SOLVING A LOW-RANK FACTORIZATION MODEL FOR MATRIX COMPLETION
BY A NONLINEAR SUCCESSIVE OVER-RELAXATION ALGORITHM
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Abstract. The matrix completion problem is to recover a low-rank matrbnira subset of its entries. The main solution strategy for this
problem has been based on nuclear-norm minimization whiakinesjcomputing singular value decompositions — a task thatieasingly costly
as matrix sizes and ranks increase. To improve the capacioharfig large-scale problems, we propose a low-rank faciion model and construct
a nonlinear successive over-relaxation (SOR) algorithethahly requires solving a linear least squares problemtpeation. Convergence of this
nonlinear SOR algorithm is analyzed. Numerical results stimat the algorithm can reliably solve a wide range of problata speed at least
several times faster than many nuclear-norm minimization dfgos.
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1. Introduction. The problem of minimizing the rank of a matrix arises in mamyplacations, for example,
control and systems theory, model reduction and minimureracdntrol synthesis$ [20], recovering shape and motion
from image stream$ [25, B2], data mining and pattern rec¢iogisi [6] and machine learning such as latent semantic
indexing, collaborative prediction and low-dimensionalledding. In this paper, we consider the Matrix Completion
(MC) problem of finding a lowest-rank matrix given a subseit®entries, that is,

1.1 i rank W), st.W,, = M,,, V(i,7) € £,

(1.1) Wi rankW), i i V(i, ) €

where rankWV') denotes the rank df, and/; ; € R are given for(,j) € Q C {(3,7) : 1 <i<m,1 < j < n}.
Although problem[(T]1) is generally NP-hard due to the coratonal nature of the functiomnk(-), it has been
shown in [28[8[ 4] that, under some reasonable conditidvessolution of probleni(111) can be found by solving a
convex optimization problem:

(12) Wér]ll{i}nlxn ||WH*, s.t. WU = Mij7 \V/(Z,j) S Q,

where thenuclear or trace norm |||, is the summation of the singular valuesiéf. In particular, Canés and

Recht in [3] proved that a given rankmatrix M satisfying certain incoherence conditions can be recavexactly

by (I.2) with high probability from a subsét of uniformly sampled entries whose cardinaljfy| is of the order

O(r(m + n)polylog(m + n)). For more refined theoretical results on matrix completian refer the reader to

[2.14,[11]141 1B, 27. 40].

Various types of algorithms have been proposed to recoeesdfution of [1.1l) based on solving(IL.2). One
method is the singular value thresholding algorithm| [13hgssoft-thresholding operations on the singular values
of a certain matrix at each iteration. Another approach ésfiked-point shrinkage algorithrh [22] which solves the
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regularized linear least problem:

(1.3) min W+ S[Pa(v = M)

wherePg, is the projection onto the subspace of sparse matrices witlaeros restricted to the index subSetAn
accelerated proximal gradient algorithm is developed i} f&ised on a fast iterative shrinkage-thresholding algari

[1] for compressive sensing. The classical alternatingation augmented Lagrangian methods have been applied to
solve [1.2) in[8[36] and the closely related sparse andrimwk matrix decomposition in [37]. Other approaches
include [16/ 19,24, 23./5,18]. All of these algorithms béwa tomputational cost required by singular value decom-
positions (SVD) which becomes increasingly costly as taessand ranks of the underlying matrices increase. It is
therefore desirable to exploit an alternative approachersaitable for solving large-scale problems.

In this paper, we investigate solving a more explicit modhkothan minimizing the nuclear norm {n(1L.2), thus
avoiding SVD computation all together. Our goal is simplydfirg a low-rank matrixi¥’ so that||Po(W — M)||%
is minimized. Obviously, any matrik € R™*™ of a rank up toK has a matrix product formil’ = XY where
X e R™*K andy € RE*", Now we propose the following non-convex model

1
(1.4) min XY = Z|[ st Zij = My, ¥(i,5) € Q,

where X ¢ R™*K Yy ¢ REx" 7 ¢ R™*", and the intege will be dynamically adjusted. The premise of
introducing the low-rank factorization mod€&l{lL.4) is tihaipefully it is much faster to solve this model than model
(I.2). However, there are two potential drawbacks of the-lamk factorization mode[{114): (a) the non-convexity
in the model may prevent one from getting a global solutiord ¢b) the approach requires an initial rank estimate
K. In this paper, we present convincing evidence to show b a wide range of problems tested, the low-
rank factorization mode[{114) is empirically as reliabkthe nuclear norm minimization mod€l{11.2); and (b) the
initial rank estimate need not be close to the exact raokM (though one can benefit computationally from a good
estimate). For example, we allow a strategy of starting fiém= 1 and gradually increasing’. We observe that
the global optimal value of (1.4) is monotonically non-ieasing with respect té&. In principle, if K is smaller
than the unknown rank, the quality of the solution in terms of the objective functivalue can be improved by
minimizing (I.4) again, starting from the current pointtlwan appropriately increased rank estimate. We mention
that the introduction of the (splitting) variablis for a computational purpose that should become clear late

A recent work in [14/16] is also based on a low-rank factditmamodel closely related td_(1.4) where the
factorization is in the form ot/ SV” whereU andV have orthonormal columns. The authors derived a theotetica
guarantee of recovery with high probability for their apgeb that consists of three steps. The first step is called
trimming that removes from the sampie, (M) “over-represented” rows or columns. The second step firelbeist
rank+ approximation matrix to the remaining sample matrix viagsilar value decomposition (SVD) wherds the
true rank and assumed to be known. In the final step, stamimg the computed SVD factor as an initial guess, they
solve the factorization model via a special gradient detsgeihod that keeps the variablesand V' orthonormal.
The key intuition for their theoretical result is that théield guess is so good that it falls into a certain neighborho
of the global minimum where there exists no other statiopaint with high probability. This enables the authors to
prove that their gradient descent method generates a segjtessiding within this small neighborhood and converging
to the global solution in the limit, despite the non-contgxif the factorization model. Given that our factorization
model [1.%) is essentially the same as theirs, our apprdamiic be able to benefit from the same initial point and
possibly attain a similar theoretical guarantee. Howeterproofs in[[14] are specially tailored to the particuias of
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their algorithm and do not apply to our algorithm presentethis paper. Extending a similar theoretical result to our
case is a topic of interest for future research. Meanwhile,present paper concentrates on algorithm construction,
convergence (to stationary point) analysis and performavaluations. A low-rank factorization method based on
the augmented Lagrangian framework is proposed ih [28]icgquivalent quadratic formulation of the model{1.2).
However, this method is only conceptual and the authors 8s&lMi to solve the SDP formulation ¢f(1.2) in their
numerical experiments.

Our main contribution is the development of an efficient &tfpon for (I.4) that can reliably solve a wide range
of matrix completion and approximation problems at a speedmfiaster than the best of existing nuclear norm min-
imization algorithms. Like in many other similar cases, #tieicture of [[TH¥) suggests an alternating minimization
scheme. In this case, one can update each of the variahlés or Z efficiently while fixing the other two. The
subproblems with respect to either the variakl®r Y are linear least squares problems only involvikig< K coef-
ficient matrices in their normal equations, and the solutibtihe subproblem fo# can also be carried out efficiently.
This alternating minimization procedure is also called alimear (block) Gauss-Seidel (GS) scheme or a block co-
ordinate descent method. In this paper, we propose a motessicpted nonlinear successive over-relaxation (SOR)
scheme with a strategy to adjust the relaxation weight dycelip. Numerical experiments show that this new scheme
is significantly faster than the straightforward nonlin€&8 scheme. The convergence of nonlinear GS (coordinate
descent) methods for several optimization problems has steelied, for example, in [10, 21,133,134]. However, we
are unaware of any general convergence result for nonllB@& methods on non-convex optimization that is directly
applicable to our nonlinear SOR algorithm. In this paperpnaved that our approach converges to a stationary point
under a very mild assumption.

