

Edinburgh Research Explorer

Large-scale optimization with the primal-dual column generation
method

Citation for published version:
Gondzio, J, Gonzalez-Brevis, P & Munari, P 2016, 'Large-scale optimization with the primal-dual column
generation method', Mathematical Programming Computation, vol. 8, no. 1, pp. 47-82.
https://doi.org/10.1007/s12532-015-0090-6

Digital Object Identifier (DOI):
10.1007/s12532-015-0090-6

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematical Programming Computation

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s12532-015-0090-6

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. May. 2024

https://doi.org/10.1007/s12532-015-0090-6
https://doi.org/10.1007/s12532-015-0090-6
https://www.research.ed.ac.uk/en/publications/be3b4fba-d6f2-42c2-84e5-23dc47aa6b7e

Large-scale optimization with the primal-dual column

generation method

Jacek Gondzio∗ Pablo González-Brevis† Pedro Munari‡

School of Mathematics, University of Edinburgh
The King’s Buildings, Edinburgh, EH9 3JZ, UK

Technical Report ERGO 13-014,
January 22, 2015.

Abstract

The primal-dual column generation method (PDCGM) is a general-purpose column gen-
eration technique that relies on the primal-dual interior point method to solve the restricted
master problems. The use of this interior point method variant allows to obtain subopti-
mal and well-centered dual solutions which naturally stabilizes the column generation. As
recently presented in the literature, reductions in the number of calls to the oracle and
in the CPU times are typically observed when compared to the standard column gener-
ation, which relies on extreme optimal dual solutions. However, these results are based
on relatively small problems obtained from linear relaxations of combinatorial applications.
In this paper, we investigate the behaviour of the PDCGM in a broader context, namely
when solving large-scale convex optimization problems. We have selected applications that
arise in important real-life contexts such as data analysis (multiple kernel learning prob-
lem), decision-making under uncertainty (two-stage stochastic programming problems) and
telecommunication and transportation networks (multicommodity network flow problem).
In the numerical experiments, we use publicly available benchmark instances to compare
the performance of the PDCGM against recent results for different methods presented in
the literature, which were the best available results to date. The analysis of these results
suggests that the PDCGM offers an attractive alternative over specialized methods since it
remains competitive in terms of number of iterations and CPU times even for large-scale
optimization problems.

Keywords: column generation; cutting plane method; interior point methods; convex
optimization; multiple kernel learning problem; two-stage stochastic programming; multi-
commodity network flow problem.

1 Introduction

Column generation is an iterative oracle-based approach which has been widely used in the
context of continuous as well as discrete optimization [14, 51]. In this method, an optimization
problem with a huge number of variables is solved by means of a reduced version of it, the
restricted master problem (RMP). At each iteration, the RMP is modified by the addition of
columns which are generated by the oracle (or, pricing subproblem). To generate these columns,
the oracle uses a dual solution of the RMP.

In the standard column generation, optimal dual solutions of the RMP are used in the oracle
to generate new columns. Since a simplex method is typically used to optimize the RMP,
these solutions correspond to extreme points of the dual feasible set of the RMP. As a result,
large variations are typically observed between dual solutions of consecutive column generation
iterations, a behavior that may cause the slow convergence of the method. In addition, when

∗School of Mathematics, University of Edinburgh, United Kingdom (j.gondzio@ed.ac.uk.)
†School of Engineering, Universidad del Desarrollo, Concepción, Chile (pablogonzalez@ingenieros.udd.cl)
‡Production Engineering Department, Federal University of São Carlos, Brazil (munari@dep.ufscar.br)

1

ar
X

iv
:1

30
9.

21
68

v2
 [

m
at

h.
O

C
]

 1
6

Fe
b

20
15

active-set methods, such as the simplex method, are used to solve the RMP, degeneracy may
adversely affect the performance of the column generation method. These drawbacks are also
observed in the cutting plane method [43], which is the dual counterpart of column generation.
Several alternatives to overcome such weaknesses have been proposed in the literature. Some
of them modify the RMP by adding penalty terms and/or constraints to it with the purpose of
limiting the large variation of the dual solutions [14,23,52,55]. Other alternatives use dual price
smoothing techniques [58, 69]. Finally, there exist variants of column generation which rely on
naturally stable approaches to solve the RMP, such as interior point methods [31,37,53,56].

The primal-dual column generation method (PDCGM) [37] is a variant which relies on well-
centered and suboptimal dual solutions of the RMPs. To obtain such solutions, the method
uses the primal-dual interior point algorithm [35]. The optimality tolerance used to solve the
restricted master problems is loose during the first iterations and it is dynamically reduced as
the method approaches optimality. This reduction guarantees that an optimal solution of the
original problem is obtained at the end of the procedure. Encouraging computational results
are reported in [37] regarding the use of the PDCGM to solve the relaxations of three widely
studied mixed-integer programming problems, namely the cutting stock problem, the vehicle
routing problem with time windows and the capacitated lot-sizing problem with setup times,
after applying a Dantzig-Wolfe decomposition [19] to their standard compact formulations.

In this paper, we extend the computational study presented in [37] by analyzing the perfor-
mance of the PDCGM applied to solve large-scale convex optimization problems. The appli-
cations considered in [37] have relatively small restricted master problems and the bottleneck
is in solving the oracle. On the other hand, the applications we address in the current paper
have large restricted master problems and the oracle subproblems are relatively easy to solve.
Hence, we evaluate the performance of PDCGM operating in very different conditions besides
addressing a broader class of optimization problems.

By large-scale problems we mean a formulation which challenges the current state-of-the-art
implementations of optimization methods, due to a very large number of constraints and/or vari-
ables. Furthermore, we assume that such formulation has a special structure which allows the use
of a reformulation technique, such as the Dantzig-Wolfe decomposition. Hence, large-scale refers
not only to size, but also structure. The problems we address arise in important real-life contexts
such as data analysis, decision-making under uncertainty and telecommunication/transportation
networks.

The main contributions of this paper are the following. First, we review three applications
which have gained a lot of attention in the optimization community in the past years and describe
them in the column generation framework. Second, we study the behavior of the PDCGM to
solve publicly available instances of these applications and compare its performance with recent
results of other stabilized column generation/cutting plane methods, which we believe are the
best results presented in the literature for the addressed problems. As a third contribution, we
make our software available for any research use.

The remainder of this paper is organized as follows. In Section 2, we describe the decom-
position principle and the column generation technique for different situations. In Section 3,
we outline some stabilized column generation and cutting plane algorithms which have proven
to be effective for the problems we deal with in this paper. In Sections 4, 5 and 6 we describe
the multiple kernel learning (MKL), the two-stage stochastic programming (TSSP) and the mul-
ticommodity network flow (MCNF) problems, respectively. In each of these three sections, we
present the problem formulation and derive the column generation components, namely the
master problem and oracle. Then, we report on computational experiments comparing the per-
formance of PDCGM with other state-of-the-art techniques. Finally, we summarize the main
outcomes of this paper in Section 7.

2 Reformulations and the column generation method

Consider an optimization problem stated in the following form

min cTx, s.t. Ax ≤ b, x ∈ X ⊆ Rn, (1)

2

where x is a vector of decision variables, X is a non-empty convex set and c ∈ Rn, A ∈ Rm×n and
b ∈ Rm are the problem parameters. We assume that without the presence of the set of linking
constraints Ax ≤ b, problem (1) would be easily solved by taking advantage of the structure of
X . More specifically, the n variable indices can be suitably partitioned into K subsets, such that
X is given by the Cartesian product X := X 1× · · · ×XK , in which the sets X k are independent
from each other. Following this notation, we have the partition x = (x1, . . . , xK) with xk ∈ X k
for every k ∈ K = {1, . . . ,K}.

We further assume that each set X k can be described as a polyhedral set, either equivalently
or by using a fine approximation as discussed later in Section 2.3. Hence, let P k and Rk

denote the sets of indices of all the extreme points and extreme rays of X k, respectively. With
this notation, we represent by xkp and xkr the extreme points and the extreme rays of X k, with

p ∈ P k and r ∈ Rk. Any point xk ∈ X k can be represented as a combination of these extreme
points and extreme rays as follows

xk =
∑
p∈Pk

λkpx
k
p +

∑
r∈Rk

λkrx
k
r , with

∑
p∈Pk

λkp = 1, (2)

with the coefficients λkp ≥ 0 and λkr ≥ 0, for p ∈ P k and r ∈ Rk. The Dantzig-Wolfe decomposi-
tion principle (DWD) [19] consists in using this relationship to rewrite the original variable vector
x in problem (1). Additionally, considering the partitions c = (c1, . . . , cK) and A = (A1, . . . , AK)
which are induced by the structure of X , we define , ckp := (ck)Txkp and akp := Akxkp for every

k ∈ K, p ∈ P k, and ckr := (ck)Txkr and akr := Akxkr for every k ∈ K, r ∈ Rk. By using this
notation, we can rewrite (1) in the following equivalent form, known as the master problem (MP)
formulation

min
λ

∑
k∈K

∑
p∈Pk

ckpλ
k
p +

∑
r∈Rk

ckrλ
k
r

 , (3)

s.t.
∑
k∈K

∑
p∈Pk

akpλ
k
p +

∑
r∈Rk

akrλ
k
r

 ≤ b, (4)

∑
p∈Pk

λkp = 1, ∀k ∈ K, (5)

λkp ≥ 0, ∀k ∈ K,∀p ∈ P k, (6)

λkr ≥ 0, ∀k ∈ K,∀r ∈ Rk. (7)

Notice that the coefficients in (2) are now the decision variables in this model. Constraints (4)
are called linking constraints as they correspond to the set of constraints Ax ≤ b in (1). The
convexity constraints (5) ensure the convex combination required by (2), for each k ∈ K. As a
result, the value of the optimal solution of (3)-(7), denoted by zMP , is the same as the optimal
value of (1).

2.1 Column generation

The number of extreme points and extreme rays in the MP formulation (3)-(7) may be excessively
large. Therefore, solving this problem by a direct approach is practically impossible. Moreover,
in many occasions the extreme points and extreme rays which describe X are not available and
have to be generated by a procedure which might be costly. Hence, we rely on the column
generation technique [22, 29, 51], which is an iterative process that works as follows. At each
outer iteration, we solve a restricted master problem (RMP), which has only a small subset of
the columns/variables of the MP. The dual solution of the RMP is then used in the oracle with
the aim of generating one or more new extreme points or extreme rays, which may lead to new
columns.

Then, if at least one of these new columns has a negative reduced cost, we add it to the RMP
and start a new iteration. This step is called an outer iteration, to differentiate to the inner

3

iterations which are the ones required to solve the RMP. The iterative process terminates when
we can guarantee that the optimal solution of the current RMP is also optimal for the MP, even
though not all the columns have been generated.

The RMP has the same formulation as the MP, except that only a subset of extreme points

and extreme rays are considered. In other words, the RMP is defined by the subsets P
k ⊆ P k

and R
k ⊆ Rk, k ∈ K. These subsets may change at every outer iteration by adding/removing

extreme points and/or extreme rays. Therefore, the corresponding RMP can be represented as

min
λ

∑
k∈K

∑
p∈Pk

ckpλ
k
p +

∑
r∈Rk

ckrλ
k
r

 , (8)

s.t.
∑
k∈K

∑
p∈Pk

akpλ
k
p +

∑
r∈Rk

akrλ
k
r

 ≤ b, (9)

∑
p∈Pk

λkp = 1, ∀k ∈ K, (10)

λkp ≥ 0, ∀k ∈ K,∀p ∈ P k, (11)

λkr ≥ 0, ∀k ∈ K,∀r ∈ Rk. (12)

The value of a feasible solution of the RMP (zRMP) provides an upper bound of the optimal
value of the MP (zMP), as this solution corresponds to a feasible solution of the MP in which

all the components in P k \ P k and Rk \Rk are equal to zero.
To verify if the current optimal solution of the RMP is also optimal for the MP, we use the

dual solutions. Let u ∈ Rm− and v ∈ RK represent the dual optimal solutions associated with
constraints (9) and (10), respectively. The oracle checks the dual feasibility of these solutions in
the MP by means of the reduced cost information. However, instead of calculating the reduced
costs for every single variable of the MP, the oracle solves a pricing subproblem of the type

SP k(u) := min
xk∈Xk

{(ck − uTAk)Txk}, (13)

for each k ∈ K. There are two possible cases: either subproblem (13) has a bounded optimal
solution, or its solution is unbounded. In the first case, the optimal solution corresponds to an
extreme point xkp of X k. Let zkSP (u, v) = (ck−uTAk)Txkp−vk be the reduced cost of the variable

associated to the column which is generated by using xkp. If this reduced cost is negative, then

p ∈ P k\P k and xkp defines a new column that should be added to the RMP. On the other hand, if

SP k(u) has an unbounded solution, then we take the direction of unboundedness as an extreme
ray xkr for this problem. The reduced cost in this case is given by zkSP (u, v) = (ck − uTAk)Txkr .
If this reduced cost is negative, xkr defines a column which must be added to the RMP. By
summing over all the negative reduced costs, we define the value of the oracle as

zSP (u, v) :=
∑
k∈K

min{0; zkSP (u, v)}. (14)

By using this value, we obtain the following relationship at any outer iteration of the column
generation method

zRMP + zSP (u, v) ≤ zMP ≤ zRMP . (15)

When zSP (u, v) = 0, dual feasibility has been achieved and hence the optimal solution of the
RMP is also an optimal solution of the MP.

