Y, Z,Λ) =
1

2
‖XY − Z‖2F − Λ • PΩ(Z −M),

where the inner product between two matricesA ∈ R
m×n andB ∈ R

m×n is defined asA • B :=
∑

ij AijBij .

Differentiating the Lagrangian functionL(X,Y, Z,Λ), we have the first-order optimality conditions for (1.4):

(XY − Z)Y ⊤ = 0,(2.6a)

X⊤(XY − Z) = 0,(2.6b)

PΩc(Z −XY ) = 0,(2.6c)

PΩ(Z −M) = 0,(2.6d)
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plus the equations

(2.7) PΩ(Z −XY ) = Λ.

Clearly, the multiplier matrixΛ measures the residualZ −XY in Ω and has no effect in the process of determining

X,Y, Z. It is also easy to see that the above alternating minimization schemes are exactly a Gauss-Seidel (GS) method

applied to the nonlinear and square system (2.6).

2.2. A Nonlinear SOR-like Scheme.Numerical simulations shows that the simple approach in subsection 2.1,

though being very reliable, is not efficient on large yet verylow-rank matrices. A possible acceleration technique may

involve applying an extension of the classic augmented-Lagrangian-based alternating direction method (ADM) for

convex optimization to the factorization model (see [29, 35, 39] for such ADM extensions). However, in this paper,

we investigate a nonlinear Successive Over-Relaxation (SOR) approach that we found to be particularly effective for

solving the matrix completion problem.

In numerical linear algebra, the SOR method [9] for solving alinear system of equations is devised by applying

extrapolation to the GS method, that is, the new trial point is a weighted average between the previous iterate and the

computed GS iterate successively for each component. A proper value of the weight often results in faster convergence.

Applying the same idea to the basic schemes (2.1), (2.3) and (2.4) gives a nonlinear SOR scheme:

X+ ← ZY ⊤(Y Y ⊤)†,(2.8a)

X+(ω)← ωX+ + (1− ω)X,(2.8b)

Y+ ← (X+(ω)
⊤X+(ω))

†(X+(ω)
⊤Z),(2.8c)

Y+(ω)← ωY+ + (1− ω)Y,(2.8d)

Z+(ω)← X+(ω)Y+(ω) + PΩ(M −X+(ω)Y+(ω)),(2.8e)

where the weightω ≥ 1. Obviously,ω = 1 gives the GS method.

Assuming that the matrixY has full row rank, the two least squares problems in (2.8) canbe reduced into one like

the second basic scheme (2.3). Let us denote the residual by

(2.9) S = PΩ(M −XY ),

which will be used to measure optimality. After each iteration, the variableZ, which is feasible, can be expressed as

Z = XY + S. LetZω be a weighted sum of the matricesXY andS, that is,

(2.10) Zω , XY + ωS = ωZ + (1− ω)XY.

Using the fact that the matrixY Y ⊤(Y Y ⊤)† is the identity from our assumption, we obtain

ZωY
⊤(Y Y ⊤)† = ωZY ⊤(Y Y ⊤)† + (1− ω)XY Y ⊤(Y Y ⊤)†

= ωX+ + (1− ω)X,
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which is exactly the step (2.8b). ReplacingZ by Zω in (2.3) and (2.4), we have the following SOR-like scheme:

X+(ω)← ZωY
⊤ or ZωY

⊤(Y Y ⊤)†,(2.11a)

Y+(ω)← (X+(ω)
⊤X+(ω))

†(X+(ω)
⊤Zω),(2.11b)

PΩc(Z+(ω))← PΩc(X+(ω)Y+(ω)),(2.11c)

PΩ(Z+(ω))← PΩ(M).(2.11d)

Again, an implementation with a single QR decomposition canbe utilized just as in scheme (2.4).

Since a fixed weightω is generally inefficient for nonlinear problems, we next present an updating strategy forω

that is similar to the one adjusting the trust-region radiusin the trust region method [26] for nonlinear programming.

After the point(X+(ω), Y+(ω), Z+(ω)) is computed, we calculate the residual ratio

(2.12) γ(ω) =
‖S+(ω)‖F
‖S‖F

,

where

(2.13) S+(ω) , PΩ(M −X+(ω)Y+(ω)).

If γ(ω) < 1, this new pair of point is accepted as the next iterate since our object to reduce the residual‖S‖F :=

‖PΩ(M −XY )‖F is achieved. In this case, the step is called “successful”; otherwise, the step is “unsuccessful” and

we have to generate a new trial point using a new weightω so thatγ(ω) < 1 is guaranteed. Since the basic GS method

corresponds toω = 1 and it can reduce the residual‖S‖F , we simply resetω to 1 in a “unsuccessful” case. Once a trial

point is acceptable, we consider whether the weightω should be updated. As our goal is to minimize the residual‖S‖,

a smallγ(ω) indicates that the current weight valueω works well so far and keeping the current value will very likely

continue to provide good progress. Hence,ω is increased only if the calculated point is acceptable but the residual

ratio γ(ω) is considered “too large”; that is,γ(ω) ∈ [γ1, 1) for someγ1 ∈ (0, 1). If this happens, we increaseω to

min(ω + δ, ω̃), whereδ > 0 is an increment and̃ω > 1 is an upper bound. From the above considerations, we arrive

at Algorithm 1 below.

Algorithm 1 : A low-rank matrix fitting algorithm (LMaFit )

Input index setΩ, dataPΩ(M) and a rank overestimateK ≥ r.1

SetY 0 ∈ R
K×n, Z0 = PΩ(M), ω = 1, ω̃ > 1, δ > 0, γ1 ∈ (0, 1) andk = 0.2

while not convergentdo3

Compute(X+(ω), Y+(ω), Z+(ω)) according to (2.11) with(X,Y, Z) = (Xk, Y k, Zk).4

Compute the residual ratioγ(ω) according to (2.12).5

if γ(ω) ≥ 1 then setω = 1 and go to step 4.6

Update(Xk+1, Y k+1, Zk+1) = (X+(ω), Y+(ω), Z+(ω)) and incrementk.7

if γ(ω) ≥ γ1 then setδ = max(δ, 0.25(ω − 1)) andω = min(ω + δ, ω̃).8

For illustration, we compare the efficiency of the GS scheme (2.1) and the nonlinear SOR-like scheme (2.11) on

two random matricesM with m = n = 1000, r = 10 with two different sampling ratios at, respectively,0.08 and0.15

(see subsection 4.2 for detailed construction procedure and algorithmic parameter setting). The algorithms were run

by using two different rank estimationsK = 12 and20. The normalized residuals‖PΩ(M −XY )‖F /‖PΩ(M)‖F

are depicted in Figures 2.1 (a) and (b), respectively. The apparent jumps in the residuals were due to adjustments
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of rank estimations, which will be explained later. From thefigures, it is evident that the nonlinear SOR scheme is

significant faster than the nonlinear GS scheme.