The rest of this paper is organized as follows. We first preaaralternating minimization scheme for{1.4) in
sectior Z.]L with two efficient implementation variants. @aonlinear SOR algorithm is introduced in section 2.2. An
convergence analysis for the nonlinear SOR algorithm isrgin sectiofi 3. Finally, two strategies for adjusting the
rank estimatgs” and numerical results are presented in sedflon 4 to denad@skre robustness and efficiency of our
algorithm.

2. Alternating minimization schemes.

2.1. Nonlinear Gauss-Seidel methodWe start with a straightforward alternating minimizati@neme for solv-
ing problem [[T#). Although alternating minimization is@wemon strategy widely used in many other similar situa-
tions, there is a subtlety in this case regarding efficie@iyen the current iterateX, Y andZ, the algorithm updates
these three variables by minimizirig(IL.4) with respect ttheane separately while fixing the other two. For example,
by fixing the values of” andZ, we obtain the new poinX, :

1
X, =2y" = argmin -| XY — Z|%,
XE]R"”XK 2

where AT is the Moore-Penrose pseudo-inversedofSimilarly, we can updat® and thenZ, while fixing others at
their latest available values. This procedure yields thleidng iterative scheme:

(2.1a) X, «zyt=zyvT(yy i,
(2.1b) Vi (X3)'Z = (X[ Xx)(X]2),
(21C) Z+ < X+Y+ + PQ(M — X+Y+).
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It follows from (Z.1&) and(2.1b) that
X Yy = (X (X[ X)IX])Z=Px, 2,

whereP, := A(ATA)TAT = QQT is the orthogonal projection onto the range spR¢el) of A and@ := orth(A)
is an orthonormal basis foR(A). The pseudo-inverse o, the orthonormal basis dR(A) and the orthogonal
projection ontoR(A) can be computed from either the SVD or the QR factorizatiomdofOne can verify that
R(Xy) = R(ZYT) . Indeed, letyY = UXVT be the economy-form SVD of, then X, = ZVXiUT and
ZYT = ZVUT, implying thatR(X ;) = R(ZY ") = R(ZV) and leading to the following lemma.

LEMMA 2.1.Let(X.,Y,) be generated b2.T). There holds

(2.2) X Yy =Pu~Z=2Y"(YZ'2zY"(YZ")Z.

We next present two iterative schemes equivalenfd (2.ijceSthe objective functio (1.4) is determined by
the productX, Y., different values ofX; andY., are essentially equivalent as long as they give the sameigirod
X,Y,. LemmaZ1L shows that the inversioiY ")t can be saved when the projecti®,,+ is computed. The
unique feature of our new schemes is that only one leastsquablem is involved at each iteration. The first variant
is to replace the step(Z]1a) by

(2.3a) X, «2ZY",

while Y, andZ, are still generated by step (2]1b) ahd (2.1c). The secondntaromputes the orthogonal projection
Pyyr = VVT, whereV := orth(ZY ") is an orthogonal basis ®(ZY 7). Hence, [ZR) can be rewritten as
X.Y, = VVTZand one can derive:

(2.43) X<V,
(2.4b) Y.+ V'Z,

while Z__ is still generated by step(Z]1c). The schemel(2.4) is oftefepred since computing the stép (2.4b) by QR
factorization is generally more stable than solving themadrequations. Note that the schenies](2[1)] (2.3) land (2.4)
can be used interchangeably in deriving properties of thdyst X, Y, .

By introducing a Lagrange multipliex € R™*" so thatA = Pq(A), the Lagrangian function of (1.4) is defined
as

1
(2.5) LIX,Y,Z,0) = S| XY = Z|[f = Ao Pa(Z — M),

where the inner product between two matricess R™*"™ and B € R™*" is defined asd e B := 3., A;; B;;.
Differentiating the Lagrangian functioi( X, Y, Z, A), we have the first-order optimality conditions fbr{1.4):

(2.6a) (XY - 2)Y T =0,
(2.6b) X'(XY -2)=0,
(2.6¢) Pae(Z — XY) =0,
(2.6d) Pa(Z — M) =0,
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plus the equations
(2.7) Po(Z — XY)=A.

Clearly, the multiplier matrixA measures the residudl — XY in 2 and has no effect in the process of determining
X.,Y, Z. ltis also easy to see that the above alternating minintimathemes are exactly a Gauss-Seidel (GS) method
applied to the nonlinear and square system (2.6).

2.2. A Nonlinear SOR-like Scheme.Numerical simulations shows that the simple approach isactior 2.1,
though being very reliable, is not efficient on large yet Mery-rank matrices. A possible acceleration technique may
involve applying an extension of the classic augmentedduagjan-based alternating direction method (ADM) for
convex optimization to the factorization model (se€ [29,/[3% for such ADM extensions). However, in this paper,
we investigate a nonlinear Successive Over-RelaxatiorRjSPproach that we found to be particularly effective for
solving the matrix completion problem.

In numerical linear algebra, the SOR methiod [9] for solvidaar system of equations is devised by applying
extrapolation to the GS method, that is, the new trial pairgt weighted average between the previous iterate and the
computed GS iterate successively for each component. Aepr@gtue of the weight often results in faster convergence.
Applying the same idea to the basic scherfied (4.1} (2.3)2d) dives a nonlinear SOR scheme:

(2.8a) X, <2y (yYy i,

(2.8b) Xi(w) +~wXy + (1 -w)X,

(2.8c) Yy (Xp(0) " Xy (@) (X4 ()T 2),

(2.8d) Yi(w) + wYy + (1 —w)Y,

(2.8e) Z4 (W) = Xp (W)Y (w) + Pa(M — Xy (w)Y5 (W),

where the weighty > 1. Obviously,w = 1 gives the GS method.

Assuming that the matriX” has full row rank, the two least squares problem§&in (2.8)eareduced into one like
the second basic schenie {2.3). Let us denote the residual by

(2.9) S = Po(M — XY),

which will be used to measure optimality. After each iteyatithe variableZ, which is feasible, can be expressed as
Z = XY + S. Let Z, be aweighted sum of the matric&s” and S, that is,

(2.10) Zo 2 XY +wS =wZ+ (1 —w)XY.
Using the fact that the matriX Y " (Y'Y ")T is the identity from our assumption, we obtain

ZYT (YY) =wzZy T(YY )T + (1 —w) XYY T (YY )T

=wX;+(1-wX,
5



which is exactly the step (2.Bb). Replaciddy Z,, in (2.3) and[[2Z}4), we have the following SOR-like scheme:

(2.11a) X (W)« 2z, YT or Z,YT (YY),
(2.11b) Yi(w) ¢ (X4 (@) T X4 (W) (X4 (@) T 20),
(2.11c) Pae(Z1(w)) < Pae (X4 (w)Y5 (w)),

(2.11d) Pa(Z4(w)) < Pa(M).

Again, an implementation with a single QR decompositionlantilized just as in scheme(2.4).

Since a fixed weight is generally inefficient for nonlinear problems, we nextsamt an updating strategy for
that is similar to the one adjusting the trust-region radiuthe trust region method [26] for nonlinear programming.
After the point( X, (w), Y (w), Z4 (w)) is computed, we calculate the residual ratio

_ IS4 @W)lr
(2.12) W) = g
where
(2.13) Si(w) 2 Pa(M — X4 (w)Yy ().

If v(w) < 1, this new pair of point is accepted as the next iterate sinceobject to reduce the residub||» :=
|[Pa(M — XY)| r is achieved. In this case, the step is called “successftieravise, the step is “unsuccessful” and
we have to generate a new trial point using a new weigt thaty(w) < 1 is guaranteed. Since the basic GS method
corresponds tw = 1 and it can reduce the residygd|| -, we simply reseb to 1 in a “unsuccessful” case. Once a trial
point is acceptable, we consider whether the weigbhould be updated. As our goal is to minimize the resid 94|,

a smally(w) indicates that the current weight valwevorks well so far and keeping the current value will very hike
continue to provide good progress. Hengeis increased only if the calculated point is acceptable hetresidual
ratio y(w) is considered “too large”; that is,(w) € [y1,1) for somey; € (0,1). If this happens, we increaseto
min(w + §,), whered > 0 is an increment ané > 1 is an upper bound. From the above considerations, we arrive
at Algorithm[1 below.