The standard column generation based on optimal dual solutions as we have just described
is known to have several drawbacks, specially when the simplex method is used to optimize the
RMPs. In such case the resulting dual solutions correspond to extreme points of the dual feasible
set. This typically leads to large oscillations of consecutive dual solutions (bang-bang effect), in

4

particular at the beginning of the iterative process (heading-in effect) [51,67]. Moreover, optimal
dual solutions contribute also to the tailing-off effect, a slow progress of the method close to
termination. All these drawbacks may result in a large number of calls to the oracle, slowing
down the column generation method (similar issues can be observed in a cutting plane context).
Therefore, several stabilization techniques have been proposed to overcome these limitations.
In Section 3, we recall some of the techniques which have been successfully used within the
applications that we address in this paper.

2.2 Aggregated formulation

Formulation (3)-(7) is often called the disaggregated master problem, as each column in that
formulation comes from an extreme point or an extreme ray of only one set X k, k ∈ K. The
separability of the sets X k is reflected in the master problem formulation, as we have master
variables λk associated to each set X k, k ∈ K, and K convexity constraints in (5). In some
situations, it may be interesting to keep the variables aggregated in the master problem, e.g.
when the number K is too large so that the disaggregated formulation has a relatively large
number of constraints and columns, as pointed out in [61]. Hence, we can use the aggregated
formulation of the master problem, in which we do not exploit the structure of X explicitly
when defining the master variables. More specifically, let P and R be the sets of indices of
extreme points and extreme rays of X , respectively. Any given point x ∈ X can be written as
the following combination

x =
∑
p∈P

λpxp +
∑
r∈R

λrxr, with
∑
p∈P

λp = 1, (16)

where xp and xr are extreme points and extreme rays of X . By replacing this relationship in
problem (1) and using the notation cp := cTxp and ap := Axp for every p ∈ P and cr := cTxr
and ar := Axr for every r ∈ R, we obtain the aggregated master problem formulation

min
λ

∑
p∈P

cpλp +
∑
r∈R

crλr, (17)

s.t.
∑
p∈P

apλp +
∑
r∈R

arλr ≤ b, (18)

∑
p∈P

λp = 1, (19)

λp ≥ 0, ∀p ∈ P, (20)

λr ≥ 0, ∀r ∈ R. (21)

Although this is not required, we can still exploit the separability of X at the subproblem level,
without changing (17)-(21). In such case, we obtain the extreme points and extreme rays in a
decomposed way from each set X k, k ∈ K, as in the disaggregated formulation. Then, we use
these extreme points or rays together in order to generate a new column. This can be done as any
extreme point/ray of X can be written as a Cartesian product of extreme points/rays from each
X k. In order to add this new column, one should use ap = A(x1

p, . . . , x
K
p) = A1x1

p+ . . .+AKxKp .

Notice that in the particular case of identical subproblems (i.e. X 1 = . . . = XK), with A1 =
. . . = AK and c1 = . . . = cK , we need to solve only one of the subproblems. In such case, it
is common to make a variable change in the master variables, as x1

p = . . . = xKp and the new
column becomes ap = A(x1

p, . . . , x
1
p) = KA1x1

p. In the applications that we address in sections 4
and 5, namely the multiple kernel learning problem and the two-stage stochastic programming
problem, we use aggregated formulations of the master problem as described here.

2.3 Generalized decomposition for convex programming problems

As pointed out in [27, 28] the principles of DWD are based on a more general concept known
as inner linearization. An inner linearization approximates a convex function by its epigraph so

5

its value at a given point is not underestimated. Similarly, DWD can be used to approximate
a convex set by means of the convex hull of points selected from the set. These points form
a base so that any point that belongs to the resulting convex hull can be written as a convex
combination of the points in the base. Hence, we can use the DWD to solve this approximated
problem, as observed in [17, Ch. 24]. The accuracy of the approximation depends on the points
that we include in the base. In Fig.1 we illustrate inner linearizations for a convex function and
a convex set, respectively.

x1

x2

x4

x3

x5

x1 x2 x3

Figure 1: Inner linearizations of a convex function and a convex set.

Let us consider a convex optimization problem defined as follows

min f(x), s.t. F (x) ≤ 0, x ∈ X ⊆ Rn, (22)

in which f : X → R and F : X → Rm are convex functions which are continuous in X . For
simplicity, we assume that X is a bounded set and that we have a fine base (x1, x2, . . . , x|Q|) ∈ X ,
where Q is a finite set of indices of points selected from X [27, 28]. By fine base, we mean a
(finite) set of points that provide an approximation as accurate as we require for X . Hence, a
point x ∈ X can be approximated by the convex combination of points in X as

x =
∑
q∈Q

λqxq, with
∑
q∈Q

λkq = 1. (23)

Since the function f in problem (22) is convex, the following relationship must be satisfied for
any x ∈ X

f(x) = f

∑
q∈Q

λqxq

 ≤∑
q∈Q

λqf (xq) . (24)

The right-hand side of (24) is an inner linearization of f(x), which can be used to describe f(x)
as closely as desired. As long as we choose the base appropriately, this approximation does not
underestimate the value of f(x). The same idea applies to F (x). By denoting fq = f(xq) and
Fq = F (xq), q ∈ Q, we could approximate problem (22) as closely as require with the following
linear master problem

min
λ

∑
q∈Q

fqλq, (25)

s.t.
∑
q∈Q

Fqλq ≤ 0, (26)

∑
q∈Q

λq = 1, (27)

λq ≥ 0, ∀q ∈ Q. (28)

Since the cardinality of Q is typically large, we use the column generation method to solve
(25)–(28).

6

In a given outer iteration, let u ∈ Rm− and v ∈ R be the dual optimal solutions associated
with constraints (26) and (27), respectively. We use u to call the oracle, which is given by the
following convex subproblem

SP (u) := min
x∈X

{f(x)− uF (x)}. (29)

An optimal solution of this subproblem results in a point of X . If SP (u)−v < 0, then the point
can be added to the current base in order to improve the approximation of X . Hence, we obtain
a new column of the master problem (25)-(28). The multiple kernel learning problem presented
in Section 4 has a master problem formulation which is similar to (25)-(28) and hence we apply
the ideas described above.

3 Stabilized column generation/cutting plane methods

There is a wide variety of stabilized variants of the column generation/cutting plane methods
[4, 8, 23, 31, 37, 44, 48, 52, 55, 61, 69]. In this section we briefly present some methodologies which
have proven to be very effective for the classes of problems addressed in this paper. For the sake
of the length of this paper, in this section we only describe a small subset of the many different
variants available in the literature.

3.1 ACCPM

The analytic center cutting plane method (ACCPM) proposed in [31, 33] is an interior point
approach that relies on central prices. This strategy calculates a dual point which is an approx-
imate analytic center of the localization set associated with the current RMP. This localization
set is given by the intersection of the dual space of the current RMP with the half-space provided
by the best lower bound found so far. Relying on points in the proximity of the analytic center
of the localization set usually prevents the unstable behavior between consecutive dual points
and also contributes to the generation of fewer and deeper constraints. When solving convex
optimization problems with nonlinear objective function, the ACCPM can take advantage of
second order information to enhance its performance [6]. An interesting feature of this approach
is given by its theoretical polynomial complexity [1, 32,45].

3.2 Bundle methods: Level set

Bundle methods [23,40,44] have become popular techniques to stabilize cutting plane methods.
In general, these techniques stabilize the RMP via a proximity control function. There are
different classes of bundle methods such as proximal [44], trust region [62] and level set [48],
among others. They use a similar Euclidean-like prox-term to penalize any large deviation in
the dual variables. The variants differ in the way they calculate the sequence of iterates. For
instance, the level set bundle method is an iterative method which relies on piece-wise linear outer
approximations of a convex function. At a given iteration, a level set is created using the best
bound found by any of the proposed iterates and the best solution of the outer approximation.
Then a linear convex combination is considered to create the level set bound. Finally, the next
iterate is obtained by minimizing the prox-term function subject to the structural constraints
and the level set bound constraint [48].

3.3 PDCGM

The primal-dual column generation method (PDCGM) was originally proposed in [38] and fur-
ther developed in [37]. A very recent attempt of combining this method in a branch-and-price
framework to solve the vehicle routing problem with time windows can be found in [57]. Warm-
starting techniques for this method have been proposed in [34, 36]. The method relies on sub-
optimal and well-centered RMP dual solutions with the aim of reducing the heading-in and

7

tailing-off effects often observed in the standard column generation. Given a primal-dual feasi-
ble solution (λ̃, ũ, ṽ) of the RMP (8)-(12), which may have a non-zero distance to optimality, we
can use it to obtain upper and lower bounds for the optimal value of the MP as follows

zUB(λ̃) :=
∑
k∈K

∑
p∈Pk

ckpλ̃
k
p +

∑
r∈Rk

ckr λ̃
k
r

 , (30)

zLB(ũ, ṽ) := bT ũ+
∑
k∈K

ṽk. (31)

The solution (λ̃, ũ, ṽ) is called sub-optimal or ε-optimal solution, if it satisfies

0 ≤
(
zUB(λ̃)− zLB(ũ, ṽ)

)
≤ ε(10−10 + |zUB(λ̃)|), (32)

for some tolerance ε > 0. Additionally, the primal-dual interior point method provides well-
centered dual solutions since it keeps the complementarity products of the primal-dual pairs in
the proximity of the central path [35]. We say a point is well-centered if the following conditions
are satisfied

γµ ≤ (ckp − ũTakp − ṽk)λ̃kp ≤
1

γ
µ, ∀k ∈ K, ∀p ∈ P k, (33)

γµ ≤ (ckr − ũTakr)λ̃kr ≤
1

γ
µ, ∀k ∈ K, ∀r ∈ Rk, (34)

where γ ∈ (0, 1) and µ is the barrier parameter used in the primal-dual interior point algorithm
to define the central path [35].

The PDCGM dynamically adjusts the tolerance used to solve each restricted master problem
so it does not stall. The tolerance used to solve the RMPs is loose at the beginning and is
tightened as the column generation progresses to optimality. The method has a very simple
description that makes it very attractive (see Algorithm 1).

Algorithm 1 The Primal-Dual Column Generation Method

Input: Initial RMP; parameters κ, εmax > 0, D > 1, δ > 0.
Set: LB = −∞, UB =∞, gap =∞, ε = 0.5;

1: while (gap ≥ δ) do
2: find a well-centered ε-optimal solution (λ̃, ũ, ṽ) of the RMP;
3: UB = min{UB, zUB(λ̃)};
4: call the oracle with the query point (ũ, ṽ);
5: LB = max{LB, zLB(ũ, ṽ) + zSP (ũ, ṽ)};
6: gap = (UB− LB)/(10−10 + |UB|);
7: ε = min{εmax, gap/D};
8: if (zSP (ũ, ṽ) < 0) then add the new columns to the RMP;
9: end while

Remark 1 The PDCGM converges to an optimal solution of the MP in a finite number of outer
iterations. This has been shown in [37] based on the valid lower bound provided by an ε-optimal
solution and the progress of the algorithm even if columns with nonnegative reduced costs are
obtained.

Remark 2 Since close-to-optimality solutions of RMPs are used there is no guarantee of mono-
tonic decrease of the upper bound. Therefore, we update the upper bound using UB = min{UB, zUB(λ̃)}.

Remark 3 The only parameters PDCGM requires to be set are the degree of optimality denoted
by D and the initial tolerance threshold εmax.

