Skip to main content
Log in

Revisiting compressed sensing: exploiting the efficiency of simplex and sparsification methods

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We propose two approaches to solve large-scale compressed sensing problems. The first approach uses the parametric simplex method to recover very sparse signals by taking a small number of simplex pivots, while the second approach reformulates the problem using Kronecker products to achieve faster computation via a sparser problem formulation. In particular, we focus on the computational aspects of these methods in compressed sensing. For the first approach, if the true signal is very sparse and we initialize our solution to be the zero vector, then a customized parametric simplex method usually takes a small number of iterations to converge. Our numerical studies show that this approach is 10 times faster than state-of-the-art methods for recovering very sparse signals. The second approach can be used when the sensing matrix is the Kronecker product of two smaller matrices. We show that the best-known sufficient condition for the Kronecker compressed sensing (KCS) strategy to obtain a perfect recovery is more restrictive than the corresponding condition if using the first approach. However, KCS can be formulated as a linear program with a very sparse constraint matrix, whereas the first approach involves a completely dense constraint matrix. Hence, algorithms that benefit from sparse problem representation, such as interior point methods (IPMs), are expected to have computational advantages for the KCS problem. We numerically demonstrate that KCS combined with IPMs is up to 10 times faster than vanilla IPMs and state-of-the-art methods such as \(\ell _1\_\ell _s\) and Mirror Prox regardless of the sparsity level or problem size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adler, I., Karp, R.M., Shamir, R.: A simplex variant solving an \(m\times d\) linear program in \({O}(\min (m_2, d_2)\) expected number of pivot steps. J. Complex. 3, 372–387 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belloni, A., Chernozhukov, V.: \(\ell _1\)-penalized quantile regression in high-dimensional sparse models. Ann. Stat. 39, 82–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, T.T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmonic Anal. 35, 74–93 (2012)

  4. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346, 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Dahmen, W., Devore, R.: Compressed sensing and best \(k\)-term approximation. J. Am. Math. Soc. 22, 211–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1998)

    MATH  Google Scholar 

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell _1\)-minimization. Proc. Natl. Acad. Sci USA 100, 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52, 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47, 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D.L., Maleki, A., Montanari, A.: Message passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. USA 106, 18914–18919 (2009)

    Article  Google Scholar 

  14. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho, D.L., Tanner, J.: Neighborliness of randomly projected simplices in high dimensions. Proc. Natl. Acad. Sci. 102, 9452–9457 (2005)

  16. Donoho, D. L., Tanner, J.: Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102, 9446–9451 (2005)

  17. Donoho, D.L., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. Roy. Soc. S. A 367, 4273–4273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duarte, M.F., Baraniuk, R.G.: Kronecker compressive sensing. IEEE Trans. Image Process. 21, 494–504 (2012)

    Article  MathSciNet  Google Scholar 

  19. Elad, M.: Sparse and Redundant Representations—From Theory to Applications in Signal and Image Processing. Springer, New York (2010)

    MATH  Google Scholar 

  20. Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–597 (2008)

    Article  Google Scholar 

  21. Forrest, J.J., Goldfarb, D.: Steepest-edge simplex algorithms for linear programming. Math. Program. 57, 341–374 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49, 2543–2563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, New York (2013)

    Book  MATH  Google Scholar 

  24. Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch for all: fast algorithms for compressed sensing. In: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 237–246. ACM, New York (2007)

  25. Gill, P.E., Murray, W., Ponceleon, D.B., Saunders, M.A.: Solving reduced KKT systems in barrier methods for linear and quadratic programming. Tech. rep, DTIC Document (1991)

  26. Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comut. Math. 10, 303–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Juditsky, A., Karzan, F.K., Nemirovski, A.: \(\ell _1\) minimization via randomized first order algorithms. Université Joseph Fourier, Tech. rep. (2014)

  28. Kim, S., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale \(l_1\)-regularized least squares. IEEE Trans. Sel. Top. Signal Process. 1, 606–617 (2007)

    Article  Google Scholar 

  29. Klee, V., Minty, G. J.: How good is the simplex method? Inequalities-III, pp. 159–175 (1972)

  30. Kutyniok, G.: Compressed sensing: theory and applications. CoRR . arXiv:1203.3815 (2012)

  31. Lustig, I.J., Mulvey, J.M., Carpenter, T.J.: Formulating two-stage stochastic programs for interior point methods. Oper. Res. 39, 757–770 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. Signal Process. IEEE Trans. 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  33. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM 53, 93–100 (2010)

    Article  MATH  Google Scholar 

  34. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comut. Math. 9, 317–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pan, P.-Q.: A largest-distance pivot rule for the simplex algorithm. Eur. J. Oper. Res. 187, 393–402 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Post, I., Ye, Y.: The simplex method is strongly polynomial for deterministic markov decision processes. Math. Oper. Res. 40, 859–868 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM (JACM) 51, 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50, 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vanderbei, R.: Splitting dense columns in sparse linear systems. Linear Algebra Appl. 152, 107–117 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vanderbei, R.: LOQO: an interior point code for quadratic programming. Optim. Methods Softw. 12, 451–484 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vanderbei, R.: Linear Programming: Foundations and Extensions, 3rd edn. Springer, New York (2007)

    MATH  Google Scholar 

  42. Vanderbei, R.J.: Alpo: another linear program optimizer. ORSA J. Comput. 5, 134–146 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vanderbei, R. J.: Linear programming. Foundations and extensions, International Series in Operations Research & Management Science, vol. 37 (2001)

  44. Vanderbei, R.J.: Fast Fourier optimization. Math. Prog. Comp. 4, 1–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to offer their sincerest thanks to the referees and the editors all of whom read earlier versions of the paper very carefully and made many excellent suggestions on how to improve it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Vanderbei.

Additional information

The first author’s research is supported by ONR Award N00014-13-1-0093, the third author’s by NSF Grant III–1116730, and the fourth author’s by NSF Grant DMS-1005539.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanderbei, R., Lin, K., Liu, H. et al. Revisiting compressed sensing: exploiting the efficiency of simplex and sparsification methods. Math. Prog. Comp. 8, 253–269 (2016). https://doi.org/10.1007/s12532-016-0105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-016-0105-y

Keywords

Mathematics Subject Classification

Navigation