Algorithm 1: A low-rank matrix fitting algorithm (MaFit )

1 Input index sef?, dataPq (M) and a rank overestimaf€ > r.

2 SetY? ¢ RE*" 70 = Po(M),w=1,&>1,6 > 0,7, € (0,1) andk = 0.

3 while not convergentio

4 | Compute(X, (w), Y, (w), Zs (w)) according to[(Z01) withi X, Y, Z) = (X* YF ZF).
5 Compute the residual ratig(w) according to[(2.12).

6 if v(w) > 1thensetw = 1 and go to step 4.

7 | Update(X*+1 Y+l ZE+1) — (X, (w), Y| (w), Z4(w)) and increment.

8 if y(w) > v thensetd = max(d,0.25(w — 1)) andw = min(w + J, @).

For illustration, we compare the efficiency of the GS schdfa®) (and the nonlinear SOR-like schehe (2.11) on
two random matrice8/ with m = n = 1000, » = 10 with two different sampling ratios at, respectively)8 and0.15
(see subsectidn 4.2 for detailed construction procedwlealyorithmic parameter setting). The algorithms were run
by using two different rank estimatio§ = 12 and20. The normalized residual§Po (M — XY)| r/||Pa(M)| r
are depicted in Figurds 2.1 (a) and (b), respectively. Thm@mt jumps in the residuals were due to adjustments
6



of rank estimations, which will be explained later. From flgires, it is evident that the nonlinear SOR scheme is
significant faster than the nonlinear GS scheme.

FIG. 2.1.Comparison between the nonlinear GS and SOR schemes

107t ——SOR: k=12 4 107 ——SOR: k=12
-6 -SOR: k=20 - ¢ -SOR: k=20
-o- GS: k=12 -o--GS: k=12

* GS: k=20 * GS: k=20

normalized residual
normalized residual

. . . . . . . . . . . .
0 50 100 150 200 250 300 350 400 0 20 40 60 80 100 120

iteration iteration
(a) n=1000, r=10, sampling ratio = 0.08 (b) n=1000, r=10, sampling ratio=0.15

3. Convergence Analysis.We now analyze Algorithrill1 by revealing the relationshipsMeen the residuals
|IS||» and||S; (w)||#. Let V(w) := orth(X, (w)) andU := orth(Y ") be orthogonal bases of the range spaces of
R(X1(w)) andR(Y ), respectively. Consequently, the orthogonal projectmme R (X, (w)) andR(Y ") can be
expressed as:

QW) = V(W)V(w)" = X4 (@) (X4 (w) " X4 () X4 (w) T,
P:=UU" =Y (YYY.

We list several useful identities that can be verified fromdkefinition of pseudo-inverse. For adye R™*",

Al = AT(ANTAT = ATANTAT = (ATA)TAT = AT (44T,

(3.1)
A= (ANTATA=AAT (AT,

The lemma below and its proof will provide us a key equality.
LEMMA 3.1.Let(X. (w), Y, (w)) be generated b@.11) There holds

(32) WS @ (X4 (@) Vs (w) = XY) = | X3 (@)Y5 (w) - XY 3.

Proof. It follows fromY T = YTYYT (seel@BL) X, (w) = Z,YTandZ, = XY + wS that
X (WYY ' =2,yT =XvyY" +wSYy".
Post-multiplying both sides by Y 7)Y and rearranging, we havé(, (w) — X)Y = wSY T(YY T)'Y;i.e.,

(3.3) (X4 (w) = X)Y =wSP.
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On the other hand, the equalitiés, (w) " = X (w) " X, (w)(X 4 (w))" and [3:3) yield

Xy (@) T Xy (@) Y3 (w) = X4 (W) " Zy = X4 ()T (XY +wS)
= X1 (W) (X4 (@)Y — (X4 (w) = X)Y +wS)
=X, (w) X (W)Y +wX, () S(I - P).

Pre-multiplying both sided byX | (w)(X (w) " X+ (w))! and rearranging, we arrive at
(3.4) X (@)(Ya ()~ Y) = wQ(w)S(I - P).
Therefore, in view of[(313) an@(3.4), we obtain

X (0)Y3 (@) = XY = (X4 (@) = X)Y + X4 (@)(Ve(w) = V)

(3.5) =wSP +wQ(w)S(I — P)

(3.6) =w({l — Qw))SP + wQ(w)S.

Therefore,

(3.7) X4 (@) Y3 (w) = XY |7 = ?|[(I - Q(w))SPII7 + w?(|Q(w) S

Finally, in view of (3.6) and the properties of orthogonabjections, we have:

WS o (X, (@)Y () = XV) = w?S e (I — Qw))SP + w?S » Qw)S
= w?SPe (I —Q(w))SP +w?S e Q(w)S
= w[[(I = Qw))SPF +w?||Q(w)S|I%
= || X4 (@)Y3(w) = XY |7,

which proves the lemmal

It is easy to see that
1
(3:8) XY = Zullr = SlF.
Therefore, after the first two steps in (2.11),
1
DIX4 (@Y w) = Zoflr < |ISllF

and the strict inequality holds unless the first two equatiohthe optimality conditions of (2.6) already hold. Or
equivalently,

1
w?

(3.9) (IPae (X4 (@) Y3 (W) = Zu) T + | Pa(X4 (@)Y (w) = Zu)llE) < ISIE

Next we examine the residual reductipsi||% — ||S, (w)||% after each step of the algorithm in detail.
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LEMMA 3.2.Let(X (w), Y, (w)) be generated by (2.11) for any> 1, then

(3.10) $||X+(w)Y+(w) — Zull7 = I = Q(w))SU = P)[|% = [IS[I3 — pra(w),
where
(3.11) pr2(w) £ [ X4 (W)Y (w) = XY|[7 = [ISP|% + [|Q(w)S(I - P)|I%

is the amount of residual reduction frof$||%. after steps 1 and 2 ifi {21 1).
Proof. From the definition ofZ,, and [3.5), we obtain

Xi(w)Yi(w)—Z, =X+ (w)Yi(w) — XY —wS =wSP +wQ(w)S(I — P) —wS
= —w(l = Qw))S(I - P),

which proves the first equality ib (3.110). Using (3.2) ahdlj3we have:

X4 (@)Y (@) = Zollf = [ X4 (@0)Yi(w) = XY |7 +0?[IS]F — 208 o (X4 (w)Yi(w) = XY)

= w’[ISF — [IX+ (w)Yi(w) - XY

= w?[[S|IF - w?pr2(w),

which proves the second equality in (3.1D).
After the third step in[(2.11), we have

1Poe (X1 @)Y+ (@) — Z4 (@) |7 = 0.
SincePq-(Z,) = Pa-(XY') independent ob, the residual reduction in the third step is
(3.12) ps() & 25 [Pac(X (@)Y () — XV)[}.
Finally, the change of the residual value after the fourdip $$

pa(w) £ §||7>Q<X+<wm<w> — Z)3 ~ 15+ @)%
or equivalently,
(3.13) pa(w) £ $||5+(w) +(w = DS[E — 185 W)l

Clearly,p4(1) = 0. Forw > 1, it follows from (3.13) that

W2P4(W) 2 2
(3.14) = (w =157 = 15+ W)[IF) — 25+ (w) ® (S4+(w) = 5).

w—1
We will show next that the rate of changemf(w) atw = 17 is nonnegative.
LEMMA 3.3.

pa(w)

11m
w—lt w—1

(3.15)

= 2||Pae (X4 (1)Y4 (1) = XY)[I7 > 0.
9



Proof. Letw — 1 andS, = S, (1). We obtain from[(3.14), the definitions sfin (2.9), and[[3.R) that

p4(w) = lim M = _QS+ ° (S+ - S)

1m =
wolt w—1 w1t w-—1
= 2|+ — S| 25 e (S} — 5)
= =2[[Pa(X1 Yy — XY)|[F +25 e (X;Y) — XY)
= 2||Poe (X1 Yy — XY)|[%,

which completes the proofl

If p4(w) is continuous, then Lemnfia 3.3 guarantees that) > 0 in some range af > 1. In fact, suppose that
rank(Z,) = rank(Z) asw — 17. The equalityrank(Y Z| Z,Y ") = rank(YZT ZY ") holds asv — 1%, hence,
lim,_,1+(YZ) Z,Y") = (YZTZY ")! holds by [30]. The continuity of the produdf, (w)Y, (w) implies that
pa(w) is continuous as» — 1. In Figure$ 311 (a) and (b), we depict the continuity of thedlionsp;,(w), p3(w) on
a randomly generated problem from two different pair of p®{X, Y, Z). As cen be seen, the benefit of increasing
can be quite significant. For example, in Figlirg 3.1 (b), whesincreased from 1 to 4, the amount of total residual
reduction is more than doubled.