Having described the PDCGM and two of the most successful stabilization techniques used
in column generation and cutting plane methods, we now describe three different applications
and compare the efficiency of these methods on them.

8

4 Multiple kernel learning problem (MKL)

Kernel based methods are a class of algorithms that are widely used in data analysis. They com-
pute the similarities between two examples xj and xi via the so-called kernel function κ(xj , xi).
Typically, the examples are mapped into a feature space by using a mapping function Φ, so that
κ(xj , xi) = 〈Φ(xj),Φ(xi)〉. In practice, one kernel may not be enough to effectively describe the
similarities between the data and therefore using multiple kernels provides a more accurate clas-
sification. However, this may be more costly in terms of CPU time. Several studies concerning
different techniques to solve the multiple kernel learning problem (MKL) are available in the
literature, such as [7, 46, 60, 64, 65, 70, 71]. For a thorough taxonomy, classification and compar-
ison of different algorithms developed in this context, see [39]. In this paper, we are interested
in solving a problem equivalent to the semi-infinite linear problem formulation proposed in [64]
which follows developments in [7] and that can be solved by a column generation method. We
have closely followed the developments of both papers, namely [7] and [64], keeping a similar
notation. In this section, we describe the single and multiple kernel learning problems in terms
of their primal and dual formulations. Then, for the MKL, we derive the column generation
components. Finally, we present two computational experiments with the PDCGM for solving
publicly available instances and compare these results against several state-of-the-art methods.

4.1 Problem formulation

We focus on a particular case of kernel learning known as the support vector machine (SVM)
with soft margin loss function [64]. As described in [68], the SVM is a classifier proposed for
binary classification problems and is based on the theory of structural risk minimization. The
problem can be posed as finding a linear discriminant (hyperplane) with the maximum margin
in a given feature space for n data samples (xi, yi), where xi is the d-dimensional input vector
(features) and yi ∈ {±1} is the binary class label. We start by describing the single kernel
problem and then extend the formulations to the multiple kernel case. In SVM with a single
kernel, the discriminant function has usually the following form

fw,b(x) = 〈w,Φ(x)〉+ b, (35)

where w ∈ Rs is the vector of weight coefficients, b ∈ R is the bias term and Φ : Rd → Rs is the
function which maps the examples to the feature space of dimension s ∈ Z+. Hence, we use the
sign of fw,b(x) to verify if an example x should be classified as either −1 or +1.

To obtain the vectors w and b which lead to the best linear discriminant, we can solve the
following SVM problem with a single kernel

min
w,ξ,b

1

2
||w||22 + C

∑
j∈N

ξj , (36)

s.t. yj (〈w,Φ(xj)〉+ b) + ξj ≥ 1, ∀j ∈ N , (37)

ξj ≥ 0, ∀j ∈ N , (38)

whereN = {1, . . . , n}, C ∈ R is a penalty parameter associated with misclassification and ξ ∈ Rn
is the vector of variables which measure the error in the classifications. In this formulation, the
first term in the objective function aims to maximize the distance between the discriminant
function and the features of the training data sample. This distance is called a margin and by
maximizing 1/||w||22 we keep this margin as large as possible [9]. The second term in the objective
function aims to minimize the misclassification of the data sample. The value of parameter C
determines the importance of each term for the optimization.

Let α ∈ Rn+ and γ ∈ Rn+ denote the vectors of dual variables associated to constraints (37) and
(38), respectively. To obtain the dual formulation of (36)–(38), we first define the Lagrangian
function:

L(w, ξ, b) =
1

2
||w||22 + C

∑
j∈N

ξj −
∑
j∈N

αj (yj (〈w,Φ(xj)〉+ b) + ξj − 1)−
∑
j∈N

γjξj .

9

Applying first order optimality conditions to the Lagrangian function and noting that α ∈ Rn+
and γ ∈ Rn+, we obtain the following conditions

w =
∑
j∈N

αjyjΦ(xj),

∑
j∈N

αjyj = 0,

0 ≤ αj ≤ C, ∀j ∈ N .

Then, by using these relationships in the Lagrangian function, we obtain the dual problem

max
α

∑
j∈N

αj −
1

2

∑
j∈N

∑
i∈N

αjαiyjyiκ(xj , xi), (39)

s.t.
∑
j∈N

αjyj = 0, (40)

0 ≤ αj ≤ C, ∀j ∈ N . (41)

Recall that we use κ(xj , xi) = 〈Φ(xj),Φ(xi)〉 to denote the kernel function which maps
Rd × Rd → R. This function induces a n × n kernel matrix with entries κ(xj , xi) for each
i, j ∈ N . Following [64], we only consider kernel functions which lead to positive semi-definite
kernel matrices, so (39)-(41) is a convex quadratic programming problem. Notice that in an
optimal solution α∗ of the dual problem (39)-(41), α∗j > 0 means that the j-th constraint in (37)
is active and, therefore, xj is a support vector.

For many applications and due to the nature of the data, a more flexible approach is to
combine different kernels. MKL aims to optimize the kernel weights (β) while training the
SVM. The benefit of using MKL is twofold. On the one hand, it finds the relevant features of a
given kernel much like the single kernel learning context, and on the other hand, it leads to an
improvement in the classification accuracy since more kernels can be considered. Similar to the
single kernel SVM, the discriminant function can be described as

fw,b,β(x) =
∑
k∈K

βk〈wk,Φk(x)〉+ b, (42)

where K represents the set of kernels (each corresponding to a positive semi-definite matrix)
with a different set of features and βk is the weight associated with kernel k ∈ K. We also have
that βk ≥ 0 for every k ∈ K and

∑
k∈K βk = 1. Similar to the single kernel learning problem, wk

and Φk(x) are the weight vector and the feature map associated with kernel k ∈ K, respectively.
The MKL problem was first formulated as a semi-definite programming problem in [46]. In [7],
the authors reformulated this problem as a second-order conic programming problem yielding a
formulation which can be solved by sequential minimal optimization (SMO) techniques.

Similar to the single kernel problem formulation (36)-(38), the MKL primal problem for
classification can be formulated as

min
v,ξ,b

1

2

(∑
k∈K

||vk||2

)2

+ C
∑
j∈N

ξj , (43)

s.t. yj

(∑
k∈K

〈vk,Φk(xj)〉+ b

)
+ ξj ≥ 1, ∀j ∈ N , (44)

ξj ≥ 0, ∀j ∈ N , (45)

where vk ∈ Rsk and sk is the dimension of the feature space associated with kernel k and
vk = βkwk, for every k ∈ K. As pointed out in [71], the use of v instead of β and w (as in (42))
makes problem (43)-(45) convex. This problem can be interpreted as (i) finding a linear convex
combination of kernels while (ii) maximizing the normalized distance between the features of the

10

training data sample and the discriminant function and (iii) minimizing the misclassification of
the data sample for each kernel function. Following [7], we associate α ∈ Rn+ with constraint
(44) so the dual formulation of (43)-(45) can be written as

max
α,ρ

−ρ, (46)

s.t. Sk(α)− ρ ≤ 0, ∀k ∈ K, (47)

α ∈ Γ, (48)

where for every k ∈ K

Sk(α) :=
1

2

∑
j∈N

∑
i∈N

αjαiyjyiκk(xj , xi)−
∑
j∈N

αj , (49)

κk(xj , xi) = 〈Φk(xj),Φk(xi)〉 and

Γ =

α |∑
j∈N

αjyj = 0, 0 ≤ αj ≤ C, ∀j ∈ N

 . (50)

Note that problem (46)-(48) is a quadratically constrained quadratic problem (QCQP) [50].
Since the number of training examples and kernel matrices used in practice are typically large, it
may become a very challenging large-scale problem. Nevertheless, this problem can be effectively
solved if we use the inner linearization technique addressed in Section 2.3.

4.2 Decomposition and column generation formulation

In this section we derive the master problem formulation and the oracle which are associated
with problem (46)-(48). All the developments closely follow Section 2. Let P be the set of indices
of points in the interior and boundaries of the set Γ. Since Γ is a bounded set, we can write any
α ∈ Γ as a convex combination of the points αp, p ∈ P . We need extreme as well as interior
points of Γ as Sk(α) is a convex quadratic function and therefore an attractive α may lie in the
interior of Γ. Using the developments presented in Section 2.3 the following master problem is
associated with (46)-(48)

min
ρ,λ

ρ, (51)

s.t. ρ−
∑
p∈P

λpS
k(αp) ≥ 0, ∀k ∈ K, (52)

∑
p∈P

λp = 1, (53)

λp ≥ 0, ∀p ∈ P. (54)

Note that we have changed the direction of the optimization problem and now we minimize ρ
(compare (46) with (51)). This change does not affect the column generation, but the value of
the objective function will have the opposite sign. Also, observe that ρ ∈ R only appears in the
master problem. It is worth mentioning that this master problem formulation is the dual of the
semi-infinite linear problem presented in [64]. Due to the large number of possible points αp ∈ Γ,
we rely on column generation to solve the MKL. The corresponding oracle is given by a single

pricing subproblem. Let β ∈ R|K|+ and θ ∈ R be the dual solutions associated with constraints

(52) and (53), respectively. We always have βk ≥ 0 for all k ∈ K. In addition, from the dual of
problem (51)-(54), we have that

∑
k∈K βk = 1. Indeed, it can be shown that the duals βk are

the weights associated with the kernels in K [64]. The subproblem is defined as

SP (β) := min
α∈Γ

{∑
k∈K

βkS
k(α)

}
. (55)

11

This subproblem turns out to be of the same form as a single kernel problem such as (39)-
(41), with κ(xj , xi) =

∑
k∈K βkκk(xj , xi). Therefore, an SVM solver can be used to solve the

subproblem. Finally, the value of the oracle is zSP (β, θ) := min{0;SP (β)−θ}, and a new column
is obtained if zSP (β, θ) < 0.

4.3 Computational experiments

To evaluate the efficiency of the PDCGM for solving the MKL, we have carried out computational
experiments using benchmarking instances from the UCI Machine Learning Repository data
sets [26]. The pricing subproblem (55) is solved by a state-of-the-art machine learning toolbox,
namely SHOGUN 2.0.0 [63] (http://www.shogun-toolbox.org/). The first set of experiments
replicates the settings proposed in [60]. Hence, we have selected 3 polynomial kernels of degrees
1 to 3 and 10 Gaussian kernels with widths 2−3, 2−2, . . . , 26. We have used these 13 kernels
to generate 13(d + 1) kernel matrices by using all features and every single feature separately,
where d is the number of features of the instance. We have selected 70% of the data as a training
sample and normalised it to unit trace. The remaining data (i.e., 30%) is used for testing the
accuracy of the approach. We have randomly generated 20 instances per data set. We have
chosen C = 100 as penalty parameter and the algorithm stops when the relative duality gap
drops below δ = 10−2 (standard stopping criterion for this application). The degree of optimality
was set to D = 10 and the initial RMP had only one column which was generated by solving
problem (55) with equal weights (i.e., βk = 1

|K|). A Linux PC with an Intel Core i5 2.3 GHz

CPU and 4.0 GB of memory was used to run the experiments (single thread).
In Table 1 we compare the performance of the PDCGM with the performances of three other

methods presented in [60], namely:

• SILP: The Semi-infinite linear programming algorithm was proposed in [64]; therein a
cutting plane method without stabilization is used to solve the dual of (51)-(54).

• simpleMKL: The simple subgradient descent method was proposed in [60]. The method
solves problem (43)-(45) with a weighted l2-norm regularization and an extra constraint
for the kernel weights. This constrained optimization problem is solved by a gradient
method on the simplex. The simpleMKL updates the descent direction by looking for the
maximum admissible step and only calculates the gradient of the objective function when
the objective function stops decreasing.

• GD: This is the standard gradient descent method which solves the same constrained opti-
mization problem as the simpleMKL. In this approach, a descent direction is recomputed
every time the kernel weights are updated.

The first column in Table 1 provides the name, size of the training sample (n) and number
of kernels (|K|) for each class of instances. For each method described in the second column,
we show the average results over 20 randomly generated instances of the corresponding class.
The first number represents the average while the second, the standard deviation. Columns 3
to 6 show the number of kernels with no vanishing values β at the optimal solution (# Kernel),
the accuracy (Accuracy(%)), the CPU time in seconds (Time(s)) and the number of calls to
the support vector machine solver (# SVM calls). Accuracy corresponds to the percentage of
correct classifications made by the resulting discriminant function.