FIG. 2.1.Comparison between the nonlinear GS and SOR schemes
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(b) n=1000, r=10, sampling ratio=0.15

3. Convergence Analysis.We now analyze Algorithm 1 by revealing the relationships between the residuals

‖S‖F and‖S+(ω)‖F . Let V (ω) := orth(X+(ω)) andU := orth(Y ⊤) be orthogonal bases of the range spaces of

R(X+(ω)) andR(Y ⊤), respectively. Consequently, the orthogonal projectionsontoR(X+(ω)) andR(Y ⊤) can be

expressed as:

Q(ω) := V (ω)V (ω)⊤ = X+(ω)(X+(ω)
⊤X+(ω))

†X+(ω)
⊤,

P := UU⊤ = Y ⊤(Y Y ⊤)†Y.

We list several useful identities that can be verified from the definition of pseudo-inverse. For anyA ∈ R
m×n,

(3.1)
A† = A†(A†)⊤A⊤ = A⊤(A†)⊤A† = (A⊤A)†A⊤ = A⊤(AA⊤)†,

A = (A†)⊤A⊤A = AA⊤(A†)⊤.

The lemma below and its proof will provide us a key equality.

LEMMA 3.1. Let (X+(ω), Y+(ω)) be generated by(2.11). There holds

(3.2) ωS • (X+(ω)Y+(ω)−XY ) = ‖X+(ω)Y+(ω)−XY ‖2F .

Proof. It follows fromY ⊤ = Y †Y Y ⊤ (see (3.1)),X+(ω) = ZωY
† andZω = XY + ωS that

X+(ω)Y Y ⊤ = ZωY
⊤ = XY Y ⊤ + ωSY ⊤.

Post-multiplying both sides by(Y Y ⊤)†Y and rearranging, we have(X+(ω)−X)Y = ωSY ⊤(Y Y ⊤)†Y ; i.e.,

(3.3) (X+(ω)−X)Y = ωSP.

7



On the other hand, the equalitiesX+(ω)
⊤ = X+(ω)

⊤X+(ω)(X+(ω))
† and (3.3) yield

X+(ω)
⊤X+(ω)Y+(ω) = X+(ω)

⊤Zω = X+(ω)
⊤(XY + ωS)

= X+(ω)
⊤(X+(ω)Y − (X+(ω)−X)Y + ωS)

= X+(ω)
⊤X+(ω)Y + ωX+(ω)

⊤S(I − P ).

Pre-multiplying both sided byX+(ω)(X+(ω)
⊤X+(ω))

† and rearranging, we arrive at

(3.4) X+(ω)(Y+(ω)− Y ) = ωQ(ω)S(I − P ).

Therefore, in view of (3.3) and (3.4), we obtain

X+(ω)Y+(ω)−XY = (X+(ω)−X)Y +X+(ω)(Y+(ω)− Y )

= ωSP + ωQ(ω)S(I − P )(3.5)

= ω(I −Q(ω))SP + ωQ(ω)S.(3.6)

Therefore,

(3.7) ‖X+(ω)Y+(ω)−XY ‖2F = ω2‖(I −Q(ω))SP‖2F + ω2‖Q(ω)S‖2F .

Finally, in view of (3.6) and the properties of orthogonal projections, we have:

ωS • (X+(ω)Y+(ω)−XY ) = ω2S • (I −Q(ω))SP + ω2S •Q(ω)S

= ω2SP • (I −Q(ω))SP + ω2S •Q(ω)S

= ω2‖(I −Q(ω))SP‖2F + ω2‖Q(ω)S‖2F

= ‖X+(ω)Y+(ω)−XY ‖2F ,

which proves the lemma.

It is easy to see that

(3.8)
1

ω
‖XY − Zω‖F = ‖S‖F .

Therefore, after the first two steps in (2.11),

1

ω
‖X+(ω)Y+(ω)− Zω‖F ≤ ‖S‖F

and the strict inequality holds unless the first two equations of the optimality conditions of (2.6) already hold. Or

equivalently,

(3.9)
1

ω2

(

‖PΩc(X+(ω)Y+(ω)− Zω)‖
2
F + ‖PΩ(X+(ω)Y+(ω)− Zω)‖

2
F

)

≤ ‖S‖2F .

Next we examine the residual reduction‖S‖2F − ‖S+(ω)‖
2
F after each step of the algorithm in detail.
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LEMMA 3.2. Let (X+(ω), Y+(ω)) be generated by (2.11) for anyω ≥ 1, then

(3.10)
1

ω2
‖X+(ω)Y+(ω)− Zω‖

2
F = ‖(I −Q(ω))S(I − P )‖2F = ‖S‖2F − ρ12(ω),

where

(3.11) ρ12(ω) , ‖X+(ω)Y+(ω)−XY ‖2F = ‖SP‖2F + ‖Q(ω)S(I − P )‖2F

is the amount of residual reduction from‖S‖2F after steps 1 and 2 in (2.11).

Proof. From the definition ofZω and (3.5), we obtain

X+(ω)Y+(ω)− Zω = X+(ω)Y+(ω)−XY − ωS = ωSP + ωQ(ω)S(I − P )− ωS

= −ω(I −Q(ω))S(I − P ),

which proves the first equality in (3.10). Using (3.2) and (3.7), we have:

‖X+(ω)Y+(ω)− Zω‖
2
F = ‖X+(ω)Y+(ω)−XY ‖2F + ω2‖S‖2F − 2ωS • (X+(ω)Y+(ω)−XY )

= ω2‖S‖2F − ‖X+(ω)Y+(ω)−XY ‖2F

= ω2‖S‖2F − ω2ρ12(ω),

which proves the second equality in (3.10).

After the third step in (2.11), we have

‖PΩc(X+(ω)Y+(ω)− Z+(ω))‖F = 0.

SincePΩc(Zω) ≡ PΩc(XY ) independent ofω, the residual reduction in the third step is

(3.12) ρ3(ω) ,
1

ω2
‖PΩc(X+(ω)Y+(ω)−XY )‖2F .

Finally, the change of the residual value after the fourth step is

ρ4(ω) ,
1

ω2
‖PΩ(X+(ω)Y+(ω)− Zω)‖

2
F − ‖S+(ω)‖

2
F ;

or equivalently,

(3.13) ρ4(ω) ,
1

ω2
‖S+(ω) + (ω − 1)S‖2F − ‖S+(ω)‖

2
F .

Clearly,ρ4(1) = 0. Forω > 1, it follows from (3.13) that

(3.14)
ω2ρ4(ω)

ω − 1
= (ω − 1)(‖S‖2F − ‖S+(ω)‖

2
F )− 2S+(ω) • (S+(ω)− S).

We will show next that the rate of change ofρ4(ω) atω = 1+ is nonnegative.

LEMMA 3.3.

(3.15) lim
ω→1+

ρ4(ω)

ω − 1
= 2‖PΩc(X+(1)Y+(1)−XY )‖2F ≥ 0.

