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Abstract We present CasADi, an open-source software framework for numerical

optimization. CasADi is a general-purpose tool that can be used to model and solve

optimization problems with a large degree of flexibility, larger than what is associated

with popular algebraic modeling languages such as AMPL, GAMS, JuMP or Pyomo.

Of special interest are problems constrained by differential equations, i.e. optimal

control problems. CasADi is written in self-contained C++, but is most conveniently

used via full-featured interfaces to Python, MATLAB or Octave. Since its inception

in late 2009, it has been used successfully for academic teaching as well as in appli-

cations from multiple fields, including process control, robotics and aerospace. This

article gives an up-to-date and accessible introduction to the CasADi framework,

which has undergone numerous design improvements over the last seven years.
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1 Introduction

CasADi is an open-source software for numerical optimization, offering an alterna-

tive to conventional algebraic modeling languages such as AMPL [50], Pyomo [69]

and JUMP [40]. Compared to these tools, the approach taken by CasADi, outlined

in this paper, is more flexible, but also lower-level, requiring an understanding of the

expression graphs the user is expected to construct as part of the modeling process.

This flexible approach is in particular valuable for problems constrained by dif-

ferential equations, introduced in the following.

1.1 Optimal control problems

Consider the following basic optimal control problem (OCP) in ordinary differential

equations (ODE):

minimize
x(·),u(·), p

∫ T

0
L(x(t),u(t), p)dt +E(x(T ), p)

subject to
ẋ(t) = f (x(t),u(t), p),
u(t) ∈ U , x(t) ∈ X ,

}

t ∈ [0,T ]

x(0) ∈ X0, x(T ) ∈ XT , p ∈ P,

(OCP)

where x(t) ∈ R
Nx is the vector of (differential) states, u(t) ∈ R

Nu is the vector of free

control signals and p ∈ R
Np is a vector of free parameters in the model. The OCP

here consists of a Lagrange term (L), a Mayer term (E), as well as an ODE with

initial (X0) and terminal (Xf) conditions. Finally, there are admissible sets for the

states (X ), control (U ) and parameters (P). For simplicity, all sets can be assumed

to be simple intervals.

Problems of form (OCP) can be efficiently solved with the direct approach, where

(OCP) is transcribed into a nonlinear program (NLP):

minimize
w

J(w)

subject to g(w) = 0, w ∈ W ,
(NLP)

where w ∈ R
Nw is the decision variable, J the objective function and W again taken

to be an interval set.

Popular direct methods include direct collocation [96,97], which reached wide-

spread popularity through the work of Biegler and Cuthrell [21,31], and direct multi-

ple shooting by Bock and Plitt [23,22]. Both these methods exhibit good convergence

properties and can be easily parallelized.

Real-world optimal control problems are often significantly more general than

(OCP). Industrially relevant features include multi-stage formulations, i.e., different

dynamics in different parts of the time horizon, robust optimal control, problems

with integer variables, differential-algebraic equations (DAEs) instead of ODEs, and

multipoint constraints such as periodicity.
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1.2 Scope of CasADi

CasADi started out as a tool for algorithmic differentiation (AD) using a syntax sim-

ilar to a computer-algebra system (CAS), explaining its name. While state-of-the-art

AD is still a key feature of CasADi, the focus has since shifted towards optimization.

In its current form, CasADi provides a set of general-purpose building blocks that

drastically decreases the effort needed to implement a large set of algorithms for nu-

merical optimal control, without sacrificing efficiency. This “toolkit design” makes

CasADi suitable for teaching optimal control to graduate-level students and allows

researchers and industrial practitioners to write codes, with a modest programming

effort, customized to a particular application or problem structure.

1.3 Organization of the paper

The remainder of the paper is organized as follows. We start by introducing the reader

to CasADi’s symbolic core in Section 2. The key property of the symbolic core is

a state-of-the-art implementation of AD. Some unique features of CasADi are in-

troduced, including how sparse matrix-valued atomic operations can be used in a

source-code-transformation AD framework.

In Section 3, we show how systems of linear or nonlinear equations, as well as

initial-value problems in ODEs or DAEs, can be embedded into symbolic expres-

sions, while maintaining differentiability to arbitrary order. This automatic sensitiv-

ity analysis for ODEs and DAEs is, to the best knowledge of the authors, a unique

feature of CasADi.