From the results in Table 1, we can observe that the PDCGM solves all the instances in
less than 42 seconds on average. Also, it shows a variability of around 10% for the average
time. Below the PDCGM results, we have included the results presented in [60] for the same
statistics. For columns #Kernel, Accuracy and #SVM calls we have taken the results exactly
as they are given in [60], while the values in the column Time have been scaled by a factor
of 0.5 with respect to the originals. This is because these experiments were run on a Intel
Pentium D 3 GHz CPU and 3 GB of memory. Considering the benchmark available at https:

//www.cpubenchmark.net/singleThread.html, this machine has a score of 695 whereas the
machine we used has a score of 1331. Nevertheless, these CPU times are provided for information
only and indicate that PDCGM is competitive regarding CPU times with respect to the other

12

http://www.shogun-toolbox.org/
https://www.cpubenchmark.net/singleThread.html
https://www.cpubenchmark.net/singleThread.html

Table 1: MKL: comparison between PDCGM results and results reported in [60] for the SILP, simpleMKL and
GD when using 70% of the data as training sample and 20 instances per data set.

Instance Method # Kernel Accuracy(%) Time(s) # SVM calls

bupa/liver PDCGM 11.6 ± 2.2 68.6 ± 3.0 6.7 ± 0.6 10.1 ± 0.7
n = 242 SILP 10.6 ± 1.3 65.9 ± 2.6 23.8 ± 4.9 99.8 ± 20.0
|K| = 91 GD 11.6 ± 1.3 66.1 ± 2.7 15.7 ± 7.1 972.0 ± 630.0

simpleMKL 11.2 ± 1.2 65.9 ± 2.3 9.5 ± 6.3 522.0 ± 382.0

ionosphere PDCGM 10.2 ± 0.9 95.3 ± 2.0 41.4 ± 4.8 16.6 ± 1.8
n = 246 SILP 21.6 ± 2.2 91.7 ± 2.5 267.5 ± 52.5 95.6 ± 13.0
|K| = 442 GD 22.9 ± 3.2 92.1 ± 2.5 210.5 ± 31.0 873.0 ± 147.0

simpleMKL 23.6 ± 2.6 91.5 ± 2.5 61.5 ± 23.0 314.0 ± 44.0

pima PDCGM 9.2 ± 3.0 76.5 ± 1.6 41.4 ± 4.1 9.6 ± 0.9
n = 538 SILP 11.6 ± 1.0 76.5 ± 2.3 112 ± 18.5 157.0 ± 44.0
|K| = 117 GD 14.8 ± 1.4 75.5 ± 2.5 109.5 ± 12.0 2620.0 ± 232.0

simpleMKL 14.7 ± 1.4 76.5 ± 2.6 39.5 ± 6.5 618.0 ± 148.0

sonar PDCGM 9.8 ± 2.4 88.1 ± 2.9 22.6 ± 2.9 10.6 ± 1.5
n = 146 SILP 33.5 ± 3.8 80.5 ± 5.1 1145.0 ± 432.0 403.0 ± 53.0
|K| = 793 GD 35.7 ± 3.9 80.2 ± 4.7 234.5 ± 45.0 4000.0 ± 874.0

simpleMKL 36.7 ± 5.1 80.6 ± 5.1 81.5 ± 46.5 1170.0 ± 369.0

wpbc PDCGM 24.0 ± 16.8 80.0 ± 4.1 9.7 ± 1.0 8.9 ± 0.9
n = 138 SILP 13.7 ± 2.5 76.8 ± 1.2 44.3 ± 16.0 903.0 ± 187.0
|K| = 442 GD 16.8 ± 2.8 76.9 ± 1.5 53.0 ± 3.1 7630.0 ± 2600.0

simpleMKL 15.8 ± 2.4 76.7 ± 1.2 10.3 ± 3.1 2770.0 ± 1560.0

methods. In addition to that, the results reported in the last column of Table 1 clearly
demonstrate that the PDCGM requires fewer calls of the SVM solver than any of the other
three methods. Particularly, if we compare the SILP and the PDCGM results, we can observe
how much can be gained by using a natural stabilized column generation method over the
unstabilized version. Also, the method seems to be at least as effective as the other methods
since it provides a similar or higher level of accuracy and a smaller number of kernels for most
of the data sets. This indicates that PDCGM could find more efficient weights to combine the
available kernels. Finally, an important observation is that the simpleMKL can warmstart the
SVM solver due to the small variation from iteration to iteration in the kernel weights and
therefore an excessively large number of calls to the SVM solver does not translate into an
excessively large CPU time [60]. The other three methods (SILP, GD and PDCGM) do not rely
on this feature.

In a second set of computational experiments, we have used the same database [26] to generate
instances following the experiments presented in [70]. The only difference with the previous
experiments is that we now use 50% of the data available as training sample and the other 50%
for testing purposes. This second set of experiments allows us to compare our approach against
the SILP and simpleMKL (already described) and the extended level method (LSM), a state-of-
the-art implementation to solve the MKL [70]. The LSM belongs to a family of bundle methods
and it considers information of the gradients of all previous iterations (as the SILP) and computes
the projection onto a level set as a way of regularizing the problem (as the simpleMKL). The
results of the PDCGM and the results reported in [70] solving the MKL problem are presented
in Table 2.

In this case we have omitted the number of calls to the SVM solver since this information
was not reported in [70]. Comparing Table 1 and Table 2 one can observe that for the same
databases, namely ionosphere, pima, sonar and wpbc, the time and accuracy have decreased
when considering 50% of training sample instead of 70%. These results are expected since the
problem sizes are smaller when a 50% training sample is used. The PDCGM solves all the
instances in less than 21 seconds on average showing again a small variability on this metric.
The machine used in [70] has similar characteristics to the one used to run our experiments (Intel
3.2 GHz and 2 GB of RAM memory). Therefore, we have kept the results as they appeared
in [70]

The results obtained with the PDCGM demonstrate that the method is reliable with a
performance similar to the state-of-the-art solver, such as the LSM. Moreover, the performance
of the PDCGM seems to be more stable than those of the other methods showing the smallest
standard deviation on CPU times for every instance set considered. Similar to the previous

13

Table 2: MKL: comparison between PDCGM results and results reported in [70] for the SILP, simpleMKL and
LSM when using 50% of the data as training sample and 20 instances per data set.

Instances Method # Kernel Accuracy(%) Time(s)

breast PDCGM 8.1 ± 1.4 96.9 ± 0.7 4.2 ± 0.5
n = 342 SILP 10.6 ± 1.1 96.6 ± 0.8 54.2 ± 9.4
|K| = 130 simpleMKL 13.1 ± 1.7 96.6 ± 0.9 47.4 ± 8.9

LSM 13.3 ± 1.5 96.6 ± 0.8 4.6 ± 1.0

heart PDCGM 10.2 ± 3.8 82.4 ± 2.1 3.5 ± 0.2
n = 135 SILP 15.2 ± 1.5 82.2 ± 2.0 79.2 ± 38.1
|K| = 182 simpleMKL 17.5 ± 1.8 82.2 ± 2.2 4.7 ± 2.8

LSM 18.6 ± 1.9 82.2 ± 2.1 2.1 ± 0.4

ionosphere PDCGM 12.8 ± 9.2 95.0 ± 1.5 20.9 ± 3.6
n = 176 SILP 24.4 ± 3.4 92.0 ± 1.9 1161.0 ± 344.2
|K| = 455 simpleMKL 26.9 ± 4.0 92.1 ± 2.0 33.5 ± 11.6

LSM 25.4 ± 3.9 92.1 ± 1.9 7.1 ± 4.3

pima PDCGM 10.1 ± 3.5 76.4 ± 0.9 20.1 ± 1.1
n = 384 SILP 12.0 ± 1.8 76.9 ± 2.1 62.0 ± 15.2
|K| = 117 simpleMKL 16.6 ± 2.2 76.9 ± 1.9 39.4 ± 8.8

LSM 17.6 ± 2.6 76.9 ± 2.1 9.1 ± 1.6

sonar PDCGM 9.4 ± 2.8 86.4 ± 2.5 11.1 ± 2.3
n = 104 SILP 34.2 ± 2.6 79.3 ± 4.2 1964.3 ± 68.4
|K| = 793 simpleMKL 39.8 ± 3.9 79.1 ± 4.5 60.1 ± 29.6

LSM 38.6 ± 4.1 79.0 ± 4.7 24.9 ± 10.6

vote PDCGM 10.4 ± 1.2 95.5 ± 0.9 4.9 ± 0.4
n = 218 SILP 10.6 ± 2.6 95.7 ± 1.0 26.3 ± 12.4
|K| = 221 simpleMKL 14.0 ± 3.6 95.7 ± 1.0 23.7 ± 9.7

LSM 13.8 ± 2.6 95.7 ± 1.0 4.1 ± 1.3

wdbc PDCGM 8.9 ± 1.8 96.8 ± 0.9 13.1 ± 1.6
n = 285 SILP 12.9 ± 2.3 96.5 ± 0.9 146.3 ± 48.3
|K| = 403 simpleMKL 16.6 ± 3.2 96.7 ± 0.8 122.9 ± 38.2

LSM 15.6 ± 3.0 96.7 ± 0.8 15.5 ± 7.5

wpbc PDCGM 9.1 ± 1.3 77.7 ± 2.8 4.2 ± 0.5
n = 99 SILP 17.2 ± 2.2 76.9 ± 2.8 142.0 ± 122.3
|K| = 442 simpleMKL 19.5 ± 2.8 77.0 ± 2.9 7.8 ± 2.4

LSM 20.3 ± 2.6 76.9 ± 2.9 5.3 ± 1.3

results, and in terms of number of kernels with non-vanishing weights and accuracy, the PDCGM
seems to be as effective as the SILP, simpleMKL and the LSM.

In additional experiments, we have tested the performance of the PDCGM and the LSM
(bundle method), leaving aside the influence of the SVM solvers. The LSM implementation uses
the optimization toolbox MOSEK (http://www.mosek.com) to solve the auxiliary subproblems.
As the results indicate, the PDCGM shows less variability than the LSM regarding the CPU
time spent on solving the RMPs. In addition, the PDCGM bottleneck is in the SVM solver
(solving the subproblem) unlike the LSM where the bottleneck is in building the cutting plane
model and computing the projection onto the level set (solving the restricted master problem).
Indeed, the experiments show that the time required by the PDCGM to solve the RMPs does
not exceed 2% of the total CPU time on average. Therefore, combining the PDCGM with a
more efficient and well-tuned SVM solver implementation may lead to large savings with respect
to the state-of-the-art approaches.

5 Two-stage stochastic programming problem (TSSP)

The stochastic programming field has grown steadily in the last decades. Currently, stochastic
programming problems can be used to formulate a wide range of applications which arise in
real-life situations. For an introduction to stochastic programming we refer the interested reader
to [13,42]. The two-stage stochastic linear programming problem (TSSP) deals with uncertainty
through the analysis of possible outcomes (scenarios). Several solution methodologies based on
column generation and cutting plane methods have been proposed to deal with this class of
problems [8, 12, 61, 66, 72]. The TSSP can be posed as two interconnected problems. One of
them called the recourse problem containing only the second-stage variables and the other one
called the first-stage problem which takes into consideration information related to the recourse
problem but only optimizes over the set of first stage variables.

14

http://www.mosek.com

The first-stage problem can be stated as

min
x

cTx+ E[Q(x, ω)], (56)

s.t. Ax = b, (57)

x ≥ 0, (58)

where c ∈ Rn is the vector of cost coefficients, x ∈ Rn is the vector of first-stage variables
(which are scenario independent), ω ∈ Ω is the realization of a random event and Ω the set of
possible events, A ∈ Rm×n is a scenario independent matrix and b ∈ Rn the corresponding right
hand side. Additionally, E[Q(x, ω)] represents the expected cost of all possible outcomes, while
Q(x, ω) is the optimal value of the second-stage problem defined by

min
y

q(ω)T y(ω), (59)

s.t. W (ω)y(ω) = h(ω)− T (ω)x, (60)

y(ω) ≥ 0, (61)

where y is the vector of second-stage variables and W , T , h and q are matrices and vectors which
depend on the realization of the random event ω.

