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Abstract We present two strategies for warmstarting primal-dual interior
point methods for the homogeneous self-dual model when applied to mixed
linear and quadratic conic optimization problems. Common to both strategies
is their use of only the final (optimal) iterate of the initial problem and their
negligible computational cost. This is a major advantage when compared to
previously suggested strategies that require a pool of iterates from the solution
process of the initial problem. Consequently our strategies are better suited
for users who use optimization algorithms as black-box routines which usually
only output the final solution. Our two strategies differ in that one assumes
knowledge only of the final primal solution while the other assumes the avail-
ability of both primal and dual solutions. We analyze the strategies and deduce
conditions under which they result in improved theoretical worst-case complex-
ity. We present extensive computational results showing work reductions when
warmstarting compared to coldstarting in the range 30%–75% depending on
the problem class and magnitude of the problem perturbation. The compu-
tational experiments thus substantiate that the warmstarting strategies are
useful in practice.
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1 Introduction

The problem of warmstarting an optimization algorithm occurs when one
needs to solve a sequence of different but presumably related optimization
problems. Let x∗ denote the solution to an optimization problem P. The aim
is then to use the information contained in x∗ to initialize the optimization
algorithm at a particularly good (or warm) point when solving P̂, a related
but different problem. Hopefully this will enable us to solve P̂ using less com-
putational effort than had we not known or used x∗.

It is widely perceived that it is hard to warmstart interior point methods
(ipm). The main reason is that if the solution x∗ of P is on the boundary of
the feasible region, then x∗ is also close to the boundary for P̂ but not well-
centered. At an iterate that is close to the boundary but not well-centered,
ipms generally behave badly producing either ill conditioned linear systems
or search directions that allow only tiny step sizes. For that reason, progress
towards the solution of P̂ is very slow and often it would have been better
to simply coldstart the ipm. For the problem classes usually considered (this
work included) x∗ is effectively always on the boundary of P.

Different warmstarting strategies for ipms have previously been studied
in e.g. [6–8,10–12,30], most often for the case of Linear Programming (lp).
Common to several of these approaches is the requirement of more information
from the solution process of P than just the final solution x∗. In both [11] and
[30], for example, a pool of primal and dual (non-final) iterates from the solu-
tion process of P is required. Other approaches include (a) further perturbing
P̂ to move the boundary and in that way avoid tiny stepsizes [14] and (b)
allowing decreasing infeasibility of nonnegativity constraints yielding an “ex-
terior point” method, see e.g. [21]. Computational results from several of the
above references are generally positive in that they obtain reductions in the
number of interior point iterations on the order of about 50% when perturba-
tions are not too large. A problem often incurred, however, is a relatively costly
procedure to compute the warm point. This is in particular seen in the compar-
isons of different warmstarting schemes in [12]. Very recently, a warm-starting
method based on a slack-approach was introduced in [8]. Extra artificial vari-
ables are introduced to avoid any of the two above mentioned drawbacks and
the method exibits promising numerical results. For further information about
previous work on warmstarting ipms, see the thorough overview in [8].

The contribution of the present paper is to introduce two warmstart strate-
gies that use only the final optimal iterate of the solution of P and has low
computational complexity. One of the strategies, wp, uses only the primal opti-
mal solution x∗ while the other, wpd, uses the primal x∗ and the dual optimal
solution (y∗, s∗) of P. There are several reasons motivating these schemes.
Firstly, optimization software is often used as black-box subroutines that out-
put only final iterates. Hence intermediate non-optimal iterates or internal
algorithmic variables may not be available at all. In such a situation, both
strategies are useful. Secondly, sometimes just one optimization problem is to
be solved, but a user with technical insight into the particular problem may
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know a good guess for the optimal primal solution. This information should
be possible to utilize without requiring a guess for the dual solution as well.
In this situation, the strategy wp is useful.

It seems sensible to be modest in our expectations about the gains from
warmstarting an ipm. Let the linear program {minx c

Tx, s.t. Ax = b, x ≥ 0}
be denoted by lp(A, b, c) and let x∗ be its optimal primal solution. Megiddo
[15] showed in 1991 that the existence of a strongly polynomial time algorithm
for {given x∗, solve lp(A, b, c)} would imply the existence of a strongly poly-
nomial time algorithm for {solve lp(A, b, c)}. Here “solve” means (a) finding
an optimal solution and a certificate of optimality or (b) certify that no such
solution exists. Thus even checking whether a given point is primal optimal
(even if the point actually is a primal optimal solution) is likely to be as hard
as simply solving the problem from scratch.

In this paper we consider general convex conic optimization problems of
the form

minx c
Tx

s.t. Ax = b
x ∈ K

(1)

where x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm and K ⊆ Rn is a proper cone of the form

K = Rn`
+ × K(q1)

q × · · · × K(qnq )
q . (2)

Here, Rn`
+ denotes the positive orthant of dimension n` and K(k)

q denotes the
standard quadratic cone (or the Lorentz cone) of dimension k defined by

K(k)
q =

{
x ∈ Rk : x1 ≥ ‖(x2, . . . , xk)‖2

}
(3)

We are further assuming that m ≤ n and that A has full row-rank. We have
n = n` +

∑nq

j=1 qj and we will be using the notation ν = n` + nq. Notice
that if qj = 0 for all j, the problem (1) reduces to an lp in standard form. A
problem of the kind (1) is defined by the data A, b and c along with the cone
K defined by n` and q1, . . . , qnq

. We will only consider cases where the cone in

P is identical to the cone in P̂ so we need only consider changes in A, b and c.
We begin by presenting the Homogeneous and Self-Dual (hsd) model for

(1) and its dual in Section 2. We then analyze our warmstarting strategies from
a theoretical worst-case complexity viewpoint in Section 3. In Section 4, we
describe our ipm. Readers familiar with the standard concepts of homogeneous
primal-dual interior point methods for mixed linear and quadratic cones can
safely skip Section 4. Finally, in Section 5, we present extensive computational
results and conclude with directions for future work in Section 6.

2 Homogeneous Self-Dual Model

Convex optimization has a very strong duality theory that connects the primal
problem (1) to its dual, see e.g. [18]. Because of the strong relations between
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these two problems, modern interior point methods solve simultaneously the
two problems making use of information from one to help progress in the other.

Primal

minx c
Tx

s.t. Ax = b
x ∈ K

Dual

maxy,s b
T y

s.t. AT y + s = c
s ∈ K∗, y ∈ Rm

(4)

Here, K∗ denotes the dual cone of K, but when K is of the form (2), we have
K = K∗. Therefore we can employ the very efficient primal-dual symmetric
interior point methods [19,20]. However, instead of solving (4) directly, we
aim to solve the homogeneous and self-dual model [28] of problems (4). This
problem is slightly larger than the original problem, but in our situation there
are enough benefits to offset the modest extra cost incurred. We present this
model for the case that K = Rn, i.e. for linear programming.