FiG. 3.1. Continuity of the functionpi2(w), p3(w) andos (w).
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We have proved the following result about the residual-céida property of the nonlinear SOR algorithm.

THEOREM 3.4. Assume thatank(Z,,) = rank(Z),Vw € [1,w;] for somew; > 1. Let (X4 (w), Y (w), Z4+(w))
be generated by the SOR scheme{2.11) starting from a ntiorstey point(X, Y, Z), and p12, p3s and p4 be defined
as in [3.11),[(3.1R) and{3:13), respectively. Then theigt®somev, > 1 such that

(3.16)

ISIZ = 1S+ (@)IF = pr2(w) + p3(w) + pa(w) > 0, Yw € [1,wa],

wherep;2(w), ps(w) > 0 by definition. Moreover, wheneves(1) > 0 (equivalentlyPq. (X1 (1)Y4 (1) — XY') # 0),

there existso > 1, so thatp, (w) > 0,Vw € (1,d].

Next we present a convergence result for our algorithm. eSmodel [[T.4) is non-convex, we are only able to
establish convergence to a stationary point under a mildnagon. Note that the objective function is bounded
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below by zero and is decreased by at least an amouysnt af every iteration. There must hold (seEe(3.12))
Poe (XFHY R _ xFyk)y 0.

In light of the above, it is reasonable to assume ffRag- (X*Y*)} remains bounded, barring the unlikely alternative
that || Poe (X*YF)|| — oo.

THEOREM 3.5. Let {(X*,Y* ZF)} be generated by Algorithid 1 afPqo.(X*Y*)} be bounded. Then there
exists at least a subsequence 6K *, Y*, Z¥)} that satisfies the first-order optimality conditiof&8)in the limit.

Proof. It follows from the boundedness ¢Po.(X*Y*)} and the algorithm construction that botr*} and
{X*Y*} are bounded sequences. It suffices to prove2[6a)}(2.6b¢ she other conditions are satisfied by the
construction of AlgorithnilL. Without loss of generality, wesume thaf X*} is generated by a scheme analogous to
@3): given(X,Y) = (X*, Y*) andw € [1,d]

Zy=wZ+(1-w)XY, X;=orth(Z,Y"), Yy =X1Z,.

Obviously,{ X*} is bounded. In addition,Y*} is also bounded due to the boundedness of bath} and{X*Y*}.
LetZ = {k: pk(w¥) > 0}, andZ® be the complement &. It follows from (3.18) that

(3.17) 1S°1% = >~ pla(w) = D IS PI3 + 1Q°S'( — P7) |3

€T i€L
We consider the following three cases.

i) SupposeZ¢| < oo. It follows from (3IT) that
(3.18) lim ||S*P!||% = 0 and lim ||Q'S*||% = 0.
1— 00 71— 00
The construction of the schenie (2.11) gives the equalities:
Pa(M) =Po(Z"), Pac(Z') = Pae(XY"), P'=U U)T,
wherelU? = orth((Y?)"). Therefore, we obtain
S'P'=Po(M - X'Y)P' =Pqo(Z2' - X'Y')P' = (Z' - X'Y')P' = (Z' - X'V U (U)T,

which yieldslim; . (Z? — X*Y*)U" = 0 in view of the first part of[(3.18). Sinc&’ is an orthonormal basis for
R((Y?) ") and the sequendg’?} is bounded, we have

(3.19) 1_13?0(21' - XY (YHT =o.

Using@’ = Vi(V¥) T, whereV? is an orthonormal basis f2 (X*1), we obtain

(3.20) QIST = QIS £ QU(ST — S = VIV T (2 - XY ) 4 QST - 57,
Using [3.T) and(3.18), we obtain

187 = S™HE < XY - XY < @) (IS"PE + 11Q°S™(I — PIIE) — 0,
11



hencelim; . [|S* — S| = 0. This fact, together witH(3.18) and (3]20), proves
(Vi)T(Zi+l o Xi+1yi+1) =0.
In view of the boundedness ¢}, we arrive at

(3.21) lim (X)) T (XY — Z%) = 0.

1—00
i) SupposgZ¢| = co and|{k € Z¢ : y(w*) > 71 }| < oo. Thatis, fork € Z¢ sufficiently large we have
IS < 71llS* || -

Consquentlylimy, ., xeze ||S*||z = 0. Since||S*| is nonincreasing, the full sequence converges to the global
minimizer of [1.2).

iii) Suppose|Z¢| = oo and|{i € Z¢ : y(w’) > 71 }| = oo. Then Algorithn{l resets’ = 1 for an infinite number
of iterations. We obtain froni (3.17) that

(3.22) 15%0% > Y plaw) = Y ISP |I% + 1Q°S* (T — PY)||3.

i€l i€l

Hence, the subsequenceTinsatisfies[(3.19) and (3.21) by repeating, in an analogotndiasthe proof of part i)J

4. Computational Results. In this section, we report numerical results on our nonlirfe@R algorithm and
other algorithms. The codeMaFit [38] for our algorithm is implemented in Matlab with a couglesmall tasks
written in C to avoid ineffective memory usage in Matlab. @thested solvers includePGL[31], FPCA[22] and
OptSpace [16], where the first two are nuclear minimization codes ienpénted under the Matlab environment.
APGLalso utilizes a Matlab version (with the task of reorthodmagion implemented in C) of the SVD package
PROPACK [17], and=PCAuses a fast Monte Carlo algorithm for SVD calculations immated in Matlab. The code
OptSpace , which has a C version that was used in our tests, solves allodely related to[(1]4) using a gradient
descent approach and starting from a specially constrimitéad guess. All experiments were performed on a Lenovo
D20 Workstation with two Intel Xeon E5506 Processors andB@GRAM.

We tested and compared these solvers on two classes of matbbems: completion and low-rank approximation.
The key difference between the two classes lies in whethévea gample is from a true low-rank matrix (with or
without noise) or not. Although theoretical guaranteestefar matrix completion, to the best of our knowledge no
such guarantees exist for low-rank approximation if sasple taken from a matrix of mathematically full rank. On
the other hand, low-rank approximation problems are méegdylito appear in practical applications.

4.1. Implementation details and rank estimation. Algorithm[1 starts from an initial guess® € RX*". For
the sake of simplicity, in all our experiments we $€tto a diagonal matrix with 1’s on the diagonal even though more
elaborate choices certainly exist that may lead to bettdopeance. The default values of the parameigr§ and~,
were set tor-oo, 1 and0.7, respectively. Since the incremehis non-decreasing in Algorithfd 1, the parametezan
be increased too fast. Hence, we also réget0.1 * max(w — 1,0) whenevery(w) > 1. The stopping criteria in our
numerical experiments follow

_ [Pa(M — XPYH)||p
[PaGDr
12
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and

[Pa(M — X*YF)|r
[Pa(M — X*F=1Y =)l p

reschg = |1 — <tol /2,

wheretol is a moderately small number.