5.1 Problem formulation

If we assume that set Ω is discrete and that every realization has a probability of occurrence
associated with it, the TSSP problem can be stated as a deterministic equivalent problem (DEP)
of the following form

min
x,y

cTx+
∑
i∈S

piq
T
i yi, (62)

s.t. Ax = b, (63)

Tix+Wiyi = hi, ∀i ∈ S, (64)

x ≥ 0, (65)

yi ≥ 0, ∀i ∈ S, (66)

where S is the set of possible scenarios and pi is the probability that scenario i occurs, with
pi > 0 for every scenario i ∈ S. Also, qi ∈ Rñ is the column vector cost associated with the
second-stage variables yi ∈ Rñ for every i ∈ S. For completeness we also define Ti ∈ Rm̃×n,
Wi ∈ Rm̃×ñ and hi ∈ Rm̃ for every i ∈ S.

When modeling real-life situations, the DEP is a large-scale problem. Due to the structure
of A, Ti and Wi, this formulation has an L-shaped form [66] and can be solved using Benders
decomposition [10], which can be seen as the dual counterpart of the DWD. Thus, to obtain a
suitable structure for applying the DWD, we need to work on the dual of problem (62)-(66).
By associating the vector of dual variables η ∈ Rm to constraints (63) and θi ∈ Rm̃ to (64), for
every i ∈ S, the dual of the DEP can be stated as

max
η,θ

bT η +
∑
i∈S

hTi θi, (67)

s.t. AT η +
∑
i∈S

TTi θi ≤ c, (68)

WT
i θi ≤ piqi, ∀i ∈ S. (69)

Note that in both problems, the primal and the dual, the number of constraints is proportional
to the number of scenarios and therefore decomposition techniques are often used to solve them.
The number of constraints of the dual (primal) problem is n+ñ|S| (m+m̃|S|). One may attempt
to solve any of these problems directly with a simplex-type or interior point method; however,
it has been shown that by using decomposition approaches one can solve very large problems
whereas a direct method may fail due to the number of scenarios considered [66,72].

15

5.2 Decomposition and column generation formulation

The master problem associated with DEP formulation (67)-(69) is derived in this section. Also,
we describe the subproblem which turns out to be the dual of the recourse problem (59)-(61)
and decomposable by scenario. As in [72], we are interested in the aggregated version of the
master problem.

The problem decomposes naturally in scenarios having (68) as the linking constraints. Let
us define

Θi =
{
θi |WT

i θi ≤ qi
}
,∀i ∈ S, (70)

and Θ = Θ1 × Θ2 × . . . × Θ|S|. Note the slight difference between (70) and the set defined by
constraints (69). This is similar to the substitution used in [18] where the dual variable associated
with the constraint in (70) for a given scenario is divided by their corresponding probability, pi.
We assume that (70) describes a non-empty convex polyhedron. Note that unlike the other two
problems studied in this paper (i.e., MKL and MCNF), the set defined by (70) is not bounded
and therefore we also need extreme rays to write an equivalent Dantzig-Wolfe reformulation.

Let P and R denote the index sets of extreme points and extreme rays of Θ, respectively.
We can write any point θ ∈ Θ in terms of these extreme points and rays. Since we exploit the
separability of Θ, we have θ = (θ1, θ2, . . . , θ|S|), with θi ∈ Θi, i ∈ S. Hence, any extreme point
(ray) of Θ corresponds to the Cartesian product of extreme points (rays) of each Θi, i ∈ S, so
we have

θi :=
∑
p∈P

λp
(
piθ

i
p

)
+
∑
r∈R

λr
(
piθ

i
r

)
, with

∑
p∈P

λp = 1,

where λp ≥ 0,∀p ∈ P, λr ≥ 0,∀r ∈ R, and θip and θir correspond to extreme points and rays of

set Θi, i ∈ S, respectively. Therefore, the aggregated master problem associated with (67)-(69)
is

max
η,λ

bT η +
∑
i∈S

hTi

∑
p∈P

λp
(
piθ

i
p

)
+
∑
r∈R

λr
(
piθ

i
r

) , (71)

s.t. AT η +
∑
i∈S

TTi

∑
p∈P

λp
(
piθ

i
p

)
+
∑
r∈R

λr
(
piθ

i
r

) ≤ c, (72)

∑
p∈P

λp = 1, (73)

λp ≥ 0, ∀p ∈ P, (74)

λr ≥ 0, ∀r ∈ R. (75)

This problem is similar to the one presented in [18] and has n+ 1 constraints. Let x ∈ Rn+ and
v ∈ R be the dual variables associated with constraints (72) and (73), respectively. We obtain
|S| subproblems, where the i-th subproblem takes the form

SP i(x) := max
θi∈Θi

{
(hi − Tix)T θi

}
. (76)

This problem is the dual of (59)-(61). When solving (76) we can obtain: (a) an optimal bounded
solution or (b) an unbounded solution. If all the subproblems lead to an optimal bounded
solution, then we obtain an extreme point θip ∈ Rm̃ from each subproblem SP i(x). In this case,
the reduced cost of the aggregated column is given by

zSP (x, v) := max{0,
∑
i∈S

SP i(x)− v}.

Otherwise, let U ⊆ S be the subset of subproblems with unbounded solutions. For each i ∈ U we
obtain an extreme ray θir ∈ Rm̃, so the aggregated column is generated by using these extreme
rays only. As a result, the reduced cost of the new column is given by

zSP (x, v) := max{0,
∑
i∈U

(hi − Tix)T θir}.

16

5.3 Computational experiments

In this section, we report the results of computational experiments in which we verify the per-
formance of the PDCGM for solving the two-stage stochastic programming problem. We have
selected the instances proposed in [3] and [41], which have been widely used in the stochastic
programming literature. All these instances are publicly available in the SMPS format [11].
Table 3 gives the basic information regarding each instance, namely the number of scenarios, the
optimal value, and the numbers of columns and rows in the first-stage problem, in the second-
stage problem and in the deterministic equivalent problem (DEP). Notice that the same instance
name may lead to more than one instance by varying the number of scenarios. From the last two
columns of the table, we see that instances with a large number of scenarios have very large-scale
corresponding DEPs and hence some of them challenge the state-of-the-art implementations of
simplex-type methods or interior point methods [72]. On the other hand, these instances can be
effectively solved by using a decomposition technique.

In the computational experiments we apply the PDCGM to solve the aggregated master
problem formulation (71)-(75), using one subproblem of type (76) for each scenario in the in-
stance. The initial RMP is given by the columns we generate from the first-stage components of
the optimal solution of the expected value problem [13]. In addition, to guarantee the feasibility
of any RMP, we have added to it an artificial column with coefficient cost equal to 106, in which
the entry on the convexity constraint (73) is equal to 1 and the remaining entries are equal to
0. The optimality tolerance used to stop the column generation procedure was set to δ = 10−5

and the degree of optimality was set to D = 5.0. The experiments were run on a Linux PC
with an Intel Core i7 2.8 GHz CPU and 8.0 GB of memory. To solve the subproblems we have
used the solver IBM ILOG CPLEX v. 12.4 with its default settings. In Table 4 we present the
results of the computational experiments. The first two columns give the problem name and
the number of scenarios which are considered in the instance, respectively. Columns 3 and 4
show the number of outer iterations and the total CPU time (in seconds) to solve the instance
by using the PDCGM. Recall that an outer iteration involves solving the RMP and calling the
oracle with the aim of generating a new column. The last row in the table gives the total number
of outer iterations and the total CPU time to solve all the instances. Notice that the PDCGM
was able to solve all the instances in the set in less than 430 seconds, with the total number of
outer iterations equal to 1762. The average CPU time was 5.7 seconds, and the largest CPU
time was 81.05 seconds. The number of outer iterations to solve an instance was never larger
than 70, and on average it was 23.5.

To verify the performance of the PDCGM in relation to other column generation/cutting
plane approaches, we have added to Table 4 the results presented in [72] for the instances given
in Table 3. More specifically, we borrow from [72] the results which are reported for the standard
Benders decomposition [10, 66] and the Level-set method [48]. From a column generation point
of view, these two methods correspond to solving the aggregated master problem formulation
(71)-(75) by the standard column generation and by a bundle-type method (a stabilized column
generation variant), respectively. The number of outer iterations and CPU time (in seconds)
for solving the instances by these two approaches are given in columns 5 to 8 of Table 4. The
remaining columns in the table show the relative performance of these methods in relation to
PDCGM, i.e., the ratio between the values in columns 5 to 8 and the corresponding values
in columns 3 and 4. We have taken the iteration numbers exactly as they are presented in
[72], while the CPU times have been scaled according to the benchmark available at https:

//www.cpubenchmark.net/singleThread.html. The computer used in [72] was a Linux PC
with an Intel Core i5 2.4 GHz CPU and 6.0 GB of memory, and has a score of 1355 whereas the
machine we used to run the PDCGM experiments has a score of 1602. Hence, we have multiplied
their CPU times by a factor of 0.85. Moreover, the authors have implemented the methods on top
of the FortSP stochastic solver system [21], a state-of-the-art solver for stochastic programming.
Therefore, the conclusions about CPU times should be taken cautiously and, hence, we focus on
the number of outer iterations.

The results in Table 4 show that even though the standard column generation (Benders) had
the smallest CPU times on instances with few scenarios, this method delivers the worst overall

17

https://www.cpubenchmark.net/singleThread.html
https://www.cpubenchmark.net/singleThread.html

Table 3: TSSP: statistics for instances from [3] and [41]

Stage 1 Stage 2 DEP
|S| Optimal value Cols Rows Cols Rows Cols Rows

fxm 6 1.84171E+04 92 114 238 343 1520 2172
16 1.84168E+04 92 114 238 343 3900 5602

fxmev 1 1.84168E+04 92 114 238 343 330 457
pltexpa 6 -9.47935E+00 62 188 104 272 686 1820

16 -9.66331E+00 62 188 104 272 1726 4540
stormg2 8 1.55352E+07 185 121 528 1259 4409 10193

27 1.55090E+07 185 121 528 1259 14441 34114
125 1.55121E+07 185 121 528 1259 66185 157496

1000 1.58026E+07 185 121 528 1259 528185 1259121
airl-first 25 2.49102E+05 2 4 6 8 152 204
airl-second 25 2.69665E+05 2 4 6 8 152 204
airl-randgen 676 2.50262E+05 2 4 6 8 4058 5412
assets 100 -7.23839E+02 5 13 5 13 505 1313

37500 -6.95963E+02 5 13 5 13 187505 487513
4node 1 4.13388E+02 14 52 74 186 88 238

2 4.14013E+02 14 52 74 186 162 424
4 4.16513E+02 14 52 74 186 310 796
8 4.18513E+02 14 52 74 186 606 1540

16 4.23013E+02 14 52 74 186 1198 3028
32 4.23013E+02 14 52 74 186 2382 6004
64 4.23013E+02 14 52 74 186 4750 11956

128 4.23013E+02 14 52 74 186 9486 23860
256 4.25375E+02 14 52 74 186 18958 47668
512 4.29963E+02 14 52 74 186 37902 95284

1024 4.34112E+02 14 52 74 186 75790 190516
2048 4.41738E+02 14 52 74 186 151566 380980
4096 4.46856E+02 14 52 74 186 303118 761908
8192 4.46856E+02 14 52 74 186 606222 1523764

16384 4.46856E+02 14 52 74 186 1212430 3047476
32768 4.46856E+02 14 52 74 186 2424846 6094900

4node-base 1 4.13388E+02 16 52 74 186 90 238
2 4.14013E+02 16 52 74 186 164 424
4 4.14388E+02 16 52 74 186 312 796
8 4.14688E+02 16 52 74 186 608 1540

16 4.14688E+02 16 52 74 186 1200 3028
32 4.16600E+02 16 52 74 186 2384 6004
64 4.16600E+02 16 52 74 186 4752 11956

128 4.16600E+02 16 52 74 186 9488 23860
256 4.17162E+02 16 52 74 186 18960 47668
512 4.20293E+02 16 52 74 186 37904 95284

1024 4.23050E+02 16 52 74 186 75792 190516
2048 4.23763E+02 16 52 74 186 151568 380980
4096 4.24753E+02 16 52 74 186 303120 761908
8192 4.24775E+02 16 52 74 186 606224 1523764

16384 4.24775E+02 16 52 74 186 1212432 3047476
32768 4.24775E+02 16 52 74 186 2424848 6094900

4node-old 32 8.30941E+04 14 52 74 186 2382 6004
chem 2 -1.30092E+04 38 39 46 41 130 121
chem-base 2 -1.30092E+04 38 39 40 41 118 121
lands 3 3.81853E+02 2 4 7 12 23 40
lands-blocks 3 3.81853E+02 2 4 7 12 23 40
env-aggr 5 2.04787E+04 48 49 48 49 288 294
env-first 5 1.97774E+04 48 49 48 49 288 294
env-loose 5 1.97774E+04 48 49 48 49 288 294
env 15 2.22653E+04 48 49 48 49 768 784

1200 2.24289E+04 48 49 48 49 57648 58849
1875 2.24471E+04 48 49 48 49 90048 91924
3780 2.24410E+04 48 49 48 49 181488 185269
5292 2.24384E+04 48 49 48 49 254064 259357
8232 2.24391E+04 48 49 48 49 395184 403417

32928 2.24391E+04 48 49 48 49 1580592 1613521
env-diss-aggr 5 1.59639E+04 48 49 48 49 288 294
env-diss-first 5 1.47946E+04 48 49 48 49 288 294
env-diss-loose 5 1.47946E+04 48 49 48 49 288 294
env-diss 15 2.07739E+04 48 49 48 49 768 784

1200 2.08086E+04 48 49 48 49 57648 58849
1875 2.08093E+04 48 49 48 49 90048 91924
3780 2.07947E+04 48 49 48 49 181488 185269
5292 2.07886E+04 48 49 48 49 254064 259357
8232 2.07994E+04 48 49 48 49 395184 403417

32928 2.07994E+04 48 49 48 49 1580592 1613521
phone1 1 3.69000E+01 1 8 23 85 24 93
phone 32768 3.69000E+01 1 8 23 85 753665 2785288
stocfor1 1 -4.11320E+04 15 15 102 96 117 111
stocfor2 64 -3.97724E+04 15 15 102 96 6543 6159

18

Table 4: TSSP: PDCGM results and comparison with the results reported in [72] for the standard column
generation (Benders), and bundle-type method (Level).