9



Proof. Letω → 1 andS+ , S+(1). We obtain from (3.14), the definitions ofS in (2.9), and (3.2) that

lim
ω→1+

ρ4(ω)

ω − 1
= lim

ω→1+

ω2ρ4(ω)

ω − 1
= −2S+ • (S+ − S)

= −2‖S+ − S‖2F − 2S • (S+ − S)

= −2‖PΩ(X+Y+ −XY )‖2F + 2S • (X+Y+ −XY )

= 2‖PΩc(X+Y+ −XY )‖2F ,

which completes the proof.

If ρ4(ω) is continuous, then Lemma 3.3 guarantees thatρ4(ω) > 0 in some range ofω > 1. In fact, suppose that

rank(Zω) = rank(Z) asω → 1+. The equalityrank(Y Z⊤
ω ZωY

⊤) = rank(Y Z⊤ZY ⊤) holds asω → 1+, hence,

limω→1+(Y Z⊤
ω ZωY

⊤)† = (Y Z⊤ZY ⊤)† holds by [30]. The continuity of the productX+(ω)Y+(ω) implies that

ρ4(ω) is continuous asω → 1+. In Figures 3.1 (a) and (b), we depict the continuity of the functionsρ12(ω), ρ3(ω) on

a randomly generated problem from two different pair of points (X,Y, Z). As cen be seen, the benefit of increasingω

can be quite significant. For example, in Figure 3.1 (b), whenω is increased from 1 to 4, the amount of total residual

reduction is more than doubled.

FIG. 3.1.Continuity of the functionsρ12(ω), ρ3(ω) andρ4(ω).
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We have proved the following result about the residual-reduction property of the nonlinear SOR algorithm.

THEOREM 3.4. Assume thatrank(Zω) = rank(Z), ∀ω ∈ [1, ω1] for someω1 ≥ 1. Let(X+(ω), Y+(ω), Z+(ω))

be generated by the SOR scheme (2.11) starting from a non-stationary point(X,Y, Z), andρ12, ρ3 andρ4 be defined

as in (3.11), (3.12) and (3.13), respectively. Then there exists someω2 ≥ 1 such that

(3.16) ‖S‖2F − ‖S+(ω)‖
2
F = ρ12(ω) + ρ3(ω) + ρ4(ω) > 0, ∀ω ∈ [1, ω2],

whereρ12(ω), ρ3(ω) ≥ 0 by definition. Moreover, wheneverρ3(1) > 0 (equivalentlyPΩc(X+(1)Y+(1)−XY ) 6= 0),

there exists̄ω > 1, so thatρ4(ω) > 0, ∀ω ∈ (1, ω̄].

Next we present a convergence result for our algorithm. Since model (1.4) is non-convex, we are only able to

establish convergence to a stationary point under a mild assumption. Note that the objective function is bounded

10



below by zero and is decreased by at least an amount ofρ3 at every iteration. There must hold (see (3.12))

PΩc(Xk+1Y k+1 −XkY k)→ 0.

In light of the above, it is reasonable to assume that{PΩc(XkY k)} remains bounded, barring the unlikely alternative

that‖PΩc(XkY k)‖ → ∞.

THEOREM 3.5. Let {(Xk, Y k, Zk)} be generated by Algorithm 1 and{PΩc(XkY k)} be bounded. Then there

exists at least a subsequence of{(Xk, Y k, Zk)} that satisfies the first-order optimality conditions(2.6) in the limit.

Proof. It follows from the boundedness of{PΩc(XkY k)} and the algorithm construction that both{Zk} and

{XkY k} are bounded sequences. It suffices to prove (2.6a)-(2.6b) since the other conditions are satisfied by the

construction of Algorithm 1. Without loss of generality, weassume that{Xk} is generated by a scheme analogous to

(2.4): given(X,Y ) = (Xk, Y k) andω ∈ [1, ω̃]

Zω = ωZ + (1− ω)XY, X+ = orth(ZωY
T ), Y+ = XT

+Zw.

Obviously,{Xk} is bounded. In addition,{Y k} is also bounded due to the boundedness of both{Zk} and{XkY k}.

Let I = {k : ρk4(ω
k) ≥ 0}, andIc be the complement ofI. It follows from (3.16) that

‖S0‖2F ≥
∑

i∈I

ρi12(ω) =
∑

i∈I

‖SiP i‖2F + ‖QiSi(I − P i)‖2F .(3.17)

We consider the following three cases.

i) Suppose|Ic| <∞. It follows from (3.17) that

(3.18) lim
i→∞

‖SiP i‖2F = 0 and lim
i→∞

‖QiSi‖2F = 0.

The construction of the scheme (2.11) gives the equalities:

PΩ(M) = PΩ(Z
i), PΩc(Zi) = PΩc(XiY i), P i = U i(U i)⊤,

whereU i = orth((Y i)⊤). Therefore, we obtain

SiP i = PΩ(M −XiY i)P i = PΩ(Z
i −XiY i)P i = (Zi −XiY i)P i = (Zi −XiY i)U i(U i)⊤,

which yieldslimi→∞(Zi − XiY i)U i = 0 in view of the first part of (3.18). SinceU i is an orthonormal basis for

R((Y i)⊤) and the sequence{Y i} is bounded, we have

(3.19) lim
i→∞

(Zi −XiY i)(Y i)⊤ = 0.

UsingQi = V i(V i)⊤, whereV i is an orthonormal basis forR(Xi+1), we obtain

(3.20) QiSi = QiSi+1 +Qi(Si − Si+1) = V i(V i)⊤(Zi+1 −Xi+1Y i+1) +Qi(Si − Si+1).

Using (3.7) and (3.18), we obtain

‖Si − Si+1‖2F ≤ ‖X
i+1Y i+1 −XiY i‖2F ≤ (ω̃)2(‖SiP i‖2F + ‖QiSi(I − P i)‖2F )→ 0,

11



hence,limi→∞ ‖S
i − Si+1‖F = 0. This fact, together with (3.18) and (3.20), proves

(V i)⊤(Zi+1 −Xi+1Y i+1)→ 0.

In view of the boundedness of{Xi}, we arrive at

(3.21) lim
i→∞

(Xi)⊤(XiY i − Zi) = 0.

ii) Suppose|Ic| =∞ and|{k ∈ Ic : γ(ωk) ≥ γ1}| <∞. That is, fork ∈ Ic sufficiently large we have

‖Sk+1‖F < γ1‖S
k‖F .

Consquently,limk→∞,k∈Ic ‖Sk‖F = 0. Since‖Sk‖ is nonincreasing, the full sequence converges to the global

minimizer of (1.4).

iii) Suppose|Ic| =∞ and|{i ∈ Ic : γ(ωi) ≥ γ1}| =∞. Then Algorithm 1 resetsωi = 1 for an infinite number

of iterations. We obtain from (3.17) that

‖S0‖2F ≥
∑

i∈I1

ρi12(ω) =
∑

i∈I1

‖SiP i‖2F + ‖QiSi(I − P i)‖2F .(3.22)

Hence, the subsequence inI1 satisfies (3.19) and (3.21) by repeating, in an analogous fashion, the proof of part i).