Since a proper estimation to the rafikfor the model[(T.4) is essential for the succeskMaFit , two heuristic
strategies for choosingl were implemented. In the first strategy, we start from a ldkge< > r) and decrease it
aggressively once a dramatic change in the estimated rathle efriableX is detected based on its QR factorization
[9] which usually occurs after a few iterations. Specifigaitt QR = X FE be the economy-size QR factorization of
X, whereF is a permutation matrix so thdt:= | diag(R)| is non-increasing, wheréiag(R) is a vector whoséth

component isk;;. We compute the quotient sequemi;e: d;i/dit1, i =1,--- , K — 1, and examine the ratio
__ (K~ Dd(p)
Z#p d;

whered(p) is the maximal element o{ch-} andp is the corresponding index. A largevalue indicates a large drop
in the magnitude ofl right after thep-th element. In the current implementation, we reSeto p oncer > 10, and
this adjustment is done only one time. On the other hand,dirsg) from a small initial guess, our second strategy is
to increaseX to min(K + k, rank max) when the algorithm stagnates, i.eeschg<10 xtol . Here,rank max is

the maximal rank estimation, and the increment rk_inc if the currentK’ < 50; otherwisex = 2 x rk_inc. The
default value ofrk_inc is 5. In our codd_MaFit , the first and second (or decreasing and increasing rarstggtes
can be specified by setting the optieat_rank to 1 or 2, respectively, and will be called the decreasind i@md
increasing rank strategies, respectively.

Each strategy has its own advantages and disadvantageshanld be selected according to the properties of
the targeted problems. As will be shown by our numerical ltesthe decreasing rank strategy is preferable for
reasonably well-conditioned matrix completion problemkile the increasing rank strategy is more suitable for low-
rank approximation problems where there does not exista-clet desirable rank. Based on these observations, we
use the decreasing rank strategy in the experiments of ctitnsgL.2, while the increasing rank strategy is used in

subsections 418=4.5.

4.2. Experiments on random matrix completion problems. The test matriced/ € R™*™ with rankr in this
subsection were created randomly by the following procedsee alsd [22]): two random matrickg, € R™*" and
Mp € R™" with i.i.d. standard Gaussian entries were first generatedizen)M = M, M,, was assembled; then a
subset of p entries was sampled uniformly at random. The rafiomn) between the number of measurements and
the number of entries in the matrix is denoted by “SR” (sanmptatio). The ratio'(m +n — r) /p between the degree
of freedom in a rank matrix to the number of samples is denoted by “FR”.

We first evaluate the sensitivity @fMaFit to the initial rank estimaté( using the decreasing rank strategy of
rank estimation. In this test, we used matrices with= n = 1000 andr = 10. Three test cases were generated
at the sampling ratios SR equal to 0.04, 0.08 and 0.3, rasphrctin each case, we rddViaFit for each of K =
10,11,12,--- ,30 on 50 random instances. The average number of iterationa\amedge CPU time corresponding to
this set of K’ values are depicted in Figures .1 (a) and (b), respectivelthese two figures, we observe a notable
difference at the rank estimafé = 10 when the sampling ratio SR 0.04. The reason is that at this low sampling
ratio the rank estimate routine &@MaFit mistakenly reduced the working rank to be less than 10 andtegsin
premature exists. For all other cases, we see that the nuohliterations stayed at almost the same level and the
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CPU time only grew slightly ag increased from 10 to 30. Overall, we conclude thietaFit is not particularly
sensitive to the change & value on this class of problems over a considerable rangsedan this observation, in
all tests using the decreasing rank strategy, we set thalirahk estimates either to| 1.25r | orto | 1.5r |, where|z |

is the largest integer not exceedingNumerical results generated from these #walues should still be sufficiently
representative.

FIG. 4.1. The sensitivitf MaFit with respect to the initial rank estimatialt
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Our next test is to study the convergence bahaviddéFit with respect to the sampling ratio and true rank of
M. In this test the dimension d¥/ were set ton = n = 1000 and the initial rank estimate was set|th25r] in
LMaFit . In Figure[4.2 (a), we plot the normalized resid{i&n (M — XY)| r/||Pa(M)|| F at all iterations for three
test cases where the sampling ratio was fixed at SR = 0.3 akd-ran10, 50 and 100, respectively. On the other
hand, Figuré 4]2 (b) is for three test cases where SR = 0.08,dhd 0.3, respectively, while the rank was fixed at
r = 10. Not surprisingly, these figures show that when the samphlitig is fixed, the higher the rank is, the harder
the problem is; and when the rank is fixed, the smaller the Bagw@tio is, the harder the problem is. In all cases, the
convergence of the residual sequences appeared to be boeat quite different rates.

An important question about the factorization mo@ell(1rt) aur nonlinear SOR algorithm is whether or not our
approach (model plus algorithm) has an ability in recovgetow-rank matrices similar to that of solving the nuclear
norm minimization model by a good solver. Or simply put, does algorithm for [T.4) provide a comparable re-
coverability to that of a good nuclear norm minimizationaithm for (1.2) or [1.B)? We address this recoverability
issue in the next test by generating phase diagrams in Elge(a)-(b) for the two modelg(1.3) aid {|1.4), respec-
tively. The solvelFPCA[22] was chosen to solvE (1.3) since it has been reportedvie Adetter recoverability than
a number of other nuclear norm minimization solvers. In tb&, we used random matrices of size= n = 500.

We ran each solver on 50 randomly generated problems witkaimpling ratio SR chosen in the order as it appear
in {0.01,0.06,0.11,--- ,0.86} and with each rank value € {5,8,11,--- ,59}. The two phase diagrams depict the
success rates out of every 50 runs by each solver for eactessivhere a run was successful when the relative error
|M — W| r/||M| r between the true and the recovered matrieeandW was smaller than0~3. If a solver recov-
ered all 50 random instances successfully for-SR andr = 3, then it ought to have equal or higher recoverability
for SR> a andr = 5. To expedite the part of the experiment involviRBCA we chose to stop testing all other SR

> a with » = 3, and increment the value. In FigureE4]3 (a)-(b), a white box indicates a 10086very rate, while
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To have a quick assessment on the speddvdFit relative to those of other state-of-the-art solvers, we-com
paredLMaFit with two nuclear norm minimization solveraPGLandFPCA and with a c version dDptSpace that
solves a factorization model similar to ours but uses an ®%Bed initial guess, on a set of small problems with
m = n = 1000. The parameter setting f&uMaFit was the same as in the previous experiment. In particular, th
decreasing rank strategy was used. The parameiarthe model[[LB) was set t) o as suggested by the testing
scripts in the packag@PGL whereo is the largest singular value &%, (M ). The stopping tolerance for all solvers
was set tal0~* and all other parameters were set to their default valuesundnsary of the computational results is
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(b) m = n = 1000, r = 10

FiIG. 4.3. Phase diagrams for matrix completion recoverability
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a black box means a 0% rate. The parameter settingM@Fit wastol = 10~%, K = |1.25r] andest_rank = 1,

while for FPCAit wastol = 10~* andpu = 10~%. All other parameters were set to their respective defalkt v
ues. The two phase diagrams indicate that the recoveyabflit MaFit
this experiment. Given the reported better recoverabilitFPCA it is reasonable to infer that the recoverability of
LMaFit is comparable to those of the other nuclear norm miniminagmvers studied in[22].

is marginally inferior to that oFPCAIn



presented in Tabl[e4.1, where “time” denotes the CPU timesnored in seconds and rel.ets [|WW — M||r/|| M| F
denotes the relative error between the true and the reabweagrices\/ andW (“tsvd” will be explained below).