Relative to PDCGM
PDCGM Benders Level Benders Level

nS Outer T (s) Outer T (s) Outer T (s) Outer T (s) Outer T (s)
fxm 6 16 0.21 25 0.07 20 0.13 1.56 0.33 1.25 0.62

16 18 0.25 25 0.08 20 0.13 1.39 0.32 1.11 0.52
fxmev 1 15 0.19 25 0.07 20 0.11 1.67 0.37 1.33 0.58
pltexpa 6 5 0.11 1 0.02 1 0.02 0.20 0.18 0.20 0.18

16 5 0.11 1 0.02 1 0.02 0.20 0.18 0.20 0.18
stormg2 8 25 0.66 23 0.12 20 0.14 0.92 0.18 0.80 0.21

27 30 1.31 32 0.40 17 0.26 1.07 0.31 0.57 0.20
125 38 3.8 34 1.47 17 0.79 0.89 0.39 0.45 0.21

1000 42 22.03 41 9.83 21 5.28 0.98 0.45 0.50 0.24
airl-first 25 14 0.03 16 0.03 17 0.03 1.14 1.00 1.21 1.00
airl-second 25 12 0.05 10 0.02 17 0.03 0.83 0.40 1.42 0.60
airl-randgen 676 16 0.16 18 0.19 18 0.19 1.13 1.19 1.13 1.19
assets 100 1 0.02 1 0.02 1 0.03 1.00 1.00 1.00 1.50

37500 1 1.28 2 74.53 2 74.42 2.00 58.23 2.00 58.14
4node 1 29 0.18 24 0.03 21 0.05 0.83 0.17 0.72 0.28

2 31 0.23 38 0.03 42 0.09 1.23 0.13 1.35 0.39
4 31 0.23 41 0.03 45 0.09 1.32 0.13 1.45 0.39
8 32 0.26 64 0.06 45 0.09 2.00 0.23 1.41 0.35

16 37 0.32 67 0.09 44 0.13 1.81 0.28 1.19 0.41
32 37 0.38 100 0.20 51 0.19 2.70 0.53 1.38 0.50
64 36 0.45 80 0.23 54 0.31 2.22 0.51 1.50 0.69

128 37 0.56 74 0.33 50 0.40 2.00 0.59 1.35 0.71
256 35 0.86 71 0.81 48 0.74 2.03 0.94 1.37 0.86
512 40 2.06 92 3.16 51 1.80 2.30 1.53 1.28 0.87

1024 38 3.56 70 4.37 53 3.36 1.84 1.23 1.39 0.94
2048 37 6.02 83 10.01 49 6.65 2.24 1.66 1.32 1.10
4096 43 10.83 89 15.69 46 7.75 2.07 1.45 1.07 0.72
8192 48 22.55 106 39.58 55 19.28 2.21 1.76 1.15 0.85

16384 42 37.97 110 84.15 52 38.45 2.62 2.22 1.24 1.01
32768 40 54.14 122 165.48 62 108.68 3.05 3.06 1.55 2.01

4node-base 1 22 0.13 31 0.03 16 0.03 1.41 0.23 0.73 0.23
2 28 0.2 44 0.03 29 0.05 1.57 0.15 1.04 0.25
4 29 0.2 58 0.05 30 0.06 2.00 0.25 1.03 0.30
8 28 0.2 47 0.04 35 0.09 1.68 0.20 1.25 0.45

16 30 0.27 56 0.07 30 0.09 1.87 0.26 1.00 0.33
32 35 0.37 63 0.14 37 0.14 1.80 0.38 1.06 0.38
64 35 0.44 61 0.20 33 0.19 1.74 0.45 0.94 0.43

128 33 0.47 65 0.33 37 0.30 1.97 0.70 1.12 0.64
256 39 0.9 66 0.76 31 0.45 1.69 0.84 0.79 0.50
512 38 1.7 84 2.78 37 1.23 2.21 1.64 0.97 0.72

1024 49 4.37 115 8.13 41 2.83 2.35 1.86 0.84 0.65
2048 55 7.79 142 16.76 42 5.21 2.58 2.15 0.76 0.67
4096 59 13.46 174 32.73 39 9.01 2.95 2.43 0.66 0.67
8192 70 31.11 290 113.43 48 21.24 4.14 3.65 0.69 0.68

16384 68 59.55 175 139.46 41 40.21 2.57 2.34 0.60 0.68
32768 61 81.05 191 267.16 49 86.95 3.13 3.30 0.80 1.07

4node-old 32 21 0.4 30 0.07 20 0.08 1.43 0.18 0.95 0.20
chem 2 5 0.02 7 0.03 15 0.03 1.40 1.50 3.00 1.50
chem-base 2 10 0.04 6 0.02 14 0.04 0.60 0.50 1.40 1.00
lands 3 7 0.03 8 0.02 10 0.02 1.14 0.67 1.43 0.67
lands-blocks 3 7 0.01 8 0.01 10 0.02 1.14 1.00 1.43 2.00
env-aggr 5 5 0.05 3 0.02 16 0.03 0.60 0.40 3.20 0.60
env-first 5 2 0.03 1 0.02 1 0.02 0.50 0.67 0.50 0.67
env-loose 5 2 0.03 1 0.01 1 0.02 0.50 0.33 0.50 0.67
env 15 5 0.05 3 0.03 15 0.04 0.60 0.60 3.00 0.80

1200 5 0.45 3 0.29 15 1.47 0.60 0.64 3.00 3.27
1875 5 0.68 3 0.48 15 2.38 0.60 0.71 3.00 3.50
3780 5 1.2 3 1.07 15 4.65 0.60 0.89 3.00 3.88
5292 5 1.6 3 1.67 15 6.52 0.60 1.04 3.00 4.08
8232 5 2.41 3 3.15 15 10.69 0.60 1.31 3.00 4.44

32928 5 9.64 3 33.90 15 64.32 0.60 3.52 3.00 6.67
env-diss-aggr 5 11 0.17 9 0.03 22 0.04 0.82 0.18 2.00 0.24
env-diss-first 5 9 0.06 14 0.02 12 0.03 1.56 0.33 1.33 0.50
env-diss-loose 5 9 0.05 15 0.03 5 0.03 1.67 0.60 0.56 0.60
env-diss 15 17 0.28 27 0.04 35 0.09 1.59 0.14 2.06 0.32

1200 10 0.82 24 0.96 35 2.38 2.40 1.17 3.50 2.90
1875 18 1.93 29 2.13 36 3.82 1.61 1.10 2.00 1.98
3780 13 2.49 29 4.28 36 7.54 2.23 1.72 2.77 3.03
5292 17 4.34 34 6.92 38 11.01 2.00 1.59 2.24 2.54
8232 16 5.86 35 12.08 41 19.12 2.19 2.06 2.56 3.26

32928 16 22.37 35 67.59 41 95.59 2.19 3.02 2.56 4.27
phone1 1 1 0.01 1 0.02 1 0.02 1.00 2.00 1.00 2.00
phone 32768 1 0.76 1 41.09 1 41.00 1.00 54.07 1.00 53.95
stocfor1 1 11 0.11 6 0.02 6 0.03 0.55 0.18 0.55 0.27
stocfor2 64 9 0.11 7 0.09 9 0.10 0.78 0.82 1.00 0.91
Total 1762 429.02 3498 1169.31 2045 708.85 1.99 2.73 1.16 1.65

19

performance in relation to the PDCGM and the bundle-type method (Level). To solve all the
instances, the standard approach required 3498 iterations, which is almost twice the figures
obtained by the PDCGM. This is justified by the good performance of the PDCGM on the
instances with a large number of scenarios, an important feature in practice. Besides, the overall
performance of the PDCGM was similar to that of the level method, although the latter had
about 16% more iterations in total. Hence, the results indicate that the PDCGM is competitive
with respect to the level method, which is considered an efficient method for solving two-stage
stochastic programming problems [72].

6 Multicommodity network flow problem (MCNF)

Multicommodity network flow problems (MCNF) have been widely studied in the literature
and can be applied in contexts in which commodities (e.g., goods and data packages) must be
transported through a network with limited capacity and arc costs [59]. The current real-life
applications involve transportation as well as telecommunication networks with a large number
of arcs and commodities. Hence they lead to very large-scale optimization problems which
require efficient solution methods. Column generation approaches have been successfully used
for solving this class of problems [5,6,25,30,49]. In this work, we consider one of the most basic
variants of the MCNF problem which includes a linear cost function and where the cost depends
on the flow traversing an arc and it is independent of the commodity. In this section, we first
describe the column generation formulation of the MCNF with linear objective costs. Then, we
present the results of using the primal-dual column generation technique for solving large-scale
instances, some of them taken from real-life applications.

6.1 Problem formulation

Consider a set K = {1, . . . ,K} of commodities which must be routed through a given network
represented by the set of nodes N = {1, . . . , n} and the set of arcs M = {1, . . . ,m}. For each
commodity k ∈ K there is a source node sk ∈ N and a sink node tk ∈ N , so that the total
demand of the commodity (dk) must be routed from sk to tk using one or more arcs of the
underlying network. Let A be the n ×m node-arc incidence matrix of the network determined
by sets N and M. In order to associate the demand of each commodity k with all the nodes in
the network, we define an n-vector bk as follows

bki =

 dk, if i = sk,
−dk, if i = tk,

0, otherwise,
∀i ∈ N .

Let xkij be the decision variable that determines the flow of commodity k ∈ K assigned to arc
(i, j) ∈ M. The total flow assigned to a given arc (i, j) ∈ M cannot exceed the arc capacity
Cij . In addition, there is a cost tij that depends linearly on the total flow assigned to the arc.
A compact formulation of the (linear) MCNF is given by

min
x

∑
k∈K

∑
(i,j)∈M

tijx
k
ij , (77)

s.t.
∑
k∈K

xkij ≤ Cij , ∀(i, j) ∈M, (78)

Axk = bk, ∀k ∈ K, (79)

xkij ≥ 0, ∀k ∈ K, ∀(i, j) ∈M. (80)

This formulation typically leads to a large-scale problem when modeling real-life situations with
many commodities and arcs in the network, as the number of variables and constraints may
become very large. Solving (77)-(80) by a linear optimization method may be prohibitive in
practice, even for the current state-of-the-art solvers. Fortunately, the coefficient matrix of this

20

formulation has a special structure that can be exploited to obtain a more efficient solution
strategy.

In this paper, we focus on MCNF problems in which the costs in the network depend on the
arcs only and the commodities compete equally for the capacity on the arcs. These problems
are usually solved by approaches which are based on column generation procedures [5, 6, 49].
As recognized in [5], there is a different type of MCNF problems in which the costs depend
additionally on the commodities assigned to the arc, and the commodities compete for mutual
and/or individual capacities [15,16,24]. No paper in the MCNF literature deals with both types
of problems simultaneously.