For brevity, we will write z = (x, τ, y, s, κ) ∈ S := Rn+×R+×Rm×Rn+×R+

and we introduce

rp(z) = Ax− bτ
rd(z) = −AT y − s+ cτ

rg(z) = −cTx+ bT y − κ
µ(z) = (xT s+ τκ)/(ν + 1).

Now let z0 = (x0, τ0, y0, s0, κ0) ∈ S be some initial point. Assume θ is a scalar
variable. We then consider the problem

hsd

min(z,θ) θµ(z0)
s.t. Ax −bτ = θ rp(z

0)
−AT y +cτ −s = θ rd(z

0)
bT y −cTx −κ = θ rg(z

0)
rp(z

0)T y −rd(z0)Tx +rg(z
0)τ = µ(z0)

(5)

(x, τ) ≥ 0, (s, κ) ≥ 0, (y, θ) free.

The following lemma explains the advantages of solving (5) instead of (4):

Lemma 1 Assume (z, θ) is a solution of (5). Then θ = 0 and

(i) if τ > 0 then (x, y, s)/τ is optimal for (4);
(ii) if κ > 0 then, one or both of bT y > 0 and cTx < 0 hold. If the first holds,

then (4) is primal infeasible. If the second holds, then (4) is dual infeasible.

So any solution to (5) with τ + κ > 0 provides either an optimal solution to
our original problems (4) or a certificate of infeasibility of (one of) the original
problems. See [13,25,29] for a proof and further details.

Advantages of using the hsd-model thus include the ability to detect infea-
sibilities in the problem and particularly the ease of finding a suitable starting
point will be of importance to us later. This latter property also eliminates
the need for a Phase I procedure in the interior point method.
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3 Warmstarting

Since (5) is a linear program, we may solve it using any algorithm for linear
programming that generates a solution with τ + κ > 0. The point z0 used in
generating the hsd-model is by construction a feasible point for the problem, so
we can use a feasible-start ipm initialized in z0 to solve the problem. To obtain
the best known complexity, we could, for example, apply the Mizuno-Todd-Ye
feasible predictor-corrector interior point algorithm [17]. If we initialize this
algorithm in z0, the worst-case iteration complexity to obtain a solution or an
infeasibility-certificate to (4) at the tolerance ε (see Section 4.3) is given by

O
(√
n log (Ψ(z0)/ε)

)
, where Ψ(z) = max {µ(z), ‖rp(z)‖, ‖rd(z)‖} , (6)

see particularly [29, pp. 169]. ‖ · ‖ denotes some norm. In practice when
solving the hsd-model, one usually initializes the algorithm from the point
c := (e, 1, 0, e, 1). Here e denotes the vector of all ones of length n and 0 de-
notes a zero-vector of length m. We will refer to starting from this point as
a cold start. To obtain a better worst-case complexity, we would need to ini-
tialize the algorithm in a point z0 satisfying Ψ(z0) < Ψ(c), which is certainly
satisfied if

µ(z0) < µ(c), ‖rp(z0)‖ < ‖rp(c)‖, ‖rd(z0)‖ < ‖rd(c)‖. (7)

For the above complexity result to hold, the initial point z0 must lie in the
central-path neighborhood N2(η), defined by

N2(η) = {z ∈ S : ‖(x ◦ s, τκ)− µ(e, 1)‖2 ≤ ηµ}, for η ∈ (0, 1). (8)

where ◦ denotes elementwise product of vectors of equal length. That is,
(v ◦ w)i = viwi for all i. Since µ(c) = 1, we clearly have c ∈ N2(η), but
we must generally make sure that our initial point is in N2(η).

3.1 Warm Starting Points

Now let x∗ be the primal optimal solution and (y∗, s∗) the dual optimal solu-
tion of a linear program P. Further let λ ∈ [0, 1) and µ0 > 0 be (user chosen)
parameters. We propose the following two starting points for the initialization
of a related but different linear program P̂:

(wp)


x0 = λx∗ + (1− λ)e
s0 = µ0(x0)−1

y0 = 0
τ0 = 1
κ0 = µ0

(wpd)


x0 = λx∗ + (1− λ)e
s0 = λs∗ + (1− λ)e
y0 = λy∗

τ0 = 1
κ0 = (x0)T s0/n

(9)

Here, (x0)−1 denotes the elementwise reciprocal of x0. Much computational
experience [1,2,23] indicates that the starting point c seems to work well for
the initialization of an interior point method to solve the hsd-model. We can
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view the starting point wpd as a convex combination of (x∗, y∗, s∗) and c.
Thus, hopefully, wpd is a point closer (in some sense) to the solution of P̂, but
incorporation of (1−λ)c introduces enough centrality to avoid tiny step sizes.
The point wp is identical to wpd for the primal variable, but, as we restrict
ourselves to using only primal information, we cannot do the same for the dual
variables. Instead we choose s0 so that the point is perfectly centered and has
a prescribed duality gap, namely µ0.

Since strategy wp uses only the primal solution x∗, it is especially suited
for situations where just one optimization problem is to be solved, but the
user may have a qualified guess at a point close to the primal optimal solution
or for some other reason, only the primal optimal solution to P is available.
The strategy wpd uses the full primal-dual solution (x∗, y∗, s∗) and is hence
suited for the situation where a sequence of optimization problems is to be
solved and a black-box routine for solving (4) that outputs (x∗, y∗, s∗) is used
internally as a part of a larger program. We will see several examples of both
in Section 5.

Our goal in the rest of this section is, for each of the two starting points,
to deduce conditions under which they satisfy (7). We remark that (7) are
sufficient conditions for Ψ(z0) < Ψ(c) but not necessary since no attention is
paid to which term in (6) is the dominating one.

3.2 Comparison of Primal and Dual Residuals

We first introduce some notation consistent with that of [8]. The original lp
instance P consists of the data triplet d◦ = (A◦, b◦, c◦). We will denote the
perturbation by ∆d = (∆A,∆b,∆c) so that the perturbed problem P̂ has data

d = (A, b, c) = d◦ +∆d = (A◦, b◦, c◦) + (∆A,∆b,∆c).

As in [8], we will measure the relative magnitude of perturbation between the
two problems by the quantities (α, α′, β, γ), defined via:

‖∆A‖ ≤ α‖A◦‖
‖∆AT ‖ ≤ α′‖A◦T ‖
‖∆b‖ ≤ β‖b◦‖
‖∆c‖ ≤ γ‖c◦‖.