Section 4 outlines how certain optimization problems in canonical form can be

solved with CasADi, including nonlinear programs (NLPs), linear programs (LPs)

and quadratic programs (QPs), potentially with a subset of the variables confined to

integer values, i.e. mixed-integer formulations. CasADi provides a common interface

for formulating such problems, while delegating the actual numerical solution to a

third-party solver, either free or commercial, or to an in-house solver, distributed

with CasADi.

Section 5 consists of a tutorial, showing some basic use cases of CasADi. The

tutorial mainly serves to illustrate the syntax, scope and usage of the tool.

Finally, Section 6 gives an overview of applications where CasADi has been suc-

cessfully used to date before Section 7 wraps up the paper.

2 Symbolic framework

The core of CasADi consists of a symbolic framework that allows users to construct

expressions and use these to define automatically differentiable functions. These

general-purpose expressions have no notion of optimization and are best likened with

expressions in e.g. MATLAB’s Symbolic Toolbox or Python’s SymPy package. Once

the expressions have been created, they can be used to efficiently obtain new expres-

sions for derivatives using AD or be evaluated efficiently, either in CasADi’s virtual

machines or by using CasADi to generate self-contained C code.
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We detail the symbolic framework in the following sections, where we also pro-

vide MATLAB/Octave and Python code snippets1 corresponding to CasADi 3.1 be-

low in order to illustrate the functionality. For a self-contained and up-to-date walk-

through of CasADi’s syntax, we recommend the user guide [14].

2.1 Syntax and usage

CasADi uses a MATLAB inspired “everything-is-a-matrix” type syntax, i.e., scalars

are treated as 1-by-1 matrices and vectors as n-by-1 matrices. Furthermore, all ma-

trices are sparse and stored in the compressed column format. For a symbolic frame-

work like CasADi, working with a single sparse data type makes the tool easier to

learn and maintain. Since the linear algebra operations are typically called only once,

to construct symbolic expressions rather than to evaluate them numerically, the extra

overhead of e.g. treating a scalar as a 1-by-1 sparse matrix is negligible.

The following code demonstrates loading CasADi into the workspace, creating

two symbolic primitives x∈R
2 and A∈R

2×2 and finally the creation of an expression

for e := A sin(x):

% MATLAB / Octave

i m p o r t c a s a d i . ∗
x = SX . sym ( ’ x ’ , 2 ) ;

A = SX . sym ( ’A’ , 2 , 2 ) ;

e = A ∗ s i n ( x ) ;

di sp ( e )

# Python

from c a s a d i import ∗
x = SX . sym ( ’ x ’ , 2 )

A = SX . sym ( ’A’ , 2 , 2 )

e = mtimes (A, s i n ( x ) )

p r i n t ( e )

Output: @1=sin(x_0), @2=sin(x_1),

[((A_0*@1)+(A_2*@2)), ((A_1*@1)+(A_3*@2))]

The output should be interpreted as the definition of two shared subexpressions,

@1 := sin(x0) and @2 := sin(x1) followed by an expression for the resulting col-

umn vector (2-by-1 matrix). The fact that CasADi expressions are allowed to contain

shared subexpressions is essential to be able to solve large-scale problems and for

CasADi to be able to implement AD as described in Section 2.6.

2.2 Graph representation – Scalar expression type

In the code snippet above, we used CasADi’s scalar expression type - SX – to con-

struct a symbolic expression. Scalar in this context does not refer to the type itself

– SX is a general sparse matrix type – but the fact that each nonzero element is de-

fined by a sequence of scalar-valued operations. CasADi uses the compressed column

storage (CCS) [12] format to store matrices, the same used to represent sparse ma-

trices in MATLAB, but with the difference that in CasADi entries are allowed to be

structurally nonzero but numerically zero as illustrated by the following:

1 One may run these snippets on a Windows, Linux or Mac platform by following the install instructions

for CasADi 3.1 at http://install31.casadi.org/

http://install31.casadi.org/
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% MATLAB / Octave

C = SX . eye ( 2 ) ;