TABLE 4.1
Comparison of four solvers on small problems with varyingkrand sampling ratio

Problem APGL FPCA OptSpace LMaFit

K =[1.25r] | K = [1.57]
r SR FR o time relerr tsvd time relerr tsvd time relerr | time relerr | time  rel.err
10 0.04 0.505.76e-03 3.89 4.04e-03 82982.62 8.21e-01 12% 24.01 4.44e-040.98 4.72e-041.00 4.35e-0
10 0.08 0.251.02e-02 2.25 6.80e-04 71943.24 7.30e-04 19% 10.07 2.42e-040.35 2.27e-040.40 2.19e-O
10 0.15 0.131.78e-02 2.44 2.14e-04 66%/.76 4.21e-04 42% 8.26 1.32e-040.39 1.16e-040.41 1.48e-0.
10 0.30 0.073.42e-02 4.11 1.40e-04 58947.54 1.97e-04 72% 9.39 1.02e-040.59 8.99e-050.62 9.91e-0
50 0.20 0.492.94e-02 123.90 2.98e-03 939%1.43 4.64e-04 56%0312.94 2.71e-043.96 3.03e-044.96 2.63e-0
50 0.25 0.393.59e-02 23.80 8.17e-04 87%01.47 3.24e-04 67%227.91 1.84e-042.98 1.89e-043.20 2.11e-0
50 0.30 0.334.21e-02 18.64 6.21e-04 8H%46.24 2.64e-04 75%235.97 8.90e-052.56 1.78e-042.78 1.91e-0
50 0.40 0.245.53e-02 19.17 3.69e-04 87%42.28 2.16e-04 77%120.97 7.79e-052.28 1.11e-042.69 1.65e-0
100 0.35 0.545.70e-02 73.48 1.24e-03 973%69.37 5.41e-04 77%4422.16 2.83e-0413.07 3.01e-0417.40 3.09e-O.
100 0.40 0.476.37e-02 63.08 8.19e-04 91%802.82 4.11e-04 799d213.33 2.33e-049.74 2.56e-0411.39 2.41e-0.
100 0.50 0.387.71e-02 61.44 4.91e-04 9(]%H9.66 3.10e-04 82%0913.58 1.65e-047.30 1.55e-047.37 1.92e-0
100 0.55 0.3%8.40e-02 50.78 4.12e-04 89%60.28 2.89e-04 81%6862.85 1.52e-046.23 1.14e-047.18 9.99e-0
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From Tabld 41, we see thaMaFit is at least several times (often a few orders of magnitudspfahan all
other solvers to achieve a comparable accuracy. We notehthaccuracy of the solvédptSpace on problems
with rank 100 could not be improved by using a smaller tolerance. Of cqutsereported performances of all the
solvers involved were pertinent to their tested versiordeuthe specific testing environment. Improved performance
are possible for different parameter settings, on diffetest problems, or by different versions. However, gives th
magnitude of the timing gaps betwekMaFit and others, the speed advantagd-bfaFit should be more than
evident on these test problems. (We also tektddFit with the increasing rank strategy and found that it was not as
effective as the decreasing rank strategy on these randdrix m@ampletion problems.)

In Table[Z41, the item “tsvd” is the percentage of CPU timenspam SVD-related calculations, as estimated by
the MATLAB profiler and obtained from separate runs. As casden, fotAPGLandFPCASVD-related calculations
essentially dominate their total costs (with the exceptibextremely low-rank cases f&iPCA. On the other hand, for
LMaFit , the total cost is dominated by low-rank or sparse matrix &rix multiplications (which are also required
by other solvers), while the cost of solving the least sgaiareblem in[(Z.11lb) is either negligible or at ma$ts of
the total CPU time. Therefore, avoiding SVD-related caltohs is a main reason whyMaFit is much faster than
the nuclear norm minimization solveA®GLandFPCA validating our original motivation of solving the facteaition
model.

The next test was on large-scale random matrix completioblems in which we comparddviaFit with APGL
following the experiment setup given in section 4.2[of| [3The other solver§PCAandOptSpace were excluded
from this comparison since they would have demanded exee€8U times. Summaries of the computational results
are presented in Table_%.2 for noiseless data and Talle Ardbisy data, where both the noiseless and noisy data
were generated as in[31]. In these two table, “iter” dent¢thesnumber of iterations used, and “#sv” denotes the
rank of the recovered solution. The statistics containetthése two tables verify two key observations: (a) solving
the factorization model is reliable for matrix completion a wide range of problems, and (b) our nonlinear SOR
algorithm, as implemented itMaFit , has a clear speed advantage in solving many large-scdieprs.

4.3. Experiments on random low-rank approximation problens. We now consider applying matrix com-
pletion algorithms to randomly generated low-rank matpprximation problems. The goal is to find a low-rank
approximation to a mathematically full-rank matd{ whose singular values gradually tend to zero, though none
is exactly zero. Since there does not exist a “best low rantkixiian such approximations, any evaluation of solu-
tion quality must take into consideration of two competimiecia: rank and accuracy. The only clear-cut case of
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TABLE 4.2
Numerical results on large random matrix completion proldewithout noise.

Problem APGL LMaFit (K = [1.25r]) | LMaFit (K = [1.5r])

n r SR FR o iter #sv time relerr|iter #sv time relerr|iter #sv time relerr
1000 10 0.119 0.16f1.44e-2 39 10 2.47 3.04e{23 10 029 167e-4#23 10 0.28 1.73e-
1000 50 0.390 0.25p5.36e-2 40 50 14.48 3.08et418 50 1.88 6.58e-5618 50 2.04 7.62e-
1000 100 0.570 0.33#8.58e-2 53 100 49.67 3.98ef20 100 5.47 1.86e-421 100 5.99 1.42e-
5000 10 0.024 0.1661.37e-2 52 10 12.48 2.17et29 10 199 1.71e-429 10 217 1.77e-
5000 50 0.099 0.20p6.14e-2 76 50 161.82 1.26efR0 50 1587 2.72e-520 50 16.49 3.86e-
5000 100 0.158 0.25p1.02e-1 60 100 316.02 3.74ef#26 100 57.85 1.57e-427 100 60.69 1.47e-
10000 10 0.012 0.16p1.37e-2 53 10 2345 3.61ef434 10 5.08 1.54e-434 10 556 1.66e-
10000 50 0.050 0.20p5.97e-2 56 50 225.21 2.77e[23 50 4480 4.76e-523 50 48.85 5.70e-
10000 100 0.080 0.2509.94e-2 71 100 941.38 2.87¢f80 100 168.44 1.63e#430 100 176.45 1.70e-
20000 10 0.006 0.16ff1.35e-2 57 10 60.62 2.37e{438 10 12.46 1.44e-438 10 13.60 1.57e-
30000 10 0.004 0.16ff1.35e-2 59 10 9550 1.96ef439 10 20.55 1.71e-439 10 23.48 1.73e-
50000 10 0.002 0.16f1.35e-2 66 10 192.28 1.58ef#2 10 43.43 1.8le-#42 10 49.49 1.84e-
100000 10 0.001 0.16[/1.34e-2 92 10 676.11 2.10ef#46 10 126,59 1.33e-#46 10 140.32 1.30e-
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TABLE 4.3
Numerical results on large random matrix completion probéewith noise.