We are now ready to present three lemmas that, for both wp and wpd, state
when their primal and dual residuals are smaller than those of c.

Notice that rp(wp) = rp(wpd) so the lemma below applies to both points:

Lemma 2 Define δp = max {(‖x∗‖+ ‖e‖)α, 2β}. If

δp ≤
‖A◦e− b◦‖
‖A◦‖+ ‖b◦‖
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then
‖rp(wp)‖ = ‖rp(wpd)‖ ≤ ‖rp(c)‖.

Proof If λ = 0, rp(wp) = rp(c) so the statement holds trivially. For λ ∈ (0, 1),

rp(wp) = Ax0 − bτ0

= λ(Ax∗ − b) + (1− λ)(Ae− b)
= λ(∆Ax∗ −∆b) + (1− λ)rp(c).

Therefore,

‖rp(wp)‖ ≤ λ(α‖A◦‖‖x∗‖+ β‖b◦‖) + (1− λ)‖rp(c)‖.

Similarly,

‖rp(c)‖ = ‖Ae− b‖ = ‖A◦e− b◦ +∆Ae−∆b‖
≥ ‖A◦e− b◦‖ − (α‖A◦‖‖e‖+ β‖b◦‖)

and therefore,

‖rp(c)‖ − ‖rp(wp)‖ ≥ ‖rp(c)‖ − λ(α‖A◦‖‖x∗‖+ β‖b◦‖)− (1− λ)‖rp(c)‖
= λ‖rp(c)‖ − λ(α‖A◦‖‖x∗‖+ β‖b◦‖) ⇒

1

λ
(‖rp(c)‖ − ‖rp(wp)‖) ≥ ‖rp(c)‖ − (α‖A◦‖‖x∗‖+ β‖b◦‖)

≥ ‖A◦e− b◦‖ − (α‖A◦‖‖e‖+ β‖b◦‖)
− (α‖A◦‖‖x∗‖+ β‖b◦‖)

= ‖A◦e− b◦‖ − (‖x∗‖+ ‖e‖)α‖A◦‖ − 2β‖b◦‖
≥ ‖A◦e− b◦‖ − δp (‖A◦‖+ ‖b◦‖) . (10)

The statement then follows after a rearrangement of (10) ≥ 0. ut

We remark that the preceding lemma is very similar in nature to the ones
found in [8, sec. 3.1].

The dual parts of wp and wpd are not identical. Let us begin with wp:

Lemma 3 Define ψ = ‖e‖−1 (‖c− e‖ − ‖c‖). If

ψ ≥ µ0(1− λ)−1

then
‖rd(wp)‖ ≤ ‖rd(c)‖.

Proof We have ‖rd(c)‖ = ‖c− e‖ and

‖rd(wp)‖ = ‖c− µ0(x0)−1‖
≤ ‖c‖+ µ0‖(x0)−1‖
≤ ‖c‖+ µ0(1− λ)−1‖e‖

The statement follows by using this latter inequality to show that ‖rd(c)‖ −
‖rd(wp)‖ ≥ 0 by simple rearrangement. ut
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The statement for rd(wpd) is very similar to the one in Lemma 2:

Lemma 4 Define δd = max {α′‖y∗‖, 2γ}. If

δd ≤
‖c◦ − e‖

‖A◦T ‖+ ‖c◦‖

then

‖rd(wpd)‖ ≤ ‖rd(c)‖.

Proof If λ = 0, rd(wpd) = rd(c), so the statement holds trivially. For λ ∈ (0, 1),
we get from manipulations similar to those in Lemma 2 that

rd(wpd) = λ(−∆AT y∗ +∆c) + (1− λ)rd(c) ⇒

‖rd(wpd)‖ ≤ λ(α′‖A◦T ‖‖y∗‖+ γ‖c◦‖) + (1− λ)‖rd(c)‖.

Similarly, ‖rd(c)‖ = ‖c◦ +∆c− e‖ ≥ ‖c◦ − e‖ − γ‖c◦‖. Therefore,

‖rd(c)‖ − ‖rd(wpd)‖ ≥ λ‖rd(c)‖ − λ(α′‖A◦T ‖‖y∗‖+ γ‖c◦‖) ⇒
1

λ
(‖rd(c)‖ − ‖rd(wpd)‖) ≥ ‖rd(c)‖ − (α′‖A◦T ‖‖y∗‖+ γ‖c◦‖)

≥ ‖c◦ − e‖ − γ‖c◦‖ − (α′‖A◦T ‖‖y∗‖+ γ‖c◦‖)

= ‖c◦ − e‖ − α′‖A◦T ‖‖y∗‖ − 2γ‖c◦‖

≥ ‖c◦ − e‖ − δd
(
‖A◦T ‖+ ‖c◦‖

)
(11)

The statement then follows after a rearrangement of (11) ≥ 0. ut

The three preceding lemmas state conditions under which the primal and
dual residuals, for each of the two points, are smaller in norm than those of
c. Combined with the lemmas in the following section, this will allow us to
present conditions under which we obtain an improved worst-case complexity.

3.3 Comparison of Centrality and Complementarity Gap

We also need results about the centrality and initial penalty value µ(z0) of
our warm points.

We start with wp, for which the situation is particularly simple: We have
µ(wp) = µ0 directly from the definition of wp. So for a better initial comple-
mentarity gap than the cold start, we must choose µ0 ≤ 1 = µ(c). Now let us
apply this to Lemma 3: Assume that ψ ≥ 0. The condition in Lemma 3 states

µ0(1− λ)−1 ≤ ψ ⇔
(1− λ) ≥ µ0/ψ ⇔

λ ≤ 1− µ0/ψ. (12)
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Since we must take λ ∈ [0, 1), (12) implies that we must require µ0 ≤ ψ.
We remark that the condition of Lemma 3 can only be satisfied if ψ > 0,
which is a rather strong requirement. Notice also that wp is perfectly centered,
so it automatically satisfies any neighborhood requirement imposed by the
algorithm.

For wpd, the situation is more complicated: Define

ξ = eT (x∗ + s∗)/n.

We can then state the following lemma which expresses when the initial com-
plementarity of wpd is smaller than that of c:

Lemma 5 If

ξ ∈ (0, 2] or

ξ > 2 and λ ≥ 1− 1

ξ − 1
(13)

then
µ(wpd) ≤ 1.