C( 1 , 1 ) = SX . sym ( ’ x ’ ) ;

C( 2 , 1 ) = 0 ;

di sp (C)

# Python

C = SX . eye ( 2 )

C[ 0 , 0 ] = SX . sym ( ’ x ’ )

C[ 1 , 0 ] = 0

p r i n t (C)

Output: [[x, 00],

[0, 1]]

Note the difference between structural zeros (denoted 00) and numerical zeros

(denoted 0). The fact that symbolic matrices are always sparse in CasADi stands in

contrast to e.g. MATLAB’s Symbolic Math Toolbox, where expressions are always

dense. Also note that CasADi has indices starting with 1 in MATLAB/Octave, but 0

in Python. In C++, CasADi also follows the index-0 convention.

When working with the SX type, expressions are stored as a directed acyclic graph

(DAG) where each node – or atomic operation – is either:

– A symbolic primitive, created with SX.sym as above

– A constant

– A unary operation, e.g. sin

– A binary operation, e.g. ∗, +

This relatively simple graph representation is designed to allow numerical evalua-

tion with very little overhead, either in a virtual machine (Section 2.4) or in generated

C code (Section 2.5). Each operation also has a chain-rule that can efficiently be ex-

pressed with the other atomic operations.

2.3 Graph representation – Matrix expression type

There is a second expression type in CasADi, the matrix expression type – MX. For

this type, each operation is a matrix operation; an expression such as A+B where A

and B are n-by-m matrices would result in a single addition operation, in contrast to

up to mn scalar addition operations using the SX type. In the most general case, an MX

operation can have multiple matrix-valued inputs and return multiple matrix-valued

outputs.

The choice to implement two different expression types in CasADi – and expose

them both to the end user – is the result of a design compromise. It has proven difficult

to implement an expression type that works efficiently both for e.g. the right-hand-

side of an ODE, where minimal overhead is critical, and at the same time be able to

represent the very general symbolic expressions that make up the NLP resulting from

a direct multiple shooting discretization, which contains embedded ODE integrators.

The syntax of the MX type mirrors that of SX:
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% MATLAB / Octave

x = MX. sym ( ’ x ’ , 2 ) ;

A = MX. sym ( ’A’ , 2 , 2 ) ;

e = A ∗ s i n ( x ) ;

di sp ( e )

# Python

x = MX. sym ( ’ x ’ , 2 )

A = MX. sym ( ’A’ , 2 , 2 )

e = mtimes (A, s i n ( x ) )

p r i n t ( e )

Output: mac(A,sin(x),zeros(2x1))

The resulting expression consists of two matrix valued symbolic primitives (for

A and x, respectively), 2-by-1 all-zero constant, a unary operation (sin) and a matrix

multiply-accumulate operation, mac(X1,X2,X3) := X3 +X1 X2.

The choice of atomic operations for the MX type was made so that derivatives

calculated either using the forward or reverse mode of algorithmic differentiation

can be efficiently expressed using the same set of operations. The choice also takes

into account that CasADi’s MX virtual machine, cf. Section 2.4, supports in-place

operations. This last fact explains why matrix multiply-accumulate was chosen as

an atomic operation instead of the standard matrix multiplication; in practice, the

operation performed is X3 := X3 +X1 X2.

A list of the most important atomic operations for the MX expression graph can be

found in Table 1. The list also shows how the different atomic operations are inter-

dependent under algorithmic differentiation operations. For example, reverse mode

AD performed on the operation to retrieve an element of a matrix (operation 9 in the

table) results in an operation to assign a quantity to a matrix element (operation 10

in the table). Note that the assignment operation is a two step procedure consisting

of copying the existing matrix into a new variable before the actual assignment (or

optionally, addition) takes place. The copy operation is typically eliminated in the

virtual machine, cf. Section 2.4.

Some operations, e.g., the binary operation A+B, assume that the arguments have

the same sparsity pattern (i.e., the same location of the nonzero elements). If this is

not the case, CasADi inserts “projection” nodes into the expression graph during the

construction.

A special type of atomic operation is a function call node. It consists of a call

to a function object created at runtime. Importantly, there can be multiple calls to

the same function object, which can keep the size of the expression graphs small.