Problem APGL LMaFit (K = [1.257]) LMaFit (K = [1.5r])

n r SR FR o iter #sv time relerr|iter #sv time relerr|iter #sv time rel.err
1000 10 0.119 0.16f1.44e-2 39 10 2.94 4.53ei218 10 0.24 4.53e-£18 10 0.23 4.53e-
1000 50 0.390 0.25p5.36e-2 39 50 13.73 55lef2l7 50 1.76 5.5le-P17 50 193 5.5le-
1000 100 0.570 0.3348.59e-2 50 100 43.11 6.40ef2l7 100 4.70 6.40e-218 100 5.31 6.40e-
5000 10 0.024 0.1661.38e-2 46 10 12.71 4.5lef26 10 1.78 4.51e-P26 10 2.04 4.5le-
5000 50 0.099 0.20p6.14e-2 67 50 135.89 4.97ef219 50 15.05 4.97e-19 50 15.88 4.97e-
5000 100 0.158 0.25p1.02e-1 49 100 223.73 5.68ef2l8 100 39.81 5.68e-218 100 42.83 5.68e]
10000 10 0.012 0.16p1.37e-2 50 10 25.75 4.52e;29 10 4.41 452e-p29 10 4.86 4.52e-
10000 50 0.050 0.20p5.97e-2 51 50 187.84 4.99ef23 50 45.04 4.99e-P23 50 49.61 4.99e-
10000 100 0.080 0.2509.95e-2 58 100 681.45 5.73e;22 100 127.01 5.73e222 100 134.87 5.73e-
20000 10 0.006 0.16f1.35e-2 53 10 57.64 4.53e{23 10 11.21 4.53e-p33 10 13.27 4.53e-
30000 10 0.004 0.16ff1.35e-2 55 10 89.22 4.52e{B4 10 17.63 4.52e-p34 10 20.89 4.52e-
50000 10 0.002 0.16ff1.35e-2 58 10 173.07 4.53e[B7 10 40.24 4.53e-p37 10 4597 4.53e-
100000 10 0.001 0.16[/1.34e-2 70 10 517.36 4.53ef240 10 115.27 4.53e-40 10 123.81 4.53e-
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superiority is when one solution dominates another by batera, i.e., a lower rank approximation with a higher
accuracy.

In this experiment, all random instancesMf € R™*" were created as follows: two matricgés;, € R™*™ and
Mp € R™*™ with i.i.d. standard Gaussian entries are first generatedbraly; then)M and My are orthogonalized
to obtainU andV, respectively; finally the matrid/ = ULV T is assembled. HerE is a diagonal matrix whose
diagonal elements;, fori = 1,--- ,n, are either the power-law decaying, thatds,= i~3, or the exponentially
decaying, thatisy; = ¢~-3". Hence, all singular values are positive, and ther@@and46 entries whose magnitude
are greater thah0~° in these two types of, respectively. These diagonals are illustrated in Figiird<a) and (b).
The sampling procedures are the same as in {hake 4.2. Ir#hjste dimension and rank df were set tor = 500
andr = 10, respectively.

We compared_MaFit with the solversAPGLand FPCA[22]. The parameter for the model [I1.B) was set
to 10~%. The stopping tolerance for all solvers was setlto?. We set the parametersuncation = 1, and
truncation.-gap = 100 in APGL For LMaFit with est_rank = 1, we setK = 50 , and forLMaFit with
est_rank = 2, we setK = 1, rank max = 50 andrk_inc = 1. All other parameters were set to default values
for the two solvers. A summary of the computational resligresented in Table 4.4. We can see thMaFit with
est_rank = 2 was significantly better than other solvers. The decreasink strategy of MaFit , as it is currently
implemented withest_rank = 1, is clearly not suitable for these low-rank approximatiognljgjems since there is
no “true low rank” as in matrix completion problems. Spedilig, this strategy st_rank = 1) reduced the rank
estimate too aggressively.
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FIG. 4.4.lllustration of decaying patterns of the singular values
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(2) power-low decayings; = i3 (b) exponentially decayingr; = e~9-3¢

TABLE 4.4
Numerical results on approximate low-rank problems.

Problem | APGL FPCA [ CMaFit (est _rank=1) [ LMaFit (est _rank=2 )
SR FR| #sv_ time  relerr [#sv time relerr [#sv time relerr | #sv time rel.err
power-low decaying
0.04 0.99 1.00e-04 90 16.30 6.48e-011 40.49 1.39e-01 5 0.70 3.68e-01 | 11 0.31  8.96e-03
0.08 0.49/1.00e-04 85 19.95 2.00e-012 4581 4.38e-02 5 159 2.20e-01 | 20 0.60 1.13e-03
0.15 0.26/1.00e-04 7 1.73 4.05e-034 14.46 1.78e-02 5 1.47 1.52e-01 | 20 0.75 4.57e-04
0.30 0.13/1.00e-04 11 1.85 1.86e-034 31.48 1.04e-02 5 3.20 8.12e-02 | 22 1.33 2.36e-04
exponentially decaying

0.04 0.99 1.00e-04 100 15.03 7.50e-0114 35.79 5.05e-0L 5 0.48 3.92e-01 | 16 0.86 4.08e-01
0.08 0.49 1.00e-04 100 21.60 3.31e-018 39.82 1.24e-01 5 0.44 2.66e-01 | 26 1.84  1.98e-02
0.15 0.26/1.00e-04 100 17.43 4.71e-0213 12.31 2.76e-02 5 0.63 2.3%9e-01 | 28 1.62 7.26e-04
0.30 0.13[1.00e-04 42 9.50 3.31e-0314 29.13 1.71e-02 6 1.03 1.71e-01 | 30 2.01 2.38e-04

4.4. Experiments on “real data”. In this subsection, we consider low-rank matrix approxiorajproblems
based on two “real data” sets: the Jester joke date set [7ilentMovieLens data sef [12]. In these data set, only
partial data are available from the underlying unknown foesrwhich are unlikely to be of exactly low rank. Nev-
ertheless, matrix completion solvers have been appliedi¢ch problems to test their ability in producing low-rank
approximations. As is mentioned above, an assessment wiaolquality should take into consideration of both
rank and accuracy. The Jester joke data set consists of fobtgms “jester-1", “jester-2”, “jester-3" and “jester-
all”, where the last one is obtained by combining all of thetfihree data sets, and the MovieLens data set has
three problems “movie-100K”, “movie-1M” and “movie—lOI\H’ForLMaFit , We set the parameterstol = 1073,
est_rank = 2, K = 1, andrk_inc = 2. ForAPGL, the parameter setting was1l = 103, truncation = 1, and
truncation_gap = 20. In addition, the model parametgrfor APGLwas set tq: = 10~* which produced better
solutions than choosint) 3¢ as suggested by the testing scripts in the pack&®@L, whereos is the largest singu-
lar value of the sampling matrix. Moreover, we set the maximmank estimate to 80 for the jester problems and to
100 for the MovieLens problems for bottMaFit andAPGLby specifying their parametetank max Or maxrank,
respectively. We note that since the jester problems halyel®® columns, it is not meaningful to fit a matrix of rank
100 to a jester data set. Since the entries of a underlyingxmat are available only on an index s€t to measure

1They are available atww.ieor.berkeley.edu/ ~ Egoldberg/jester-data
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accuracy we computed the Normalized Mean Absolute Error AMas was used in[7, 22, B1], i.e.,

1
NMAE = [C——ITo] D Wiy = My,

(Tmax — T'min (i j)GQ

wherer,i, andr,.. are the lower and upper bounds for the ratings. Specificathhaver,,;, = —10 andr,,x = 10

for the jester joke data sets angd;, = 1 andr,., = 5 for the MovieLens data sets. We tried using a part of the
available data as was done in[31] and found thRGLgenerally returned solutions with slightly higher NMAE-
accuracy but also higher ranks than those returnedNdgFit , creating difficulties in interpreting solution quality
(though the speed advantageldflaFit was still clear). Therefore, we only report numerical resuking all the
available data in Table4.5, where “#asv” denotes the apmate rank of a computed solution defined as the total
number of singular values exceeding 5.