Proof We have

x0 ◦ s0 = (λx∗ + (1− λ)e) ◦ (λs∗ + (1− λ)e)

= λ2(x∗ ◦ s∗) + (1− λ)2e+ λ(1− λ)(x∗ + s∗)

= λ(1− λ)(x∗ + s∗) + (1− λ)2e (14)

where we used that x∗ ◦ s∗ = 0. Therefore

µ(wpd) =
(x0)T s0 + τ0κ0

n+ 1
=

(x0)T s0 + (x0)T s0

n

n+ 1
=

(x0)T s0

n

=
1

n
eT (x0 ◦ s0) = λ(1− λ)ξ + (1− λ)2 (15)

µ(wpd) ≤ 1 ⇔
λ(1− ξ) ≤ 2− ξ (16)

Clearly, (16) holds for ξ ∈ [0, 2] because λ ∈ (0, 1). If ξ > 2, then (16) is
equivalent to λ ≥ (2− ξ)/(1− ξ) = 1− 1/(ξ − 1). ut

Lemma 5 imposes a lower bound on λ when ξ > 2. Notice that as ξ →∞, the
lower bound approaches 1, collapsing the width of the interval for λ to zero,
because λ ∈ [0, 1].

The situation for wpd is further complicated by the fact that it, unlike wp,
is not necessarily in N2(η). Let us define the quantity

π = ‖ξ−1(x∗ + s∗)− e‖2.

The following lemma gives conditions under which wpd is sufficiently central.



10 Skajaa, Andersen, Ye

Lemma 6 If

λξ(π − η) ≤ η(1− λ) (17)

then

wpd ∈ N2(η).

Proof First notice that τ0κ0−µ(wpd) = 0 so this term does not contribute in
the norm in (8). Now from (14) and (15) we obtain

x0 ◦ s0 − µ(wpd)e = λ(1− λ)(x∗ + s∗) + (1− λ)2e (18)

− λ(1− λ)ξe− (1− λ)2e

= λ(1− λ) (x∗ + s∗ − ξe) ⇒
‖(x0 ◦ s0, τ0κ0)− µ(e, 1)‖ = λ(1− λ)ξπ

Therefore using (17):

λξ(π − η) ≤ η(1− λ) ⇒
λξπ ≤ η(λξ + (1− λ)) ⇒

λ(1− λ)ξπ ≤ η(λ(1− λ)ξ + (1− λ)2) ⇒
‖(x0 ◦ s0, τκ)− µ(e, 1)‖ ≤ ηµ(wpd)

which is the statement. ut

We now have a lower bound (13) and an upper bound (17) on λ so we can
determine conditions under which there is a non-empty interval for λ which
will imply that wpd is sufficiently central and simultaneously has smaller initial
complementary gap than c:

Lemma 7 Define the following quantities:

q =
η

ξπ + η(1− ξ)
, ξ1 =

ξ − 1

ξ
, ξ2 =

(ξ − 1)2

ξ(ξ − 2)
, ξ3 = ξ1/ξ2 =

ξ − 2

ξ − 1
.

We can then distinguish the following cases, all of which have the same con-
clusion, which is stated afterwards:

1: Assume 0 < ξ ≤ 1. If λ ∈ (0, q),
2(a): Assume 1 < ξ ≤ 2 and π ≤ ηξ1. If λ ∈ (0, 1),
2(b): Assume 1 < ξ ≤ 2 and π > ηξ1. If λ ∈ (0, q),
3(a): Assume ξ > 2 and π ≤ ηξ1. If λ ∈ (ξ3, 1),
3(b): Assume ξ > 2 and ηξ1 < π ≤ η. If λ ∈ (ξ3, 1),
3(c): Assume ξ > 2 and η < π < ηξ2. If λ ∈ (ξ3, q),

then

µ(wpd) ≤ 1 and wpd ∈ N2(η).
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Proof First notice that if ξ ≤ 1, then Lemma 5 imposes no restriction on λ,
so the lower bound on λ is 0. If ξ ≤ 1, then 1 − ξ ≥ 0 so (17) can be written
(after some simple manipulation) as λ ≤ q.

If 1 < ξ ≤ 2 then the lower bound on λ is still 0, for the same reason as
above. However, (17) may now be written

λ [ξπ + η(1− ξ)] ≤ η. (19)

The expression in the hard brackets might be negative, which happens if π ≤
η(ξ − 1)/ξ = ηξ1. In this case, the condition (19) turns into λ ≥ q, but then
q < 0, so this is already satisfied for λ ≥ 0. Thus if π ≤ ηξ1, we can allow
λ ∈ (0, 1). If on the other hand π > ηξ1, the expression in the hard brackets
of (19) is positive, and we can write it simply as λ ≤ q.

If ξ > 2, Lemma 5 requires λ ≥ (ξ − 2)/(ξ − 1) = ξ3 while Lemma 6 only
imposes an upper bound on λ if π > ηξ1. In this case, the two lemmas require
λ ∈ (ξ3, q), which is only a non-empty interval if q > ξ3. This latter inequality
holds precisely when π < ηξ2. This accounts for all cases. ut

3.4 Summary

Using all of the Lemmas 2–7, we can now summarize the conditions under
which we get better worst-case complexity for each of the two points. We
begin with wp:

Proposition 1 If

1. δp := max {(‖x∗‖+ ‖e‖)α, 2β} ≤ (‖A◦‖+ ‖b◦‖)−1‖A◦e− b◦‖
2. ‖c− e‖ ≥ ‖c‖
3. we choose µ0 ∈ (0, ψ) and finally
4. we choose λ ∈ (0, 1− µ0/ψ)

then starting in wp results in a better worst-case complexity than a coldstart.

Similarly for wpd:

Proposition 2 If

1. δp := max {(‖x∗‖+ ‖e‖)α, 2β} ≤ (‖A◦‖+ ‖b◦‖)−1‖A◦e− b◦‖
2. δd := max {α′‖y∗‖, 2γ} ≤ (‖A◦T ‖+ ‖c◦‖)−1‖c◦ − e‖ and
3. the conditions of one of the six cases of Lemma 7 are satisfied,

then starting in wpd results in a better worst-case complexity than a coldstart.

Thus we have established sufficient conditions under which we have improved
worst-case complexity by warmstarting. We are, however, aware of the appar-
ent gap between ipm complexity theory and state-of-the-art implementations,
which in most cases perform much better than the worst case complexity esti-
mates. Indeed, the algorithm described in the following sections is in practice
usually superior to the predictor-corrector algorithm for which we have just
derived complexity estimates relating warmstarts to coldstarts. It is therefore
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more fruitful to think of the results above as conceptual and purely theoret-
ical justifications. That is, these statements should be seen as an attempt to
show the existence of conditions under which the warmstarting strategies im-
ply improved worst-case performance for the best-known algorithm in terms of
theoretical complexity. However whether the warmstart strategies are effective
in practice for the practically best-known algorithm shall be determined via
computational experiments. For that reason, we devote the rest of the paper to
such experiments. In the following section we present the actual algorithm used
in experiments. Then, we show a series of computational evidences supporting
the effectiveness of the warmstart strategies in Section 5.