4. Computational Results. In this section, we report numerical results on our nonlinear SOR algorithm and

other algorithms. The codeLMaFit [38] for our algorithm is implemented in Matlab with a coupleof small tasks

written in C to avoid ineffective memory usage in Matlab. Other tested solvers includeAPGL[31], FPCA[22] and

OptSpace [16], where the first two are nuclear minimization codes implemented under the Matlab environment.

APGLalso utilizes a Matlab version (with the task of reorthogonalization implemented in C) of the SVD package

PROPACK [17], andFPCAuses a fast Monte Carlo algorithm for SVD calculations implemented in Matlab. The code

OptSpace , which has a C version that was used in our tests, solves a model closely related to (1.4) using a gradient

descent approach and starting from a specially constructedinitial guess. All experiments were performed on a Lenovo

D20 Workstation with two Intel Xeon E5506 Processors and 10GB of RAM.

We tested and compared these solvers on two classes of matrixproblems: completion and low-rank approximation.

The key difference between the two classes lies in whether a given sample is from a true low-rank matrix (with or

without noise) or not. Although theoretical guarantees exist for matrix completion, to the best of our knowledge no

such guarantees exist for low-rank approximation if samples are taken from a matrix of mathematically full rank. On

the other hand, low-rank approximation problems are more likely to appear in practical applications.

4.1. Implementation details and rank estimation. Algorithm 1 starts from an initial guessY 0 ∈ R
K×n. For

the sake of simplicity, in all our experiments we setY 0 to a diagonal matrix with 1’s on the diagonal even though more

elaborate choices certainly exist that may lead to better performance. The default values of the parametersω̃, δ andγ1
were set to+∞, 1 and0.7, respectively. Since the incrementδ is non-decreasing in Algorithm 1, the parameterω can

be increased too fast. Hence, we also resetδ to 0.1 ∗max(ω − 1, δ) wheneverγ(ω) ≥ 1. The stopping criteria in our

numerical experiments follow

relres =
‖PΩ(M −XkY k)‖F
‖PΩ(M)‖F

≤ tol
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and

reschg =

∣

∣

∣

∣

1−
‖PΩ(M −XkY k)‖F

‖PΩ(M −Xk−1Y k−1)‖F

∣

∣

∣

∣

≤ tol /2,

wheretol is a moderately small number.

Since a proper estimation to the rankK for the model (1.4) is essential for the success ofLMaFit , two heuristic

strategies for choosingK were implemented. In the first strategy, we start from a largeK (K ≥ r) and decrease it

aggressively once a dramatic change in the estimated rank ofthe variableX is detected based on its QR factorization

[9] which usually occurs after a few iterations. Specifically, letQR = XE be the economy-size QR factorization of

X, whereE is a permutation matrix so thatd := | diag(R)| is non-increasing, wherediag(R) is a vector whoseith

component isRii. We compute the quotient sequenced̃i = di/di+1, i = 1, · · · ,K − 1, and examine the ratio

τ =
(K − 1)d̃(p)
∑

i6=p d̃i
,

whered̃(p) is the maximal element of{d̃i} andp is the corresponding index. A largeτ value indicates a large drop

in the magnitude ofd right after thep-th element. In the current implementation, we resetK to p onceτ > 10, and

this adjustment is done only one time. On the other hand, by starting from a small initial guess, our second strategy is

to increaseK to min(K + κ, rank max) when the algorithm stagnates, i.e.,reschg<10 * tol . Here,rank max is

the maximal rank estimation, and the incrementκ = rk inc if the currentK < 50; otherwise,κ = 2 ∗ rk inc. The

default value ofrk inc is 5. In our codeLMaFit , the first and second (or decreasing and increasing rank) strategies

can be specified by setting the optionest rank to 1 or 2, respectively, and will be called the decreasing rank and

increasing rank strategies, respectively.

Each strategy has its own advantages and disadvantages, andshould be selected according to the properties of

the targeted problems. As will be shown by our numerical results, the decreasing rank strategy is preferable for

reasonably well-conditioned matrix completion problems,while the increasing rank strategy is more suitable for low-

rank approximation problems where there does not exist a clear-cut desirable rank. Based on these observations, we

use the decreasing rank strategy in the experiments of subsection 4.2, while the increasing rank strategy is used in

subsections 4.3–4.5.

4.2. Experiments on random matrix completion problems.The test matricesM ∈ R
m×n with rankr in this

subsection were created randomly by the following procedure (see also [22]): two random matricesML ∈ R
m×r and

MR ∈ R
n×r with i.i.d. standard Gaussian entries were first generated and thenM = MLM

⊤
R was assembled; then a

subsetΩ of p entries was sampled uniformly at random. The ratiop/(mn) between the number of measurements and

the number of entries in the matrix is denoted by “SR” (sampling ratio). The ratior(m+n− r)/p between the degree

of freedom in a rankr matrix to the number of samples is denoted by “FR”.

We first evaluate the sensitivity ofLMaFit to the initial rank estimateK using the decreasing rank strategy of

rank estimation. In this test, we used matrices withm = n = 1000 andr = 10. Three test cases were generated

at the sampling ratios SR equal to 0.04, 0.08 and 0.3, respectively. In each case, we ranLMaFit for each ofK =

10, 11, 12, · · · , 30 on 50 random instances. The average number of iterations andaverage CPU time corresponding to

this set ofK values are depicted in Figures 4.1 (a) and (b), respectively. In these two figures, we observe a notable

difference at the rank estimateK = 10 when the sampling ratio SR= 0.04. The reason is that at this low sampling

ratio the rank estimate routine ofLMaFit mistakenly reduced the working rank to be less than 10 and resulted in

premature exists. For all other cases, we see that the numberof iterations stayed at almost the same level and the
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CPU time only grew slightly asK increased from 10 to 30. Overall, we conclude thatLMaFit is not particularly

sensitive to the change ofK value on this class of problems over a considerable range. Based on this observation, in

all tests using the decreasing rank strategy, we set the initial rank estimateK either to⌊1.25r⌋ or to⌊1.5r⌋, where⌊x⌋

is the largest integer not exceedingx. Numerical results generated from these twoK values should still be sufficiently

representative.

FIG. 4.1.The sensitivityLMaFit with respect to the initial rank estimationK
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Our next test is to study the convergence bahavior ofLMaFit with respect to the sampling ratio and true rank of

M . In this test the dimension ofM were set tom = n = 1000 and the initial rank estimate was set to⌊1.25r⌋ in

LMaFit . In Figure 4.2 (a), we plot the normalized residual‖PΩ(M −XY )‖F /‖PΩ(M)‖F at all iterations for three

test cases where the sampling ratio was fixed at SR = 0.3 and rank r = 10, 50 and100, respectively. On the other

hand, Figure 4.2 (b) is for three test cases where SR = 0.04, 0.08 and 0.3, respectively, while the rank was fixed at

r = 10. Not surprisingly, these figures show that when the samplingratio is fixed, the higher the rank is, the harder

the problem is; and when the rank is fixed, the smaller the sampling ratio is, the harder the problem is. In all cases, the

convergence of the residual sequences appeared to be linear, but at quite different rates.