Function object are covered in the following.

2.4 Function objects and virtual machines

The symbolic expressions in CasADi can be used to define function objects, class in-

stances that behave like conventional functions but are created at runtime, cf. [11]. In

addition to supporting numerical evaluation, CasADi function objects support sym-

bolical evaluation, C code generation (Section 2.5) as well as derivative calculations

(Section 2.6). They can be created by providing a display name and a list of input and

output expressions:
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Table 1 Selected atomic operations for CasADi’s MX type

Operation Definition or example
Interdependencies

AD forward AD reverse

1 Constant y = 0, y = [1.2,4]T etc.

2 Unary operation Y = sin(X), Y =
√

X etc.

3 Binary operation Y = X1 +X2, Y = X1 ∗X2 etc. 4 a

4 Inner product y = tr(X1
T X2)

b 3

5 Transpose Y = XT

6 Multiply-accumulate Y = X3 +X1 X2 3

7 Reshape (changes dimension)

8 Projection (changes sparsity)

9 Submatrix access y = X(i, j) 10

10 Submatrix assignment Y (i, j) = x2 with Y = X1 elsewhere 9

11 Linear solve y = X−1
2 x1 or y = X−T

2 x1 5,6,12,13 5,6,12,13

12 Horizontal concatenation Y = [x1 . . . xn] 13

13 Horizontal split {y1, . . . ,yn} such that [y1 . . . yn] = X 12

14 Function call (see text)

a Dependency appears for e.g. x1 ∗X2, where x1 is a scalar and X2 is a matrix
b Efficiently evaluated by elementwise multiplication and summation, sum(X1 ∗X2)

% MATLAB / Octave

F= F u n c t i o n ( ’F ’ ,{x ,A} ,{ e } ) ;

# Python

F= F u n c t i o n ( ’F ’ , [ x ,A] , [ e ] )

which defines a function object with the display name “F” with two inputs (x and A)

and one output (e), as defined in the previous code segments. Function objects can

have an arbitrary number of inputs and outputs, each of which is a sparse matrix.

Should an input – e.g. A above – contain structural zeros, the constructed function is

understood not to depend on the corresponding part of the matrix.

The creation of a function object in CasADi essentially amounts to topologically

sorting the expression graph, turning the directed acyclic graph (DAG) into an algo-

rithm that can be evaluated. Unlike traditional tools for AD such as ADOL-C [62]

or CppAD [4], there is no relation between the order in which expressions were cre-

ated (i.e. a tracing step) and the order in which they appear in the sorted algorithm.

Instead, CasADi uses a depth-first search to topologically sort the nodes of the DAG.

Given the sorted sequence of operations, CasADi implements two register based

virtual machines (VMs), one for each graph representation. For the inputs and outputs

of each operation, we assign an element (SX VM) or an interval (MX VM) from a

work vector. This design contrasts to the stack based VM used in e.g. the AMPL

Solver Library [50]. To limit the size of the work vector, the live variable range of

each operation is analyzed and work vector elements or intervals are then reused in

a last-in, first-out manner. When possible, operations are performed in-place, e.g., an

operation for assigning the top left element of a matrix:

Y (i, j) =

{
x2 if i = 1 and j = 1

X1(i, j) otherwise

typically simplifies to just an element assignment, X1(1,1) := x2, assuming that X1 is

not needed later in the algorithm.
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Since MX expression graphs can contain calls to function objects, it is possible to

define nested function objects. Encapsulating subexpressions used multiple times into

separate function objects allows expression graphs to stay small and has implications

for the memory use in the context of algorithmic differentiation, cf. Section 2.6.

Function objects in CasADi, as represented by the Function class, need not be

defined by symbolic expressions as above. ODE/DAE integrators, solvers of non-

linear systems of equations and NLP solvers are examples of function objects in

CasADi that are not explicitly defined by symbolic expressions. In many, but not all

cases, these function objects are also automatically differentiable. We return to these

classes in the following sections.

2.5 C code generation and just-in-time compilation

The VMs in CasADi are designed for high-speed and low overhead e.g. by avoiding

memory allocation during numerical evaluation. In a framework such as CasADi,

which is frequently used for rapid prototyping with many design iterations, fast VMs

are important not only for numerical evaluation, but also for symbolic processing,

which can make up a significant portion of the total solution time.