4 Symmetric Primal-Dual Interior Point Algorithm

To carry out numerical experiments, we have implemented in Matlab a sym-
metric primal-dual interior point method called ccopt. It uses the Nesterov-
Todd scaling and Mehrotra’s second order correction. Following [2], we give
in this section a brief overview of the algorithm. We consider first the case
of linear programming, i.e. K = Rn+, and then show how we handle the more
general quadratic cones (3). A reader familiar with the standard ideas in this
algorithm can safely skip this entire section. We use our own implementation
instead of other public domain software because it is then easier to modify,
control and monitor the algorithm. We remark that all of our source code is
publicly available1 and a reader can therefore reproduce and verify any of the
following computational experiments.

4.1 Simplified Homogeneous Self-Dual Model

Instead of solving (5), our algorithm solves a slightly simpler version known
as the simplified hsd-model [27]:

Ax− bτ = 0 (20)

−AT y − s+ cτ = 0 (21)

−cTx+ bT y − κ = 0 (22)

x ≥ 0, s ≥ 0, y ∈ Rm, τ ≥ 0, κ ≥ 0 (23)

The hsd-model (5) and the simplied hsd-model (20)–(23) are closely related.
See [25,27] for results in this direction. The important points are that we
retain the ability to detect infeasibility and our warmstarting strategies are
still valid.

1 http://www2.imm.dtu.dk/~andsk/files/warmstart/downloadcode.html.
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4.2 Algorithm for Linear Programming

Assume z0 = (x0, τ0, y0, s0, κ0) ∈ K × R+ × Rm ×K × R+ is the initial point
and µ0 = µ(z0) its complementarity gap. We then define the central path,
parametrized by ρ ∈ [0, 1], for (20)–(23) by

Ax− bτ = ρ(Ax0 − bτ0) (24)

−AT y − s+ cτ = ρ(−AT y0 − s0 + cτ0) (25)

−cTx+ bT y − κ = ρ(−cTx0 + bT y0 − κ0) (26)

x ◦ s = ρµ0e (27)

τκ = ρµ0 (28)

The idea of a primal-dual interior point algorithm for the simplified hsd-model
is to loosely track the central path (24)–(28) towards a solution of (20)–(23).
Notice that (24)–(26) are the feasibility equations while (27)–(28) are relaxed
complementarity conditions. As ρ → 0, we are guided towards an optimal
solution for (20)–(23).

In each iteration we compute the direction (dx, dτ , dy, ds, dκ) which is the
solution to the system of linear equations (29)–(33):

Adx − bdτ = (σ − 1)(Ax− bτ) (29)

−AT dy − ds + cdτ = (σ − 1)(−AT y − s+ cτ) (30)

−cT dx + bT dy − dκ = (σ − 1)(−cTx+ bT y − κ) (31)

τdκ + κdτ = −τκ+ σµ− dτκ (32)

x ◦ ds + s ◦ dx = −x ◦ s+ σµe− dxs (33)

where (x, τ, y, s, κ) is the current iterate and µ its duality gap. The numbers
σ and dτκ and the vector dxs are computed by first solving (29)–(33) with
σ = dτκ = 0 and dxs = 0. Let us denote the solution to this (pure Newton)

system (d̂x, d̂τ , d̂y, d̂s, d̂κ). We then compute

α̂ = maxα

{
α : (x, τ, y, s, κ) + α(d̂x, d̂τ , d̂y, d̂s, d̂κ) ≥ 0

}
(34)

and set

σ = (1− α̂) min
(
0.5, (1− α̂)2

)
(35)

The Mehrotra second order correctors [16] dxs and dτκ are computed by

dτκ = d̂τ d̂κ and dxs = d̂x ◦ d̂s (36)

After computing σ, dτκ and dxs by (35)–(36) we compute the final search
direction by solving (29)–(33) again but with a now altered right hand side.
The iterate is then updated by taking a step of length α in this direction:
(x, τ, y, s, κ) := (x, τ, y, s, κ) + α(dx, dτ , dy, ds, dκ). It should be stressed that
only the right hand side changes so the factorization from the first solve can
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be used again. The step size α is chosen to be maximal under the conditions
that the iterate stays feasible in the cone and that the iterates stay within
a certain neighborhood of the central-path. See e.g. [29, pp. 128] for several
reasonable definitions of such a neighborhood.

4.3 Termination

Assume (x, τ, y, s, κ) is the current iterate and consider the following inequal-
ities:

‖Ax− τb‖∞ ≤ ε ·max {1, ‖[A, b]‖∞} (p)

‖AT y + s− cτ‖∞ ≤ ε ·max {1,
∥∥[AT , I,−c]∥∥∞} (d)∣∣−cTx+ bT y − κ

∣∣ ≤ ε ·max {1, ‖
[
−cT , bT , 1

]
‖∞} (g)∣∣cTx/τ − bT y/τ ∣∣ ≤ ε · (1 +

∣∣bT y/τ ∣∣) (a)

τ ≤ ε · 10−2 ·max {1, κ} (t)

τ ≤ ε · 10−2 ·min {1, κ} (k)

µ ≤ ε · 10−2 · µ0 (m)

We then terminate and conclude as follows:

(opt) (p) ∧ (d) ∧ (a)⇒ Feasible and optimal solution found
(infeas) (p) ∧ (d) ∧ (g) ∧ (t)⇒ Problem primal or dual infeasible

(illp) (k) ∧ (m)⇒ Problem ill-posed

In case (opt), the optimal solution (x, y, s)/τ is returned. If we find (infeas),
the problem is dual infeasible if cTx < 0 and primal infeasible if bT y > 0. The
number ε > 0 is a user-specified tolerance.

4.4 Generalization to Quadratic Cones

In order to handle the more general quadratic cones alongside the positive
orthant, it is necessary to modify only a few steps in the algorithm in Section
4.2. Notationally, this is facilitated by generalizing the product ◦ as follows
(see e.g. [23] for many more details). First define

ek+ := (1, 1, . . . , 1)T ∈ Rk

ekq := (1, 0, . . . , 0)T ∈ Rk

and for x ∈ Rk:

mat+(x) := diag(x) ∈ Rk×k

matq(x) :=

(
x1 xT2:k
x2:k x1Ik−1

)
∈ Rk×k
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For an x ∈ Rn`
+ ×Π

nq

j=1K
(qj)
q partitioned by x = (x+, x

(1)
q , . . . , x

(nq)
q ) we then

define

mat(x) = mat+(x+)⊕matq(x(1)q )⊕ · · · ⊕matq(x(nq)
q ) . (37)

where ⊕ denotes direct matrix sum. So mat(x) is a block-diagonal matrix,
where the blocks are the individual terms of the right-hand-side of (37). Sim-
ilarly, we re-define e := (en`

+ , e
q1
q , . . . , e

qnq
q ). If y ∈ K is partitioned in the same

manner as x, we finally re-define ◦ by

x ◦ y := mat(x) y

and the inverse

x−1 := mat(x)
−1
e.