TABLE 4.5
Numerical results on “real data”.
Problem APGL LMaFit
name m/n “w iter time NMAE relerr #asyiter time NMAE relerr #as

jester-1 24983/100[1.00e-04 49 140.21 2.21e-02 1.73e-01 [80L7 44.30 2.50e-02 1.86e-01
jester-2 23500/ 100/1.00e-04 49 133.74 2.27e-02 1.74e-01 RNI8 43.11 2.56e-02 1.87e-01
jester-3 24938/100/1.00e-04 37 56.74 1.63e-06 9.57e-05 BPB5 28.60 4.06e-05 9.31e-04
jester-all 73421/100/1.00e-04 48 284.15 1.90e-02 1.62e-01 @804 96.47 2.03e-02 1.65e-01
moive-100K  943/1682 |1.00e-04 100 82.43 6.89e-04 1.26e-03 1807 24.59 9.95e-04 2.07e-03
moive-1M 6040/ 3706/1.00e-04 61 152.97 6.64e-02 9.59e-02 1000 60.25 6.78e-02 9.85e-02
moive-10M 71567/ 1067[71.00e-04 57 1639.86 7.83e-02 1.32e-01 1008 637.27 7.59e-02 1.29e-01

2l ol ol ool N =il
8M-J>O(AJOOOJ

As can be seen from Table #.BMaFit and APGLobtained low-rank approximation matrices of comparable
quality on the all the problems, whileMaFit ran more than twice as fast, and returned matrices of sjidgbwer
approximate ranks (except for “jester-all” and “movie-1QMt is particularly interesting to compare the two solser
on problem “jester-3” for which.MaFit reported a solution of rank 43 whilkPGLof rank 80. Even with a much
lower rank, the_MaFit solution is almost as accurate as &feGLsolution. Finally, we comment that without proper
rank restrictions, the jester problems do not appear to bd ggst problems for low-rank matrix approximation since
the matrices to be approximated have only 100 columns tonbedh. In fact, LMaFit with est_rank = 1 and
K=100 was able to find “solutions” of rank 100 after one itmmatwhose NMAE is of ordet0~1°.

4.5. Image and video denoising or inpainting.In this subsection we applyMaFit and APGLto grayscale
image denoising (similar to what was done(inl[22]) and to cweldeo denoising of impulsive noise for visualizing
solution quality. The task here is to fill in the missing pixalues of an image or video at given pixel positions that
have been determined to contain impulsive noise. This gmisealso called inpainting, especially when the missing
pixel positions are not randomly distributed. In their ameg forms, these problems are not true matrix completion
problems, but matrix completion solvers can be applied taiodow-rank approximations.

In the first test, thé12 x 512 original grayscale image is shown in Figlirel4.5(a), and wedated the SVD of the
image to get an image of rank 40 in Figlire]4.5(b). Figlresc} &§d 4.5(f) were constructed from Figukes 4.5(a) and
(b) by sampling half of their pixels uniformly at random, pestively. Figuré 4J5(i) was obtained by maskihg4%
of the pixels of Figur€4]54(b) in a non-random fashion. Wetlse parametersol = 1073, est_rank = 2, K = 20
andmax_rank = 50 for LMaFit , andtol = 1073, truncation = 1, truncation_gap = 20 andmaxrank = 50
for APGL The recovered images of Figufesl]4.5(c), (f) and (i) aredegiin Figure§ 4]5 (d) and (e), (g) and (h), and
(i) and (k), respectively. A summary of the computationalilés is shown in Table4.6. In the table, rel.err denotes the
relative error between the original and recovered imagesmRhese figures and the table, we can seelthktFit
can recover the images as well&BGLcan, but significantly faster.
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TABLE 4.6
Numerical results on image inpainting

problem APGL LMaFit

image r o iter #sv time relerr |iter #sv time relerr
(c) 512[1.34e-02 38 50 528 8.92e-0253 50 0.56 9.24e-02
[0) 40 | 1.34e-02 34 50 4.68 8.01e-0242 40 0.43 7.94e-02
(i) 40 | 251e-02 32 50 5.02 9.07e-0288 40 1.35 7.98e-02

Next, we apphyLMaFit andAPGLto fill in the missing pixels of a video sequence “xylophoneggh(available
with the MATLAB Image Processing Toolbox). The video cotsisf p frames and each frame is an image stored in
the RGB format, which is am,.-by-n,.-by-3 cube. Herem, = 240, n, = 320, andp = 141. The video was then
reshaped into &n, x n,.)-by-(3 x p), or 76800-by-423, matrid/. We sampled0% pixels of the video uniformly
at random. Three frames of the original video and the coording 50% masked images are shown in the first
and second rows of Figufe #.6, respectively. We set the mgametol = 1073, K = 20, rank max = 80 and
est_rank = 2 for LMaFit , andtol = 102, truncation = 1, truncation_gap = 20 andmaxrank = 80 for
APGL A summary of computational results is presented in Taldeadd the recovered images are shown in the third
and fourth rows of Figure4.6. From these figures, we can s faFit was able to restore the static part of the
video quite successfully, and the moving part of the vides stdl recognizable. Tab[e 4.7 shows tWRGLobtained
a slightly higher accuracy thanMaFit did, but the latter was about 5 times faster in reaching tineesarder of
accuracy.

TABLE 4.7
Numerical results on video inpainting
problem APGL LMaFit
video m/n “w iter #sv time rel.err | iter #sv time rel.err

xylophone 76800/423 3.44e+01 34 80 516.22 4.58e-0264 80 92.47 4.93e-02

We emphasize again that the purpose of the above image/d&temising or inpainting experiments was to visu-
alize the solution quality for the tested algorithms, rathen demonstrating the suitability of these algorithmlie
tasks of denoising or inpainting.

4.6. Summary of computational results. We performed extensive computational experiments on tassels
of problems: matrix completion and low-rank approximati@n the completion problems, our nonlinear SOR algo-
rithm, coupled with the decreasing rank strategy, has shygmaal recoverability, being able to solve almost all tested
problems as reliably as other solvers. We do point out thmettomnly generated matrix completion problems are numer-
ically well-conditioned with high probability. On the othieand, any solver, including ours, can break down in the face
of severe ill-conditioning. On low-rank approximation pfems where the concept of rank can be numerically blurry
and the quality of solutions less clear-cut, our nonlindaR%lgorithm, coupled with the increasing rank strategg, ha
demonstrated a capacity of producing solutions of conmipetifuality on a diverse range of test problems.

Our numerical results, especially those on matrix compitethave confirmed the motivating premise for our
approach that avoiding SVD-related calculations can lead mmuch accelerated solution speed for solving matrix
completion and approximation problems. Indeed, in oustestaFit has consistently shown a running speed that is
several times, ofter a couple of magnitudes, faster tharofi@ther state-of-the-art solvers.

5. Conclusion. The matrix completion problems is to recover a low-rank mdtom a subset of its entries. It
has recently been proven that, by solving a nuclear-norninmzation model, an incoherent low-rank matrix can be
exactly recovered with high probability from a uniformlynspled subset of its entries as long as the sample size is
sufficiently large relative to the matrix sizes and rank. His tpaper, we study the approach of solving a low-rank
factorization model for matrix completion. Despite thelaf a theoretical guarantee for global optimality due to
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FiG. 4.5.Image Denoising and Inpainting

(c) 50% masked original image

(i) 6.34% masked rank 40 image () APGL (k) LMaFit

model non-convexity, we have shown empirically that therapph is capable of solving a wide range of randomly
generated matrix completion problems as reliably as sglthe convex nuclear-norm minimization model. It remains
atheoretical challenge to prove, or disprove, that undéasie conditions the low-rank factorization model canged
solve matrix completion problems with high probability.

The main contribution of the paper is the development andlysiseof an efficient nonlinear Successive Over-
Relaxation (SOR) scheme that only requires solving a litesst-squares problem per iteration instead of a singular-
value decomposition. The algorithm can be started from gh@mver-estimate of the true matrix rank for completion
problems, or started from a small initial rank (say, ranket)Jow-rank approximation problems. Extensive numerical
results show that the algorithm can provide multi-fold deions over nuclear-norm minimization algorithms on
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FIG. 4.6.Video Denoising

original video

50% masked original video

recovered video byPGL

a wide range of matrix completion or low-rank approximatfmoblems, thus significantly extending our ability in
solving large-scale problems in this area.

In order to solve large-scale and difficult problems, furtfesearch on rank estimation techniques is still needed
to improve the robustness and efficiency of not only our digor, but also nuclear norm minimization algorithms
that use partial singular value decompositions rather fbirones. Given the richness of matrix completion and
approximation problems, different algorithms should bie &b find usefulness in various areas of applications.
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