An alternative way to evaluate symbolic expressions in CasADi is to generate

C code for the function objects. When compiled with the right compiler flags, the

generated code can be significantly faster than CasADi’s VMs. Since the generated

code is self-contained C and has no dynamic memory allocation, it is suited to be

deployed on embedded systems. The generated code is designed to be linked into a

dynamically linked library, for static/dynamic linking (via a generated header file), to

be called from the OS command-line (via a generated main entry point), or be called

from MATLAB/Octave (via a generated mexFunction entry point).

The generated C code can be used for just-in-time compilation, which is sup-

ported either by using the system compiler or via an interface to the LLVM compiler

framework with its C/C++ front-end Clang [81]. The latter is available for all plat-

forms and is distributed with CasADi, meaning that the user does not need to have a

binary compatible system compiler in order to use the generated C code.

2.6 Algorithmic differentiation

Algorithmic differentiation (AD) – also known as automatic differentiation – is a

technique for efficiently calculating derivatives of functions represented as algorithms.

For a function y = f (x) with vector-valued x and y, the forward mode of AD provides

a way to accurately calculate a Jacobian-times-vector product:

ŷ :=
∂ f

∂x
x̂, (1)

at a computational cost comparable to evaluating the original function f (x). This

definition naturally extends to a matrix-valued function Y =F(X), by simply defining

x := vec(X) and y := vec(Y ), where vec(·) denotes stacking the columns of the matrix
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vertically. It also naturally generalizes further to the case when there are multiple

matrix-valued inputs and outputs, which is the general case for functions in CasADi.

The reverse mode of AD, on the other hand, provides a way to accurately calculate

a Jacobian-transposed-times-vector product:

x̄ :=

(
∂ f

∂x

)T

ȳ (2)

also at a computational cost comparable to evaluating the original function f (x). In

contrast to the forward mode, the reverse mode in general carries a larger, but often

avoidable, memory overhead. This definition likewise naturally extends to the case

when the function takes multiple matrix-valued inputs and multiple matrix-valued

outputs.

Any implementation of AD works by breaking down a calculation into a sequence

of atomic operations with known, preferably explicit, chain rules. For example, the

forward mode AD rule for a matrix-matrix multiplication Y = X1 X2 is given by:

Ŷ = X̂1 X2 +X1 X̂2

and the reverse mode AD rule is given by:

X̄1 = Ȳ X2
T; X̄2 = X1

T Ȳ ,

as shown in e.g. [59].

The forward and reverse modes thus offer two ways to efficiently and exactly cal-

culate directional derivatives. Efficiently calculating the complete Jacobian, which

can be large and sparse, is a considerably more difficult problem. For large prob-

lems, some heuristic that falls back on the above forward and/or reverse modes, is

usually required. Higher order derivatives can be treated as special cases, or, which

is the case here, by applying the AD algorithms recursively. The Hessian of a scalar-

valued function is then simply calculated as the Jacobian of the gradient, preferably

exploiting the symmetry of the Hessian.

CasADi implements AD using a source-code-transformation approach, which

means that new symbolic expressions, using the same graph representation, are gen-

erated whenever derivatives are requested. Differentiable expressions for directional

derivatives as well as large-and-sparse Jacobians and Hessians can be calculated.

The following demonstrates how to generate a new expression for the first column

of a Jacobian using a Jacobian-times-vector product as well as an expression for the

complete Jacobian:

% MATLAB / Octave

J1 = j t i m e s ( e , x , [ 1 ; 0 ] ) ;

J = j a c o b i a n ( e , x ) ;

# Python

J1 = j t i m e s ( e , x , [ 1 , 0 ] )

J = j a c o b i a n ( e , x )

In the remainder of this section, we present the implementation of AD in CasADi, as-

suming that the reader is already familiar with AD. We refer to [13, Chapter 3] for

a simple introduction and Griewank and Walther [64] or Naumann [107] for a more

complete introduction to AD.
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Directional derivatives

For a function object defined by a symbolic expression, CasADi implements the for-

ward and reverse modes of AD by propagating symbolic seeds forward and backward

through the algorithm respectively, resulting in new symbolic expressions that con-

tain references to nodes of the expression graph of the non-differentiated function.