It is easy to see that x ◦ x−1 = x−1 ◦ x = e.

When applying the algorithm to problems with mixed linear and quadratic
cones, the search direction is instead the solution to the linear equations (29)-
(32) and the equation

ΨB−1ds + ΨBdx = −ψ ◦ ψ + σµe− dxs. (38)

Here we have introduced the notation Ψ := mat(ψ) and ψ = Bx, where B is
a so called scaling matrix, chosen to ensure the primal-dual symmetry of the
algorithm (see e.g. [24] for more details). Several different choices for B exist
but in this algorithm we use the particularly interesting Nesterov-Todd scaling
[19,20], determined such that B satisfies Bx = B−1s. This scaling matrix has
proven very efficient in practice [2,23]. The numbers σ and dτκ are determined
as in Section 4.2, but now dxs is computed by

dxs = (Bd̂x) ◦ (B−1d̂s). (39)

We remark that all operations involving B can be carried out in O(n) floating

point operations. Thus for example computing Bx or B−1d̂s is negligible in
terms of computational effort. See [2] for more details. The termination criteria
are unchanged.

4.5 Modelling Free Variables

Some of the problems in Section 5 contain unrestricted (free) variables. Our
algorithm handles a free variable xf ∈ Rnf by introducing the extra variable t
and adding another standard quadratic cone constraint t ≥ ‖xf‖2. The entry
in c corresponding to t is set to zero. See [3] for a discussion of this approach.
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4.6 Solving the Linear Systems

In each iteration of the homogeneous and self-dual interior point method,
linear systems of the type (29)-(33) need to be solved. This system can be
solved by block-reducing it to obtain the normal equations, a system of the
form ADAT v = r where D is diagonal and strictly positive and v is the
unknown, see e.g. [1] for details. The matrix ADAT is symmetric and positive
definite, so we solve the equation using Cholesky factorization.

The matrix ADAT becomes increasingly ill-conditioned as an optimal point
is approached. For this reason, special handling of the factorization is usually
employed as the optimal point is approached [26]. In our Matlab-implemention
of ccopt, we switch from the standard chol to cholinc if numerical problems
are encountered with chol. Essentially cholinc perturbs small pivots during
the Cholesky factorization as is common practice, so the performance penalty
is insignificant. This approach often enables us to obtain a higher accuracy of
the solution than had we not switched to cholinc.

5 Numerical Results

In this section we present a series of computational results that support the
effectiveness of our warmstarting strategies. We first describe the general
methodology of our testing and then we present results for linear programs
and for mixed linear and quadratic conic problems.

5.1 General Methodology

When conducting numerical experiments with ccopt cold- and warmstarted,
we use the following procedure. We first solve P using ccopt and store the
solution (x∗, y∗, s∗). We then perturb P to obtain the new problem P̂ — how
we perturb depends on the type of problem and is described in each sub-
section below. We then solve P̂ using ccopt coldstarted, denoted ccopt(c)
and ccopt warmstarted using just x∗ or (x∗, y∗, s∗) in the computation of
the warm point, denoted ccopt(wp) and ccopt(wpd) respectively. For each
warmstart, we use the measure

R =
#Iterations to solve P̂ warmstarted

#Iterations to solve P̂ coldstarted

to quantify the gain from warmstarting. If R < 1 the warmstarted run was
more efficient than the coldstarted and vice versa. For an entire set of problems
P1, . . . ,PK , we define G, the geometric mean of R1, . . . ,RK , i.e.

G = K
√
R1 · · ·RK

Further, we use the following rules:
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1. If the solution status of P was different from that of P̂, the problem was
discarded. By solution status we mean either opt, infeas or illp – see
Section 4.3.

2. If P was primal or dual infeasible, the problem was discarded. In this case
there is no reason to expect the final iterate of the algorithm to contain
any valuable information for the solution of P̂.

3. If P̂ was solved completely by the presolve procedures described in [4], the
problem was discarded. In this case, the number of main interior point
iterations can be considered zero, making comparison meaningless. This
happened only rarely for problems from the netlib-lp test set. We used
Mosek2 to carry out this test.

For linear programs, we have tested our warmstarting strategies both when
the solution (x∗, y∗, s∗) to P was generated by a coldstarted run of ccopt
and when it was generated by a simplex method3, which, unlike the ipm,
always returns a vertex (basic) solution. The warmstart strategies wp and wpd

performed equally well for both cases. This suggests that the ipm is capable
of truly using the information contained in the solution of P, regardless of
whether the final solution is an interior optimal or vertex solution and that
the effectiveness of warmstart is not a result of some special “ipm property”
of the specific solution produced by ccopt.

5.2 The Parameters λ and µ0

In all the following experiments, except the one presented in Section 5.6, we use
λ = 0.99 and µ0 = 1− λ = 0.01. There is no theoretically well-justified reason
for this choice. It is a heuristic choice motivated by numerical experience. The
experiment in Section 5.6 investigates the dependence on the parameter λ while
using µ0 = 1 − λ. The experiment shows that particularly the performance
of wp is somewhat sensitive to the choice of λ. Therefore, it is an interesting
topic of future interest to devise an adaptive method to choose the parameters
λ and µ0. In the present work, however, we use the static value of λ = 0.99
(except in Section 5.6) and always set µ0 = 1− λ.

5.3 Netlib Linear Programs

In this section we present results from running our warmstarted algorithm on
the linear programs in the netlib4 collection of test problems. We perturb the
original problem in a manner similar to the one introduced in [6] and reused in
[11]: Let v be a vector we want to perturb randomly (think of either b, c or the
vector of nonzeros of A). Assume v has M elements. An element in v is changed
if a [0, 1]-uniform randomly chosen number is less than min{0.1, 20/M}.

2 See www.mosek.com.
3 We used the simplex solver in Mosek.
4 http://www.netlib.org/lp/data/
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Fig. 1 Results from the netlib lp test set with λ = 0.99 and µ0 = 0.01. The box contains
90% of the problems, plusses are the remaining 10%. The dashed line is R = 1.0. The largest
solid line is the geometric mean and the smaller solid line is the median. The accuracy used
was ε = 10−6 (cf. Section 4.3). See text for further explanation of this figure.
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Thus on average, we change 10% but at most 20 elements of v. An element
vi is changed by setting

vi :=

{
δr if |vi| ≤ 10−6

(1 + δr)vi otherwise

where r is a number chosen randomly from a uniform distribution on [−1, 1].
The scalar δ is a parameter that controls the pertubation magnitude.