An important question about the factorization model (1.4) and our nonlinear SOR algorithm is whether or not our

approach (model plus algorithm) has an ability in recovering low-rank matrices similar to that of solving the nuclear

norm minimization model by a good solver. Or simply put, doesour algorithm for (1.4) provide a comparable re-

coverability to that of a good nuclear norm minimization algorithm for (1.2) or (1.3)? We address this recoverability

issue in the next test by generating phase diagrams in Figures 4.3 (a)-(b) for the two models (1.3) and (1.4), respec-

tively. The solverFPCA[22] was chosen to solve (1.3) since it has been reported to have a better recoverability than

a number of other nuclear norm minimization solvers. In thistest, we used random matrices of sizem = n = 500.

We ran each solver on 50 randomly generated problems with thesampling ratio SR chosen in the order as it appear

in {0.01, 0.06, 0.11, · · · , 0.86} and with each rank valuer ∈ {5, 8, 11, · · · , 59}. The two phase diagrams depict the

success rates out of every 50 runs by each solver for each testcase where a run was successful when the relative error

‖M −W‖F /‖M‖F between the true and the recovered matricesM andW was smaller than10−3. If a solver recov-

ered all 50 random instances successfully for SR= α andr = β, then it ought to have equal or higher recoverability

for SR> α andr = β. To expedite the part of the experiment involvingFPCA, we chose to stop testing all other SR

> α with r = β, and increment ther value. In Figures 4.3 (a)-(b), a white box indicates a 100% recovery rate, while
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FIG. 4.2.Convergence behavior of the residual inLMaFit runs
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FIG. 4.3.Phase diagrams for matrix completion recoverability
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(b) Model (1.4) solved byLMaFit

a black box means a 0% rate. The parameter setting forLMaFit wastol = 10−4, K = ⌊1.25r⌋ andest rank = 1,

while for FPCA it was tol = 10−4 andµ = 10−4. All other parameters were set to their respective default val-

ues. The two phase diagrams indicate that the recoverability of LMaFit is marginally inferior to that ofFPCA in

this experiment. Given the reported better recoverabilityof FPCA, it is reasonable to infer that the recoverability of

LMaFit is comparable to those of the other nuclear norm minimization solvers studied in [22].

To have a quick assessment on the speed ofLMaFit relative to those of other state-of-the-art solvers, we com-

paredLMaFit with two nuclear norm minimization solvers,APGLandFPCA, and with a c version ofOptSpace that

solves a factorization model similar to ours but uses an SVD-based initial guess, on a set of small problems with

m = n = 1000. The parameter setting forLMaFit was the same as in the previous experiment. In particular, the

decreasing rank strategy was used. The parameterµ for the model (1.3) was set to10−4σ as suggested by the testing

scripts in the packageAPGL, whereσ is the largest singular value ofPΩ(M). The stopping tolerance for all solvers

was set to10−4 and all other parameters were set to their default values. A summary of the computational results is
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presented in Table 4.1, where “time” denotes the CPU time measured in seconds and rel.err:= ‖W −M‖F /‖M‖F

denotes the relative error between the true and the recovered matricesM andW (“tsvd” will be explained below).

TABLE 4.1
Comparison of four solvers on small problems with varying rank and sampling ratio

Problem APGL FPCA OptSpace LMaFit
K = ⌊1.25r⌋ K = ⌊1.5r⌋

r SR FR µ time rel.err tsvd time rel.err tsvd time rel.err time rel.err time rel.err
10 0.04 0.505.76e-03 3.89 4.04e-03 82%32.62 8.21e-01 12% 24.01 4.44e-04 0.98 4.72e-04 1.00 4.35e-04
10 0.08 0.251.02e-02 2.25 6.80e-04 71%13.24 7.30e-04 19% 10.07 2.42e-04 0.35 2.27e-04 0.40 2.19e-04
10 0.15 0.131.78e-02 2.44 2.14e-04 66%7.76 4.21e-04 42% 8.26 1.32e-04 0.39 1.16e-04 0.41 1.48e-04
10 0.30 0.073.42e-02 4.11 1.40e-04 58%17.54 1.97e-04 72% 9.39 1.02e-04 0.59 8.99e-05 0.62 9.91e-05
50 0.20 0.492.94e-02 123.90 2.98e-03 93%71.43 4.64e-04 56%312.94 2.71e-043.96 3.03e-04 4.96 2.63e-04
50 0.25 0.393.59e-02 23.80 8.17e-04 87%101.47 3.24e-04 67%227.91 1.84e-042.98 1.89e-04 3.20 2.11e-04
50 0.30 0.334.21e-02 18.64 6.21e-04 85%146.24 2.64e-04 75%235.97 8.90e-052.56 1.78e-04 2.78 1.91e-04
50 0.40 0.245.53e-02 19.17 3.69e-04 82%42.28 2.16e-04 77%120.97 7.79e-052.28 1.11e-04 2.69 1.65e-04
100 0.35 0.545.70e-02 73.48 1.24e-03 92%259.37 5.41e-04 77%1422.16 2.83e-0413.07 3.01e-0417.40 3.09e-04
100 0.40 0.476.37e-02 63.08 8.19e-04 91%302.82 4.11e-04 79%1213.33 2.33e-049.74 2.56e-0411.39 2.41e-04
100 0.50 0.387.71e-02 61.44 4.91e-04 90%359.66 3.10e-04 82%913.58 1.65e-047.30 1.55e-04 7.37 1.92e-04
100 0.55 0.358.40e-02 50.78 4.12e-04 89%360.28 2.89e-04 81%862.85 1.52e-046.23 1.14e-04 7.18 9.99e-05

From Table 4.1, we see thatLMaFit is at least several times (often a few orders of magnitude) faster than all

other solvers to achieve a comparable accuracy. We note thatthe accuracy of the solverOptSpace on problems

with rank100 could not be improved by using a smaller tolerance. Of course, the reported performances of all the

solvers involved were pertinent to their tested versions under the specific testing environment. Improved performances

are possible for different parameter settings, on different test problems, or by different versions. However, given the

magnitude of the timing gaps betweenLMaFit and others, the speed advantage ofLMaFit should be more than

evident on these test problems. (We also testedLMaFit with the increasing rank strategy and found that it was not as

effective as the decreasing rank strategy on these random matrix completion problems.)

In Table 4.1, the item “tsvd” is the percentage of CPU time spent on SVD-related calculations, as estimated by

the MATLAB profiler and obtained from separate runs. As can beseen, forAPGLandFPCASVD-related calculations

essentially dominate their total costs (with the exceptionof extremely low-rank cases forFPCA). On the other hand, for

LMaFit , the total cost is dominated by low-rank or sparse matrix to matrix multiplications (which are also required

by other solvers), while the cost of solving the least squares problem in (2.11b) is either negligible or at most11% of

the total CPU time. Therefore, avoiding SVD-related calculations is a main reason whyLMaFit is much faster than

the nuclear norm minimization solversAPGLandFPCA, validating our original motivation of solving the factorization

model.