6.2 Decomposition and column generation formulation

In this section, we apply the Dantzig-Wolfe decomposition (DWD) to the compact formulation
of the MCNF, following the description given in Section 2. The coefficient matrix of formulation
(77)-(80) has a special structure. Namely, the incidence matrix A is replicated K times resulting
in a block-angular structure, making appropriate the use of the DWD. Since the decision variables
associated with different commodities are only connected by the linking constraints (78), we
define the following K independent subsets

X k = {xk | Axk = bk, xkij ≥ 0, ∀(i, j) ∈M}, k ∈ K. (81)

Let Pk be the set of indices of extreme points in X k, k ∈ K. Each set X k is bounded and hence
it can be fully represented by its extreme points xkp, p ∈ Pk. As a result, any point xk ∈ X k can
be rewritten similarly to (2). The master problem related to the compact formulation (77)-(80)
is then given by

min
λ

∑
k∈K

∑
p∈Pk

∑
(i,j)∈M

tij(x
k
p)ijλ

k
p, (82)

s.t.
∑
k∈K

∑
p∈Pk

(xkp)ijλ
k
p ≤ Cij , ∀(i, j) ∈M, (83)

∑
p∈Pk

λkp = 1, ∀k ∈ K, (84)

λkp ≥ 0, ∀k ∈ K, ∀p ∈ Pk. (85)

Since the number of variables λkp can be huge, we recur to the column generation technique for
solving the master problem, as described in Section 2. The corresponding oracle is given by K
subproblems, so that the k-th subproblem provides an extreme point of X k which consists in
the shortest reduced cost path that routes the total demand of commodity k from source to sink
nodes. Let u ∈ Rm− and v ∈ RK be the dual solution vectors associated with constraints (83)
and (84), respectively. The k-th subproblem can be stated as

SP k(u) := min
xk∈Xk

 ∑
(i,j)∈M

(tij − uij)xkij

 . (86)

It is a shortest path problem with arc lengths tij − uij , initial node sk and end node tk. Since
tij − uij ≥ 0 for all (i, j) ∈M, these subproblems can be solved by the Dijkstra algorithm [20].
From the optimal solution of each subproblem, we generate a new column with reduced cost
zkSP (u, v) := min{0;SP k(u)− vk} and the value of the oracle is

zSP (u, v) :=
∑
k∈K

zkSP (u, v). (87)

6.3 Computational experiments

In this section, we verify the performance of the PDCGM to solve the master problem formulation
of the MCNF. We have run computational experiments based on two sets of instances that have

21

been proposed in [47] and, since then, they have been used as a benchmark for linear and
nonlinear MCNF problems [2, 5, 6]. The instances in the first set simulate telecommunication
networks which are represented by planar graphs. The instances in the second set represent
networks with a grid structure and, hence, the number of different paths between two nodes
can be very large. All instances are publicly available and can be downloaded from http:

//www.di.unipi.it/di/groups/optimize/Data/MMCF.html. The initial columns in the RMP
were generated by using the solution we obtain from calling the oracle with u = 0. The tolerance
of the column generation was set to δ = 10−5 and the degree of optimality was set to D = 10.
The experiments were run on a Linux PC with an Intel Core i7 2.8 GHz CPU and 8.0 GB of
memory.

In practical MCNF problems, it is very likely that in the optimal solution only a small number
of arcs will have full capacity usage. As a consequence, many of the arc capacity constraints (83)
will be inactive at the optimum. If it was possible to identify these constraints before solving
the problem, they could be discarded without changing the optimal solution. Since knowing the
inactive constraints in advance is not possible in general, an active set strategy is used during
the optimization process, in order to guess which arc capacity constraints should be classified as
active. This idea has been successfully applied in the context of MCNF problems [5,24,54] and,
hence, we have added this in our implementation as well. In the first RMP, we assume all the
arc capacity constraints are inactive, i.e., they are excluded from the formulation. After each
call to the oracle, we verify for each constraint, if the total flow on the corresponding arc violates
its capacity. If so, the constraint is added to the active set and included in the formulation. An
active constraint can also become inactive if the total flow on the corresponding arc is smaller
than a fraction γ of the capacity of the arc. In the computational experiments presented below,
we have adopted γ = 0.9.

In Table 5, columns 1 to 4 show the name of the instances, the number of nodes (n), the
number of arcs (m), and the number of commodities (K), respectively. Recall that the number
of constraints in the RMP is m + K (disaggregated formulation). The results obtained by
PDCGM are presented in the remaining columns. Column 5 shows the optimal value obtained
with the optimality tolerance δ = 10−5. Columns 6 to 8 show, the percentage of arc capacity
constraints which are active at optimum (% Act), the number of outer iterations (Outer) and the
total CPU time in seconds for solving the problem (CPU), respectively. The last column gives
the percentage of the total CPU time which was used to solve the oracle subproblems (%Or).

According to the results in Table 5, the PDCGM was able to solve every instance in the
planar set in less than 7103 seconds, and every instance in the grid set in less than 73 seconds.
Most of the CPU time is spent on solving the RMPs, a typical behavior when disaggregated
formulations are used for the MCNF [30]. The number of outer iterations was on average 22.4
for the planar instances and 20.1 for the grid instances. The number of active arcs was relatively
small and never larger than 30% of the total number of arcs.

To verify the performance of the PDCGM in relation to the best results available in the
literature, we have selected one of the most efficient methods for solving the linear MCNF.
In [5], the authors use the analytic center cutting plane method (ACCPM) to solve the dual
problem of an aggregated master problem formulation of the MCNF. In addition, they use an
active set strategy and the elimination of columns. Table 6 shows the best results presented
in [5] for solving the same instances described in Table 5. The first column gives the name
of the instances. Columns 2 to 5 show the percentage of arc capacity constraints which are
active when the column generation terminates (%Act), the number of outer iterations (Outer),
the total CPU time in seconds, and the percentage of the total CPU time that was spent in
the oracle (%Or), respectively, as reported in [5] for the ACCPM-based approach. We have
scaled the CPU times using a factor of 0.4, as these other results were obtained on a Linux PC
with Intel Pentium IV 2.8 Ghz and 2 GB of RAM. According to the benchmark provided at
https://www.cpubenchmark.net/singleThread.html, this machine has a score of 635 whereas
the machine used to run the PDCGM results has a score of 1602. Columns 6 to 9 show the ratios
between the results presented in columns 2 to 5 and the corresponding results for PDCGM
presented in Table 5. Table 6 has the purpose of giving an idea of the overall performance of
the PDCGM (with its best settings) in relation to the best results presented in the literature for

22

http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html
http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html
https://www.cpubenchmark.net/singleThread.html

Table 5: MCNF: dimensions and computational results obtained by PDCGM.

Instance n m K Optimal %Act Outer CPU (s) %Or

planar30 30 150 92 4.43508E+07 12.0 13 0.04 2.3
planar50 50 250 267 1.22200E+08 12.8 17 0.14 0.7
planar80 80 440 543 1.82438E+08 25.7 20 0.55 3.8
planar100 100 532 1085 2.31340E+08 16.5 18 0.82 2.4
planar150 150 850 2239 5.48087E+08 29.4 26 4.81 1.8
planar300 300 1680 3584 6.89979E+08 8.6 18 4.97 5.4
planar500 500 2842 3525 4.81983E+08 2.3 13 3.32 23.7
planar800 800 4388 12756 1.16737E+08 3.4 23 32.47 16.7
planar1000 1000 5200 20026 3.44962E+09 10.8 28 156.25 8.3
planar2500 2500 12990 81430 1.26623E+10 15.0 48 7102.27 4.8

grid1 25 80 50 8.27319E+05 10.0 12 0.03 4.0
grid2 25 80 100 1.70538E+06 30.0 14 0.04 2.6
grid3 100 360 50 1.52464E+06 4.4 13 0.05 2.0
grid4 100 360 100 3.03170E+06 9.7 19 0.09 4.4
grid5 225 840 100 5.04969E+06 5.4 20 0.19 13.9
grid6 225 840 200 1.04018E+07 15.8 24 0.49 10.7
grid7 400 1520 400 2.58641E+07 8.9 21 0.92 28.9
grid8 625 2400 500 4.17114E+07 13.2 28 4.28 23.8
grid9 625 2400 1000 8.26531E+07 18.7 33 11.30 15.2
grid10 625 2400 2000 1.64111E+08 18.1 33 13.19 15.1
grid11 625 2400 4000 3.29259E+08 12.0 15 7.77 12.9
grid12 900 3480 6000 5.77187E+08 7.0 14 11.46 23.0
grid13 900 3480 12000 1.15932E+09 9.1 18 30.83 11.0
grid14 1225 4760 16000 1.80268E+09 4.0 16 32.93 22.0
grid15 1225 4760 32000 3.59352E+09 4.7 22 72.90 13.6

the linear MCNF. These results are just informative, as different computational environments
were used and an aggregated formulation was used in [5]. From our experience, we observed
that using a disaggregated approach reduces considerably the number of column generation
iterations for the MCNF, although the RMP grows quickly and may become more difficult to
solve. Nevertheless, a reduction in CPU times can be observed for most of the instances, which
indicates that the PDCGM is an efficient alternative for solving the linear MCNF.

7 Conclusions

In this paper we have presented computational evidence of the performance of the primal-
dual column generation method (PDCGM) for solving the multiple kernel learning (MKL),
the two-stage stochastic programming (TSSP) and the multicommodity network flow (MCNF)
problems. We have demonstrated how the Dantzig-Wolfe decomposition and the column
generation algorithm can be applied to general convex optimization problems, including the
use of aggregated and disaggregated formulations. Additionally, we have provided a thorough
presentation of the key components involved in applying these techniques to each addressed
application. The performance of the PDCGM was compared against some of the best results
available in the literature for MKL, TSSP and MCNF, using different types of column gen-
eration/cutting plane methods. These applications provided us with different conditions to
test the PDCGM, namely disaggregated and aggregated master problem formulations as well
as bounded and unbounded subproblems. The computational experiments presented in this
paper provide extensive evidence that the PDCGM is suitable and competitive in a broader
context of optimization than that previously addressed in [37, 57]. It is worth mention-
ing that the PDCGM software is freely available for research use and can be downloaded at
http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html.

Further studies will involve extending the PDCGM to solve a wider range of optimization
problems, including those which are defined by nonconvex functions. In addition, handling
second-order oracle information, as in [6], seems to be a promising avenue for future research for
the PDCGM.

23

http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html

Table 6: MCNF: comparison between PDCGM results and the best results reported in [5] for an ACCPM-based
approach.

Instance ACCPM-based approach [5] ACCPM/PDCGM
%Act Outer CPU (s) %Or %Act Outer CPU (s) %Or

planar30 12.7 48 0.16 29 1.06 3.69 4.00 12.61
planar50 13.2 97 0.44 32 1.03 5.71 3.14 45.71
planar80 25.7 283 2.6 28 1.00 14.15 4.73 7.37
planar100 17.5 257 2.08 34 1.06 14.28 2.54 14.17
planar150 29 820 25.8 13 0.99 31.54 5.36 7.22
planar300 9.1 325 3.88 27 1.06 18.06 0.78 5.00
planar500 2.6 118 4.2 90 1.13 9.08 1.27 3.80
planar800 3.6 252 24.28 91 1.06 10.96 0.75 5.45
planar1000 10.4 890 229.04 55 0.96 31.79 1.47 6.63
planar2500 15.8 3009 11782.92 28 1.05 62.69 1.66 5.83

grid1 12.5 24 0.08 25 1.25 2.00 2.67 6.25
grid2 32.5 52 0.24 31 1.08 3.71 6.00 11.92
grid3 5 32 0.12 39 1.14 2.46 2.40 19.50
grid4 10.3 66 0.28 46 1.06 3.47 3.11 10.45
grid5 6 75 0.64 58 1.11 3.75 3.37 4.17
grid6 20.6 239 3.32 46 1.30 9.96 6.78 4.30
grid7 9.3 228 5.48 70 1.04 10.86 5.96 2.42
grid8 13.2 528 39 50 1.00 18.86 9.11 2.10
grid9 18.1 720 85.12 38 0.97 21.82 7.53 2.50
grid10 18 722 86.24 41 0.99 21.88 6.54 2.72
grid11 12.2 458 33.96 62 1.02 30.53 4.37 4.81
grid12 7.4 329 35.56 84 1.06 23.50 3.10 3.65
grid13 9.6 460 54.72 74 1.05 25.56 1.77 6.73
grid14 4.4 252 42.8 94 1.10 15.75 1.30 4.27
grid15 4.9 294 52.68 91 1.04 13.36 0.72 6.69

Acknowledgements

We would like to express our gratitude to Victor Zverovich for kindly making available to us
some of the TSSP instances included in this study. Also, we would like to thank Robert Gower
for proofreading an early version of this paper. Also, we are very thankful to the anonymous
referees for their careful reading and the important suggestions made, which certainly helped
on improving the first draft of this paper. Pablo González-Brevis has been partially supported
by FONDECYT, Chile through grant 11140521. Pedro Munari has been supported by FAPESP
(São Paulo Research Foundation, Brazil) through grant 14/00939-8.