We present results for the three cases where v is either b, c or the nonzeros
of A. Figure 1 shows the value of R found for each problem in the test set.
This was done for all three types of perturbations and for two values of δ.
We observe that at these levels of δ, the gain in warmstarting using either
strategy is significant. Overall, we see a reduction in the geometric mean of
the number of iterations ranging from 34% to 52% when comparing ccopt(c)
to ccopt(wp) and 50% to 75% for ccopt(wpd). Usually about one in four
problems were discarded because of rules 1–3, Section 5.1. Clearly the gain is
smaller for the larger value of δ, compare Figures 1(a) and 1(b). Figure 2 on
the next page shows the relation between the magnitude of the perturbation
δ and reduction in the geometric mean of number of iterations. As expected,
we clearly observe that the reduction depends crucially on δ. The size of the
reduction is significant as long as δ is small enough. It is apparent that wpd is
consistently better than wp. This is of course reasonable since wpd uses more
information from the solution of P than wp. Notice, however, that the gap
between wp and wpd narrows as δ grows. This too is reasonable, because as
the problem is perturbed more, the information from the primal or the dual
points can no longer be expected to be good. Thus both behave more and
more like a coldstart.
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Fig. 2 Results from the netlib-lp test set with λ = 0.99 and µ0 = 0.01 and varying δ.
Each data point in the figure corresponds to solving the entire netlib-lp test set with the
problem-perturbation specified in the legend for a certain value of δ. All problems were solved
to the accuracy ε = 10−6 (cf. Section 4.3). See text for further explanation of this figure.
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5.4 Efficient Frontier Computation

An obvious candidate problem on which a warmstarting strategy should be
employed is that of computing the efficient frontier in the Markowitz portfolio
selection setting. The presentation here follows that of [5].

Assume that r ∈ Rn is a multivariate random variable modelling the return
of n different assets. Assume further that the mean vector µr and covariance
matrix Σr are known. If our initial holding in asset j is w0

j and we invest

xj , the portfolio after the investment period is w0 + x and thus the expected
return of the investment is rT (w0 +x). The risk of the investment is defined as
the variance of the return of the investment, namely (w0 + x)TΣr(w

0 + x) =
‖R(w0 + x)‖22 where R is a factor in the QR-factorization of Σ = QR. In
the classical Markowitz portfolio selection problem, one seeks to minimize risk
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while fixing a certain return t. That is, we solve

minx ‖R(w0 + x)‖2
s.t. r̄T (w0 + x) = t

eTx = 0
w0 + x ≥ 0

(40)

Here, r̄ denotes the mean of observed historical realizations of r and R is the
triangular factor from the QR-factorization of X̄ = (N − 1)−1/2(X − er̄T )
where X ∈ RN×n contains the returns of each asset over time. Notice that
X̄ is a scaled zero-mean version of the observed data in X. We do not allow
short-selling, so we also impose the constraint w0 + x ≥ 0. The problem (40)
can be reformulated in conic form as

minz,f,g f
s.t. r̄T z = t

Rz = g
eT z = eTw0

f ≥ ‖g‖2
z ≥ 0

(41)

and it is this version that we are solving using ccopt. The solution x is then
obtained via z = x + w0. Let f(t) denote the optimal value of (41) for a
requested return of t. The set of points (t, f(t)) for t ∈ [0,max (r̄)] is called
the efficient frontier. To compute this curve, we must solve a sequence of
problems of the type (41) where only t varies from problem to problem –
thus this entire computation is very well suited for a warmstarting scheme:
Compute the optimal solution of (41) for the first value of t and compute a
warm starting point using this solution as described in Section 3.1. Then solve
(41) for the next value of t, initializing the algorithm in the warm starting
point. We can then repeat this process for all following values of t using the
solution of (41) for the previous value of t to compute a warm starting point
for the next problem.

We use as the data matrix X the historically observed data from N daily
prices for the 500 stocks in the S&P500 stock index5. With N = 800, (41) is a
problem of the type (1) with A ∈ R502×1002 and nnz(A) = 126750. The results
are shown in Table 1. We see that the work is reduced by about 25% when
using wp and by about 60% if we use wpd.

5.5 Frequent Robust Portfolio Rebalancing

The Markowitz portfolio selection problem presented in the previous section
can be further generalized by assuming that the data X are uncertain but
belong to known uncertainty sets. The robust portfolio selection problem con-
sists in choosing the best possible portfolio while assuming that the worst case

5 See e.g. http://www.standardandpoors.com/indices/main/en/us
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ccopt(c) ccopt(wp) ccopt(wpd)
t f(t) iters iters R iters R

1.00000 0.0042 14 14 1.00 14 1.00
1.00013 0.0037 16 16 1.00 8 0.50
1.00027 0.0038 14 13 0.93 8 0.57
1.00040 0.0042 14 12 0.86 7 0.50
1.00053 0.0050 16 14 0.88 6 0.38
1.00067 0.0058 15 13 0.87 6 0.40
1.00080 0.0068 14 14 1.00 7 0.50
1.00093 0.0078 14 12 0.86 7 0.50
1.00107 0.0089 14 12 0.86 6 0.43
1.00120 0.0101 19 11 0.58 6 0.32
1.00133 0.0114 16 12 0.75 6 0.38
1.00147 0.0127 14 11 0.79 5 0.36
1.00160 0.0141 14 10 0.71 6 0.43
1.00173 0.0158 19 9 0.47 6 0.32
1.00187 0.0177 15 10 0.67 5 0.33
1.00200 0.0197 14 9 0.64 5 0.36
1.00213 0.0219 14 10 0.71 5 0.36
1.00227 0.0242 14 8 0.57 5 0.36
1.00240 0.0265 13 10 0.77 4 0.31
1.00253 0.0289 14 9 0.64 4 0.29
1.00267 0.0313 11 9 0.82 4 0.36
1.00280 0.0338 12 10 0.83 5 0.42
1.00293 0.0363 12 8 0.67 4 0.33
1.00307 0.0388 12 8 0.67 5 0.42
1.00320 0.0414 12 8 0.67 5 0.42

G 14.1 10.7 0.76 5.7 0.41

Table 1 Results from solving a series of Markowitz portfolio optimization problems, com-
bined comprising an efficient frontier. We used λ = 0.99 and µ0 = 0.01. The third column
shows the number of iterations spent solving the problem using ccopt from a coldstart.
The two column blocks to the right show the performance of wp and wpd. All problems were
solved to the accuracy ε = 10−6 (cf. Section 4.3).

scenario within the uncertainty sets is realized. The optimal such portfolio is
the solution of a second order cone program (socp). For a complete descrip-
tion of the model, see [9] — here we omit a detailed description of the model
as it is not the primary interest of this paper.