The next test was on large-scale random matrix completion problems in which we comparedLMaFit with APGL

following the experiment setup given in section 4.2 of [31].The other solversFPCAandOptSpace were excluded

from this comparison since they would have demanded excessive CPU times. Summaries of the computational results

are presented in Table 4.2 for noiseless data and Table 4.3 for noisy data, where both the noiseless and noisy data

were generated as in [31]. In these two table, “iter” denotesthe number of iterations used, and “#sv” denotes the

rank of the recovered solution. The statistics contained inthese two tables verify two key observations: (a) solving

the factorization model is reliable for matrix completion on a wide range of problems, and (b) our nonlinear SOR

algorithm, as implemented inLMaFit , has a clear speed advantage in solving many large-scale problems.

4.3. Experiments on random low-rank approximation problems. We now consider applying matrix com-

pletion algorithms to randomly generated low-rank matrix approximation problems. The goal is to find a low-rank

approximation to a mathematically full-rank matrixM whose singular values gradually tend to zero, though none

is exactly zero. Since there does not exist a “best low rank matrix” in such approximations, any evaluation of solu-

tion quality must take into consideration of two competing criteria: rank and accuracy. The only clear-cut case of
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TABLE 4.2
Numerical results on large random matrix completion problems without noise.

Problem APGL LMaFit (K = ⌊1.25r⌋) LMaFit (K = ⌊1.5r⌋)
n r SR FR µ iter #sv time rel.err iter #sv time rel.err iter #sv time rel.err

1000 10 0.119 0.1671.44e-2 39 10 2.47 3.04e-423 10 0.29 1.67e-4 23 10 0.28 1.73e-4
1000 50 0.390 0.2505.36e-2 40 50 14.48 3.08e-418 50 1.88 6.58e-5 18 50 2.04 7.62e-5
1000 100 0.570 0.3348.58e-2 53 100 49.67 3.98e-420 100 5.47 1.86e-4 21 100 5.99 1.42e-4
5000 10 0.024 0.1661.37e-2 52 10 12.48 2.17e-429 10 1.99 1.71e-4 29 10 2.17 1.77e-4
5000 50 0.099 0.2006.14e-2 76 50 161.82 1.26e-320 50 15.87 2.72e-5 20 50 16.49 3.86e-5
5000 100 0.158 0.2501.02e-1 60 100 316.02 3.74e-426 100 57.85 1.57e-427 100 60.69 1.47e-4
10000 10 0.012 0.1661.37e-2 53 10 23.45 3.61e-434 10 5.08 1.54e-4 34 10 5.56 1.66e-4
10000 50 0.050 0.2005.97e-2 56 50 225.21 2.77e-423 50 44.80 4.76e-5 23 50 48.85 5.70e-5
10000 100 0.080 0.2509.94e-2 71 100 941.38 2.87e-430 100 168.44 1.63e-430 100 176.45 1.70e-4
20000 10 0.006 0.1671.35e-2 57 10 60.62 2.37e-438 10 12.46 1.44e-4 38 10 13.60 1.57e-4
30000 10 0.004 0.1671.35e-2 59 10 95.50 1.96e-439 10 20.55 1.71e-4 39 10 23.48 1.73e-4
50000 10 0.002 0.1671.35e-2 66 10 192.28 1.58e-442 10 43.43 1.81e-4 42 10 49.49 1.84e-4
100000 10 0.001 0.1671.34e-2 92 10 676.11 2.10e-446 10 126.59 1.33e-446 10 140.32 1.30e-4

TABLE 4.3
Numerical results on large random matrix completion problems with noise.

Problem APGL LMaFit (K = ⌊1.25r⌋) LMaFit (K = ⌊1.5r⌋)
n r SR FR µ iter #sv time rel.err iter #sv time rel.err iter #sv time rel.err

1000 10 0.119 0.1671.44e-2 39 10 2.94 4.53e-218 10 0.24 4.53e-2 18 10 0.23 4.53e-2
1000 50 0.390 0.2505.36e-2 39 50 13.73 5.51e-217 50 1.76 5.51e-2 17 50 1.93 5.51e-2
1000 100 0.570 0.3348.59e-2 50 100 43.11 6.40e-217 100 4.70 6.40e-2 18 100 5.31 6.40e-2
5000 10 0.024 0.1661.38e-2 46 10 12.71 4.51e-226 10 1.78 4.51e-2 26 10 2.04 4.51e-2
5000 50 0.099 0.2006.14e-2 67 50 135.89 4.97e-219 50 15.05 4.97e-2 19 50 15.88 4.97e-2
5000 100 0.158 0.2501.02e-1 49 100 223.73 5.68e-218 100 39.81 5.68e-218 100 42.83 5.68e-2
10000 10 0.012 0.1661.37e-2 50 10 25.75 4.52e-229 10 4.41 4.52e-2 29 10 4.86 4.52e-2
10000 50 0.050 0.2005.97e-2 51 50 187.84 4.99e-223 50 45.04 4.99e-2 23 50 49.61 4.99e-2
10000 100 0.080 0.2509.95e-2 58 100 681.45 5.73e-222 100 127.01 5.73e-222 100 134.87 5.73e-2
20000 10 0.006 0.1671.35e-2 53 10 57.64 4.53e-233 10 11.21 4.53e-2 33 10 13.27 4.53e-2
30000 10 0.004 0.1671.35e-2 55 10 89.22 4.52e-234 10 17.63 4.52e-2 34 10 20.89 4.52e-2
50000 10 0.002 0.1671.35e-2 58 10 173.07 4.53e-237 10 40.24 4.53e-2 37 10 45.97 4.53e-2
100000 10 0.001 0.1671.34e-2 70 10 517.36 4.53e-240 10 115.27 4.53e-240 10 123.81 4.53e-2

superiority is when one solution dominates another by both criteria, i.e., a lower rank approximation with a higher

accuracy.

In this experiment, all random instances ofM ∈ R
m×n were created as follows: two matricesML ∈ R

n×n and

MR ∈ R
n×n with i.i.d. standard Gaussian entries are first generated randomly; thenML andMR are orthogonalized

to obtainU andV , respectively; finally the matrixM = UΣV ⊤ is assembled. HereΣ is a diagonal matrix whose

diagonal elementsσi, for i = 1, · · · , n, are either the power-law decaying, that is,σi = i−3, or the exponentially

decaying, that is,σi = e−0.3i. Hence, all singular values are positive, and there are99 and46 entries whose magnitude

are greater than10−6 in these two types ofΣ, respectively. These diagonals are illustrated in Figures4.4 (a) and (b).

The sampling procedures are the same as in those 4.2. In this test, the dimension and rank ofM were set ton = 500

andr = 10, respectively.