References

[1] Altman, A., Kiwiel, K.C.: A note on some analytic center cutting plane methods for convex
feasibility and minimization problems. Computational Optimization and Applications 5(2),
175–180 (1996)

[2] Alvelos, F., Valério de Carvalho, J.M.: An extended model and a column generation algo-
rithm for the planar multicommodity flow problem. Networks 50(1), 3–16 (2007)

[3] Ariyawansa, K., Felt, A.J.: On a new collection of stochastic linear programming test
problems. INFORMS Journal on Computing 16(3), 291–299 (2004)

[4] Babonneau, F., Beltran, C., Haurie, A., Tadonki, C., Vial, J.P.: Proximal-ACCPM: A ver-
satile oracle based optimisation method. In: E.J. Kontoghiorghes, C. Gatu, H. Amman,
B. Rustem, C. Deissenberg, A. Farley, M. Gilli, D. Kendrick, D. Luenberger, R. Maes,
I. Maros, J. Mulvey, A. Nagurney, S. Nielsen, L. Pau, E. Tse, A. Whinston (eds.) Opti-
misation, Econometric and Financial Analysis, Advances in Computational Management
Science, vol. 9, pp. 67–89. Springer Berlin Heidelberg (2007)

[5] Babonneau, F., du Merle, O., Vial, J.P.: Solving large-scale linear multicommodity flow
problems with an active set strategy and proximal-ACCPM. Operations Research 54(1),
184–197 (2006)

24

[6] Babonneau, F., Vial, J.P.: ACCPM with a nonlinear constraint and an active set strategy to
solve nonlinear multicommodity flow problems. Mathematical Programming 120, 179–210
(2009)

[7] Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and
the SMO algorithm. In: Proceedings of the twenty-first international conference on Machine
learning, ICML ’04, p. 6. ACM, New York, NY, USA (2004)

[8] Bahn, O., Merle, O., Goffin, J.L., Vial, J.P.: A cutting plane method from analytic centers
for stochastic programming. Mathematical Programming 69, 45–73 (1995)

[9] Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. In: Data mining
techniques for the life sciences, pp. 223–239. Springer (2010)

[10] Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik 4, 238–252 (1962)

[11] Birge, J.R., Dempster, M.A., Gassmann, H.I., Gunn, E.A., King, A.J., Wallace, S.W.: A
standard input format for multiperiod stochastic linear programs. COAL Newsletter 17,
1–19 (1987)

[12] Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs.
European Journal of Operational Research 34(3), 384–392 (1988)

[13] Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer (1997)

[14] Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.: Compar-
ison of bundle and classical column generation. Mathematical Programming 113, 299–344
(2008)

[15] Castro, J.: Solving difficult multicommodity problems with a specialized interior-point al-
gorithm. Annals of Operations Research 124, 35–48 (2003)

[16] Castro, J., Cuesta, J.: Improving an interior-point algorithm for multicommodity flows by
quadratic regularizations. Networks 59(1), 117–131 (2012)

[17] Dantzig, G.B.: Linear programming and its extensions. Princeton University Press, Prince-
ton, NJ (1963)

[18] Dantzig, G.B., Madansky, A.: On the solution of two-stage linear programs under un-
certainty. In: Proceedings Fourth Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, pp. 165 – 176. University of California Press, Berkeley (1961)

[19] Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs. Econometrica
29(4), 767–778 (1961)

[20] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik
1, 269–271 (1959)

[21] Ellison, E., Mitra, G., Zverovich, V.: FortSP: a stochastic programming solver. OptiRisk
Systems (2010)

[22] Ford, L.R., Fulkerson, D.R.: A suggested computation for maximal multi-commodity net-
work flows. Management Science 5(1), 97–101 (1958)

[23] Frangioni, A.: Generalized bundle methods. SIAM Journal on Optimization 13, 117–156
(2002)

[24] Frangioni, A., Gallo, G.: A bundle type dual-ascent approach to linear multicommodity
min-cost flow problems. INFORMS Journal on Computing 11(4), 370–393 (1999)

25

[25] Frangioni, A., Gendron, B.: A stabilized structured Dantzig-Wolfe decomposition method.
Mathematical Programming 140(1), 45–76 (2013)

[26] Frank, A., Asuncion, A.: UCI machine learning repository (2010). URL http://archive.

ics.uci.edu/ml

[27] Geoffrion, A.M.: Elements of large-scale mathematical programming Part I: Concepts. Man-
agement Science 16(11), 652–675 (1970)

[28] Geoffrion, A.M.: Elements of large-scale mathematical programming Part II: Synthesis of
algorithms and bibliography. Management Science 16(11), 676–691 (1970)

[29] Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem.
Operations Research 9(6), 849–859 (1961)

[30] Goffin, J.L., Gondzio, J., Sarkissian, R., Vial, J.P.: Solving nonlinear multicommodity flow
problems by the analytic center cutting plane method. Mathematical Programming 76,
131–154 (1996)

[31] Goffin, J.L., Haurie, A., Vial, J.P.: Decomposition and nondifferentiable optimization with
the projective algorithm. Management Science 38(2), 284–302 (1992)

[32] Goffin, J.L., Luo, Z.Q., Ye, Y.: Complexity analysis of an interior cutting plane method for
convex feasibility problems. SIAM Journal on Optimization 6(3), 638–652 (1996)

[33] Goffin, J.L., Vial, J.P.: Convex nondifferentiable optimization: a survey focused on the
analytic center cutting plane method. Optimization Methods and Software 17, 805–868
(2002)

[34] Gondzio, J.: Warm start of the primal-dual method applied in the cutting-plane scheme.
Mathematical Programming 83, 125–143 (1998)

[35] Gondzio, J.: Interior point methods 25 years later. European Journal of Operational Re-
search 218(3), 587–601 (2012)

[36] Gondzio, J., González-Brevis, P.: A new warmstarting strategy for the primal-dual column
generation method. Mathematical Programming pp. 1–34 (2014)

[37] Gondzio, J., González-Brevis, P., Munari, P.: New developments in the primal-dual column
generation technique. European Journal of Operational Research 224(1), 41–51 (2013)

[38] Gondzio, J., Sarkissian, R.: Column generation with a primal-dual method. Technical
Report 96.6, Logilab (1996)

[39] Gönen, M., Alpaydin, E.: Multiple kernel learning algorithms. Journal of Machine Learning
Research 12, 2211–2268 (2011)

[40] Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II:
Advanced Theory and Bundle Methods. Springer-Verlag (1993)

[41] Holmes, D.: A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS). Avail-
able in: http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html

[accessed in Apr, 2013] (1995)

[42] Kall, P., Wallace, S.W.: Stochastic Programming. John Wiley and Sons Ltd (1994)

[43] Kelley, L.E.: The cutting-plane method for solving convex programs. Journal of the Society
for Industrial and Applied Mathematics 8(4), 703–712 (1960)

[44] Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimiza-
tion. Mathematical Programming 46, 105–122 (1990)

26

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html

[45] Kiwiel, K.C.: Complexity of some cutting plane methods that use analytic centers. Math-
ematical Programming 74(1), 47–54 (1996)

[46] Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the kernel
matrix with semidefinite programming. The Journal of Machine Learning Research 5, 27–
72 (2004)

[47] Larsson, T., Yuan, D.: An augmented lagrangian algorithm for large scale multicommodity
routing. Computational Optimization and Applications 27, 187–215 (2004)

[48] Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Mathe-
matical Programming 69(1-3), 111–147 (1995)

[49] Lemaréchal, C., Ouorou, A., Petrou, G.: A bundle-type algorithm for routing in telecom-
munication data networks. Computational Optimization and Applications 44, 385–409
(2009)

[50] Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone
programming. Linear Algebra and its Applications 284(1-3), 193–228 (1998)

[51] Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Operations Research
53(6), 1007–1023 (2005)

[52] Marsten, R.E., Hogan, W.W., Blankenship, J.W.: The boxstep method for large-scale
optimization. Operations Research 23(3), 389–405 (1975)

[53] Martinson, R.K., Tind, J.: An interior point method in Dantzig-Wolfe decomposition.
Computers and Operation Research 26, 1195–1216 (1999)

[54] McBride, R.D.: Progress made in solving the multicommodity flow problem. SIAM J. on
Optimization 8(4), 947–955 (1998)

[55] du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation.
Discrete Mathematics 194(1-3), 229–237 (1999)

[56] Mitchell, J.E., Borchers, B.: Solving real-world linear ordering problems using a primal-dual
interior point cutting plane method. Annals of Operations Research 62, 253–276 (1996)

[57] Munari, P., Gondzio, J.: Using the primal-dual interior point algorithm within the branch-
price-and-cut method. Computers & Operations Research 40(8), 2026–2036 (2013)

[58] Neame, P.: Nonsmooth dual methods in integer programming. Ph.D. thesis, University of
Melbourne, Department of Mathematics and Statistics (2000)

[59] Ouorou, A., Mahey, P., Vial, J.P.: A survey of algorithms for convex multicommodity flow
problems. Management Science 46(1), 126–147 (2000)

[60] Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of Machine
Learning Research 9, 2491–2521 (2008)

[61] Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral
functions. Mathematical Programming 35, 309–333 (1986)

[62] Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function:
Conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimization
2(1), 121–152 (1992)

[63] Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., de Bona, F.,
Binder, A., Gehl, C., Franc, V.: The SHOGUN machine learning toolbox. Journal of
Machine Learning Research 11, 1799–1802 (2010)

27

[64] Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning.
Journal of Machine Learning Research 7, 1531–1565 (2006)

[65] Suzuki, T., Tomioka, R.: SpicyMKL: a fast algorithm for multiple kernel learning with
thousands of kernels. Machine Learning 85, 77–108 (2011)

[66] Van Slyke, R., Wets, R.: L-shaped linear programs with applications to optimal control and
stochastic programming. SIAM Journal on Applied Mathematics 17(4), 638–663 (1969)

[67] Vanderbeck, F.: Implementing mixed integer column generation. In: G. Desaulniers,
J. Desrosiers, M.M. Solomon (eds.) Column Generation, pp. 331–358. Springer US (2005)

[68] Vapnik, V.: Statistical learning theory. Wiley (1998)

[69] Wentges, P.: Weighted Dantzig-Wolfe decomposition for linear mixed-integer programming.
International Transactions in Operational Research 4(2), 151–162 (1997)

[70] Xu, Z., Jin, R., King, I., Lyu, M.: An extended level method for efficient multiple kernel
learning. Advances in Neural Information Processing Systems 21, 1825–1832 (2009)

[71] Zien, A., Ong, C.S.: Multiclass multiple kernel learning. In: Proceedings of the 24th
international conference on Machine learning, ICML ’07, pp. 1191–1198. ACM, New York,
NY, USA (2007)

[72] Zverovich, V., Fábián, C.I., Ellison, E.F., Mitra, G.: A computational study of a solver sys-
tem for processing two-stage stochastic LPs with enhanced Benders decomposition. Math-
ematical Programming Computation 4, 211–238 (2012)

28

	1 Introduction
	2 Reformulations and the column generation method
	2.1 Column generation
	2.2 Aggregated formulation
	2.3 Generalized decomposition for convex programming problems

	3 Stabilized column generation/cutting plane methods
	3.1 ACCPM
	3.2 Bundle methods: Level set
	3.3 PDCGM

	4 Multiple kernel learning problem (MKL)
	4.1 Problem formulation
	4.2 Decomposition and column generation formulation
	4.3 Computational experiments

	5 Two-stage stochastic programming problem (TSSP)
	5.1 Problem formulation
	5.2 Decomposition and column generation formulation
	5.3 Computational experiments

	6 Multicommodity network flow problem (MCNF)
	6.1 Problem formulation
	6.2 Decomposition and column generation formulation
	6.3 Computational experiments

	7 Conclusions