Instead, we focus on the following situation. On a certain trading day,
we can estimate the return and variance of each asset and their uncertainty
sets from historical data, for example from the past H trading days. This is
done as in Section 5.4 (see [9] for estimation of the uncertainty sets). We can
then compute a robust portfolio by solving the corresponding socp. A number
of trading days later (say, k days), we repeat this procedure, estimating the
relevant parameters over an equally long backwards time horizon, which is
now shifted by k days. If k is small compared to H, the new estimates of
the parameters are likely to be only slightly different from the previous ones.
Therefore we can compute a warm starting point using the solution of the
previous problem. This procedure can then be repeated.
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Fig. 3 Results from the portfolio rebalancing problems. The problem set contains 89 prob-
lems. The figure shows the number of iterations spent solving each problem from a cold start
(squares), the point wp (triangles) and the point wpd (circles) computed using the solution
of the previous problem. We used λ = 0.99 and µ0 = 0.01 for all problems.
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To facilitate future research in the field of warmstarting optimization algo-
rithms for socps, we have generated a sequence of such problems using data
from 2761 consecutive trading days from the stocks in the S&P500 stock in-
dex. Starting on day number 1001, we estimated returns and uncertainty sets
over the past H = 1000 days and repeated this procedure for every k = 20
trading days. The result is a problem set consisting of 89 neighboring socps
each with 2531 variables and 1527 linear constraints, of which only two do
not come from the introduction of slack variables. Of the 2531 variables, 2005
are non-negative and the rest belong to quadratic cones of dimensions 3, 21
and 502. The problems are stored in SeDuMi format (see [22]) in the Matlab
binary .mat-format and they are publicly available6.

Figure 3 shows the performance of wp and wpd on this set of problems.
We see that each problems is usually solved in about 20 iterations by ccopt
when started from a coldstart. Using warmstart from wp reduces the number
of iterations to about 10–13. Warmstarting from wpd reduces the number even
further to the range 4–15 iterations. The quantity G (defined in Section 5.1)
for wp and wpd was 0.5590 and 0.3985 respectively. We can conclude that for
these problems, our warmstarting strategies are highly effective.

5.6 Minimal Norm Vector in Convex Hull

In certain algorithms called bundle methods employed particularly in the field
of nonsmooth optimization, a series of vectors (gradients at the iterates) are
stored (in a bundle) and used in computing the next search direction and

6 http://www2.imm.dtu.dk/~andsk/files/warmstart/robpfrebalancing_probs.html.
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sometimes used to check stopping criteria. If the current bundle contains
g1, . . . , gk ∈ Rn, usually we will have k � n. At every iteration of these
algorithms, the vector with minimal norm in the convex hull of the vectors
g1, . . . , gk is needed. At the end of each iteration, the bundle is updated, for
example by removing one vector and replacing it by another one. We thus get
a sequence of related optimization problems to solve – hence another suitable
candidate for a warmstarting strategy.

Let G ∈ Rn×k be a matrix with g1, . . . , gk in the columns. The problem
of finding the minimal norm vector in the convex hull of g1, . . . , gk can be
formulated as

minx ‖Gx‖2
s.t. eTx = 1

x ≥ 0
or


min(x,t,y) t

s.t. Gx = y
eTx = 1
x ≥ 0
t ≥ ‖y‖2

(42)

The formulation on the right is in the standard conic form (1). If x∗ solves
this problem then Gx∗ is the vector we seek. Using the notation of (1), we
see that modifying G corresponds to changing the constraint matrix A of the
problem. We experiment numerically with this problem by first generating
G ∈ Rn×k randomly from a [−1, 1]-uniform distribution and then solving the
problem coldstarted – the solution is used in computing the warm points for
the modified problem. We then change one entire column of G to a vector in
Rn randomly chosen from the [−1, 1]-uniform distribution. The new problem
is then solved both cold- and warmstarted for 20 equidistantly distributed
λ ∈ [0, 0.99]. All this is done for 10 random instances, for n = 80 and two
values of k. The results (geometric means over the 10 random instances) are
shown in Figure 4. We clearly see, particularly for wp, that the best value of λ
depends on the problem (in this case on k). Again wpd consistently performs

 

 

(a) n = 80, k = 15

 

 

(b) n = 80, k = 70

Fig. 4 Results from solving (42). Geometric means of R over 10 random instances are
shown. We used the tolerance ε = 10−6 (cf. Section 4.3) and always used µ0 = 1 − λ.
Triangles denote wp, circles denote wpd.
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better than wp, producing improvements in the range 20%–40% depending on
problem and λ.

6 Conclusion and Future Work

In this paper, we have presented two new warmstarting strategies particularly
well suited for homogeneous interior point methods to solve convex conic op-
timization problems involving linear and quadratic cones. We have analyzed
them and given conditions under which each of them results in improved per-
formance over a standard coldstart. In contrast to several previous warmstart-
ing strategies, one of our strategies uses only the primal optimal point of the
previous problem to solve the next. The other strategy uses only the primal and
dual optimal solution but no intermediate iterates. This is significant in that it
allows users of black-box optimization algorithms to apply our warmstarting
strategy as part of a larger program where a series of related optimization
problems are subproblems that need to be solved. A further benefit of our
stategies is that they cost virtually nothing to compute.

We have presented extensive computational experiments with our warm-
starting strategies showing work reductions in the range of 30%–75%. Thus
the strategies are very effective in practice. This was shown both for linear
programming problems and quadratic programming problems, which we for-
mulated as general mixed linear and quadratic cone problems.

Our results apply to an interior point method used to solve the homoge-
neous model. It is an interesting question whether the presented warmstarting
strategies would work equally well when used in a primal-dual interior point
method applied to solve the original primal-dual pair of conic programs.

Using the general convex conic format, we expect to be able to easily gener-
alize our warmstarting strategies to the context of semidefinite programming.
This step simply involves the already known generalization of the Jordan prod-
uct ◦ to the cone of symmetric and semidefinite matrices, similar to what was
done in Section 4.4 for the quadratic cones. For that reason, we expect our
strategies to also be useful in algorithms for solving combinatorial optimiza-
tion problems. Here, problems are often reduced to solving a series of related
simpler continuous problems such as linear programs, quadratic programs or
semidefinite programs. Thus warmstarting is an obvious idea to improve com-
putational performance. In this situation, the number of variables in P and
P̂ may be different. In case it increases, we can add in components from the
standard cold starting point c in appropriate places. If the number of variables
on the other hand decreases, we simply drop those variables from the warm
starting point.
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