We comparedLMaFit with the solversAPGLandFPCA [22]. The parameterµ for the model (1.3) was set

to 10−4. The stopping tolerance for all solvers was set to10−4. We set the parameterstruncation = 1, and

truncation gap = 100 in APGL. For LMaFit with est rank = 1, we setK = 50 , and for LMaFit with

est rank = 2, we setK = 1, rank max = 50 andrk inc = 1. All other parameters were set to default values

for the two solvers. A summary of the computational results is presented in Table 4.4. We can see thatLMaFit with

est rank = 2 was significantly better than other solvers. The decreasingrank strategy ofLMaFit , as it is currently

implemented withest rank = 1, is clearly not suitable for these low-rank approximation problems since there is

no “true low rank” as in matrix completion problems. Specifically, this strategy (est rank = 1) reduced the rank

estimate too aggressively.
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FIG. 4.4. illustration of decaying patterns of the singular valuesσ
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(b) exponentially decaying:σi = e−0.3i

TABLE 4.4
Numerical results on approximate low-rank problems.

Problem APGL FPCA LMaFit (est rank=1 ) LMaFit (est rank=2 )
SR FR µ #sv time rel.err #sv time rel.err #sv time rel.err #sv time rel.err

power-low decaying
0.04 0.99 1.00e-04 90 16.30 6.48e-011 40.49 1.39e-01 5 0.70 3.68e-01 11 0.31 8.96e-03
0.08 0.49 1.00e-04 85 19.95 2.00e-012 45.81 4.38e-02 5 1.59 2.20e-01 20 0.60 1.13e-03
0.15 0.26 1.00e-04 7 1.73 4.05e-03 4 14.46 1.78e-02 5 1.47 1.52e-01 20 0.75 4.57e-04
0.30 0.13 1.00e-04 11 1.85 1.86e-03 4 31.48 1.04e-02 5 3.20 8.12e-02 22 1.33 2.36e-04

exponentially decaying
0.04 0.99 1.00e-04 100 15.03 7.50e-0114 35.79 5.05e-01 5 0.48 3.92e-01 16 0.86 4.08e-01
0.08 0.49 1.00e-04 100 21.60 3.31e-018 39.82 1.24e-01 5 0.44 2.66e-01 26 1.84 1.98e-02
0.15 0.26 1.00e-04 100 17.43 4.71e-0213 12.31 2.76e-02 5 0.63 2.39e-01 28 1.62 7.26e-04
0.30 0.13 1.00e-04 42 9.50 3.31e-0314 29.13 1.71e-02 6 1.03 1.71e-01 30 2.01 2.38e-04

4.4. Experiments on “real data”. In this subsection, we consider low-rank matrix approximation problems

based on two “real data” sets: the Jester joke data set [7] andthe MovieLens data set [12]. In these data set, only

partial data are available from the underlying unknown matrices which are unlikely to be of exactly low rank. Nev-

ertheless, matrix completion solvers have been applied to such problems to test their ability in producing low-rank

approximations. As is mentioned above, an assessment of solution quality should take into consideration of both

rank and accuracy. The Jester joke data set consists of four problems “jester-1”, “jester-2”, “jester-3” and “jester-

all”, where the last one is obtained by combining all of the first three data sets, and the MovieLens data set has

three problems “movie-100K”, “movie-1M” and “movie-10M”.1 ForLMaFit , we set the parameters totol = 10−3,

est rank = 2, K = 1, andrk inc = 2. ForAPGL, the parameter setting wastol = 10−3, truncation = 1, and

truncation gap = 20. In addition, the model parameterµ for APGLwas set toµ = 10−4 which produced better

solutions than choosing10−3σ as suggested by the testing scripts in the packageAPGL, whereσ is the largest singu-

lar value of the sampling matrix. Moreover, we set the maximum rank estimate to 80 for the jester problems and to

100 for the MovieLens problems for bothLMaFit andAPGLby specifying their parametersrank max or maxrank,

respectively. We note that since the jester problems have only 100 columns, it is not meaningful to fit a matrix of rank

100 to a jester data set. Since the entries of a underlying matrix M are available only on an index setΩ, to measure

1They are available atwww.ieor.berkeley.edu/ ˜ Egoldberg/jester-data andwww.grouplens.org , respectively.
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accuracy we computed the Normalized Mean Absolute Error (NMAE) as was used in [7, 22, 31], i.e.,

NMAE =
1

(rmax − rmin)|Ω|

∑

(i,j)∈Ω

|Wi,j −Mi,j |,

wherermin andrmax are the lower and upper bounds for the ratings. Specifically,we havermin = −10 andrmax = 10

for the jester joke data sets andrmin = 1 andrmax = 5 for the MovieLens data sets. We tried using a part of the

available data as was done in [31] and found thatAPGLgenerally returned solutions with slightly higher NMAE-

accuracy but also higher ranks than those returned byLMaFit , creating difficulties in interpreting solution quality

(though the speed advantage ofLMaFit was still clear). Therefore, we only report numerical results using all the

available data in Table 4.5, where “#asv” denotes the approximate rank of a computed solution defined as the total

number of singular values exceeding10−8.

TABLE 4.5
Numerical results on “real data”.

Problem APGL LMaFit
name m/n µ iter time NMAE rel.err #asviter time NMAE rel.err #asv

jester-1 24983/ 100 1.00e-04 49 140.21 2.21e-02 1.73e-01 80117 44.30 2.50e-02 1.86e-01 78
jester-2 23500/ 100 1.00e-04 49 133.74 2.27e-02 1.74e-01 80118 43.11 2.56e-02 1.87e-01 78
jester-3 24938/ 100 1.00e-04 37 56.74 1.63e-06 9.57e-05 80235 28.60 4.06e-05 9.31e-04 43
jester-all 73421/ 100 1.00e-04 48 284.15 1.90e-02 1.62e-01 80114 96.47 2.03e-02 1.65e-01 80

moive-100K 943/ 1682 1.00e-04 100 82.43 6.89e-04 1.26e-03 100507 24.59 9.95e-04 2.07e-03 94
moive-1M 6040/ 3706 1.00e-04 61 152.97 6.64e-02 9.59e-02 100190 60.25 6.78e-02 9.85e-02 92
moive-10M 71567/ 106771.00e-04 57 1639.86 7.83e-02 1.32e-01 100178 637.27 7.59e-02 1.29e-01 100

As can be seen from Table 4.5,LMaFit andAPGLobtained low-rank approximation matrices of comparable

quality on the all the problems, whileLMaFit ran more than twice as fast, and returned matrices of slightly lower

approximate ranks (except for “jester-all” and “movie-10M”). It is particularly interesting to compare the two solvers

on problem “jester-3” for whichLMaFit reported a solution of rank 43 whileAPGLof rank 80. Even with a much

lower rank, theLMaFit solution is almost as accurate as theAPGLsolution. Finally, we comment that without proper

rank restrictions, the jester problems do not appear to be good test problems for low-rank matrix approximation since

the matrices to be approximated have only 100 columns to begin with. In fact, LMaFit with est rank = 1 and

K=100 was able to find “solutions” of rank 100 after one iteration whose NMAE is of order10−16.

4.5. Image and video denoising or inpainting.In this subsection we applyLMaFit andAPGLto grayscale

image denoising (similar to what was done in [22]) and to color video denoising of impulsive noise for visualizing

solution quality. The task here is to fill in the missing pixelvalues of an image or video at given pixel positions that

have been determined to contain impulsive noise. This process is also called inpainting, especially when the missing

pixel positions are not randomly distributed. In their original forms, these problems are not true matrix completion

problems, but matrix completion solvers can be applied to obtain low-rank approximations.

In the first test, the512×512 original grayscale image is shown in Figure 4.5(a), and we truncated the SVD of the

image to get an image of rank 40 in Figure 4.5(b). Figures 4.5(c) and 4.5(f) were constructed from Figures 4.5(a) and

(b) by sampling half of their pixels uniformly at random, respectively. Figure 4.5(i) was obtained by masking6.34%

of the pixels of Figure 4.54(b) in a non-random fashion. We set the parameterstol = 10−3, est rank = 2, K = 20

andmax rank = 50 for LMaFit , andtol = 10−3, truncation = 1, truncation gap = 20 andmaxrank = 50

for APGL. The recovered images of Figures 4.5(c), (f) and (i) are depicted in Figures 4.5 (d) and (e), (g) and (h), and

(j) and (k), respectively. A summary of the computational results is shown in Table 4.6. In the table, rel.err denotes the

relative error between the original and recovered images. From these figures and the table, we can see thatLMaFit

can recover the images as well asAPGLcan, but significantly faster.

19



TABLE 4.6
Numerical results on image inpainting

problem APGL LMaFit
image r µ iter #sv time rel.err iter #sv time rel.err

(c) 512 1.34e-02 38 50 5.28 8.92e-0253 50 0.56 9.24e-02
(f) 40 1.34e-02 34 50 4.68 8.01e-0242 40 0.43 7.94e-02
(i) 40 2.51e-02 32 50 5.02 9.07e-0288 40 1.35 7.98e-02

Next, we applyLMaFit andAPGLto fill in the missing pixels of a video sequence “xylophone.mpg” (available

with the MATLAB Image Processing Toolbox). The video consists of p frames and each frame is an image stored in

the RGB format, which is anmr-by-nr-by-3 cube. Here,mr = 240, nr = 320, andp = 141. The video was then

reshaped into a(mr × nr)-by-(3 × p), or 76800-by-423, matrixM . We sampled50% pixels of the video uniformly

at random. Three frames of the original video and the corresponding 50% masked images are shown in the first

and second rows of Figure 4.6, respectively. We set the parameterstol = 10−3, K = 20, rank max = 80 and

est rank = 2 for LMaFit , andtol = 10−3, truncation = 1, truncation gap = 20 andmaxrank = 80 for

APGL. A summary of computational results is presented in Table 4.7 and the recovered images are shown in the third

and fourth rows of Figure 4.6. From these figures, we can see that LMaFit was able to restore the static part of the

video quite successfully, and the moving part of the video was still recognizable. Table 4.7 shows thatAPGLobtained

a slightly higher accuracy thanLMaFit did, but the latter was about 5 times faster in reaching the same order of

accuracy.

TABLE 4.7
Numerical results on video inpainting

problem APGL LMaFit
video m/n µ iter #sv time rel.err iter #sv time rel.err

xylophone 76800/423 3.44e+01 34 80 516.22 4.58e-0264 80 92.47 4.93e-02

We emphasize again that the purpose of the above image/videodenoising or inpainting experiments was to visu-

alize the solution quality for the tested algorithms, rather than demonstrating the suitability of these algorithms for the

tasks of denoising or inpainting.

4.6. Summary of computational results.We performed extensive computational experiments on two classes

of problems: matrix completion and low-rank approximation. On the completion problems, our nonlinear SOR algo-

rithm, coupled with the decreasing rank strategy, has showngood recoverability, being able to solve almost all tested

problems as reliably as other solvers. We do point out that randomly generated matrix completion problems are numer-

ically well-conditioned with high probability. On the other hand, any solver, including ours, can break down in the face

of severe ill-conditioning. On low-rank approximation problems where the concept of rank can be numerically blurry

and the quality of solutions less clear-cut, our nonlinear SOR algorithm, coupled with the increasing rank strategy, has

demonstrated a capacity of producing solutions of competitive quality on a diverse range of test problems.

Our numerical results, especially those on matrix completion, have confirmed the motivating premise for our

approach that avoiding SVD-related calculations can lead to a much accelerated solution speed for solving matrix

completion and approximation problems. Indeed, in our testsLMaFit has consistently shown a running speed that is

several times, ofter a couple of magnitudes, faster than that of other state-of-the-art solvers.

5. Conclusion. The matrix completion problems is to recover a low-rank matrix from a subset of its entries. It

has recently been proven that, by solving a nuclear-norm minimization model, an incoherent low-rank matrix can be

exactly recovered with high probability from a uniformly sampled subset of its entries as long as the sample size is

sufficiently large relative to the matrix sizes and rank. In this paper, we study the approach of solving a low-rank

factorization model for matrix completion. Despite the lack of a theoretical guarantee for global optimality due to
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FIG. 4.5. Image Denoising and Inpainting

(a) original image (b) rank 40 image

(c) 50% masked original image (d) APGL (e) LMaFit

(f) 50% masked rank 40 image (g) APGL (h) LMaFit

(i) 6.34% masked rank 40 image (j) APGL (k) LMaFit

model non-convexity, we have shown empirically that the approach is capable of solving a wide range of randomly

generated matrix completion problems as reliably as solving the convex nuclear-norm minimization model. It remains

a theoretical challenge to prove, or disprove, that under suitable conditions the low-rank factorization model can indeed

solve matrix completion problems with high probability.

The main contribution of the paper is the development and analysis of an efficient nonlinear Successive Over-

Relaxation (SOR) scheme that only requires solving a linearleast-squares problem per iteration instead of a singular-

value decomposition. The algorithm can be started from a rough over-estimate of the true matrix rank for completion

problems, or started from a small initial rank (say, rank-1)for low-rank approximation problems. Extensive numerical

results show that the algorithm can provide multi-fold accelerations over nuclear-norm minimization algorithms on
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FIG. 4.6.Video Denoising

original video

50% masked original video

recovered video byLMaFit

recovered video byAPGL

a wide range of matrix completion or low-rank approximationproblems, thus significantly extending our ability in

solving large-scale problems in this area.

In order to solve large-scale and difficult problems, further research on rank estimation techniques is still needed

to improve the robustness and efficiency of not only our algorithm, but also nuclear norm minimization algorithms

that use partial singular value decompositions rather thanfull ones. Given the richness of matrix completion and

approximation problems, different algorithms should be able to find usefulness in various areas of applications.
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