Whenever a function call node is encountered, cf. Section 2.3, a new function object

is generated for calculating directional derivatives. The generated function objects

for the derivatives are cached in order to limit memory use. How a function class

calculates directional derivatives is class-specific; e.g., an integrator node typically

generates functions for directional derivatives by augmenting the ODE/DAE integra-

tion with its sensitivity equations.

If a symbolic expression consists of a large number of nodes, the evaluation of

reverse mode derivatives may be costly in memory, since the intermediate results

must be kept in memory and then accessed in reverse order. The CasADi user is

responsible for avoiding such a memory blowup by breaking up large expressions into

a hierarchy of smaller expressions, each encapsulated in a separate function object.

Choosing a suitable hierarchy of function objects is equivalent to a checkpointing

strategy [64, Chapter 12] in AD terminology, and as such comes at the price of a

moderate increase in the number of floating point operations for reverse mode AD.

Calculation of complete Jacobians and Hessians

We use a graph coloring approach [54] to generate expressions for complete large

and sparse Jacobians and Hessians. The idea of this approach is to reconstruct the

Jacobian with a set of Jacobian-vector-products, i.e. directional derivatives. Using

greedy graph coloring algorithms, we seek to find a set of vectors that is smaller than

the naive choice of simply using the unit vectors, i.e. vi being the i-th column of the

identity matrix.

CasADi uses a heuristic to construct Jacobian and Hessian expressions. The heuris-

tic uses a symmetry-exploiting greedy, distance-2, star-coloring algorithm [54, Al-

gorithm 4.1], whenever it is known a priori that the resulting Jacobian is symmetric,

in particular whenever a Hessian is being constructed. For asymmetric Jacobians, a

greedy, distance-2, unidirectional algorithm [54, Algorithm 4.1] is attempted both

column-wise (corresponding to forward mode AD) and row-wise (corresponding to

reverse mode AD). Depending on the number of rows and columns of the Jacobian,

one or the other is attempted first and the algorithm attempted second is interrupted

prematurely if determined to need more colors, i.e. more directional derivatives. A

factor α , by default 2, is introduced to take into account that a reverse mode AD

sweep is usually slower than a forward mode AD sweep. We summarize the algo-

rithm in Table 1.

The coloring algorithms in CasADi are used together with a largest-first preorder-

ing step [54,136].
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Algorithm 1 Heuristic to calculate complete Jacobians in CasADi

Calculate the Jacobian sparsity pattern

if J is symmetric (typically a Hessian) then

Run a star-coloring algorithm.

else

if The number of columns of J is fewer than α times the number of rows then

Run a column-wise unidirectional algorithm.

Run a row-wise unidirectional algorithm, interrupting prematurely if the number of colors sur-

passes the column-wise algorithm with more than a factor 1/α .

else

Run a row-wise unidirectional algorithm.

Run a column-wise unidirectional algorithm, interrupting prematurely if the number of colors

surpasses the row-wise algorithm with more than a factor α .

end if

end if

Jacobian sparsity pattern calculation

A priori knowledge of the sparsity pattern of the Jacobian is a precondition to be able

to implement the above graph coloring approach. Obtaining this pattern for a generic

expression is a nontrivial task and often turns out to be the most expensive step in the

Jacobian construction.

CasADi uses the bitvector approach [58], which is essentially an implementa-

tion of forward or reverse mode AD using a single bit as a datatype, indicating

whether a component of a Jacobian-vector-product is structurally zero. The bitvec-

tor approach can be implemented efficiently using bitwise operations on an unsigned

integer datatype. CasADi uses the 64-bit unsigned long long datatype for this,

meaning that up to 64 rows or columns can be calculated in a single sparsity propa-

gation sweep.

For the large and sparse Jacobians and Hessians encountered in CasADi, where

the number of rows and columns can be in the millions, performing tens of thousands

of sparsity propagation sweeps to determine the Jacobian sparsity pattern can be pro-

hibitively expensive. If nothing is known about the location of the nonzero elements,

probabilistic methods as shown by Griewank and Mitev [63] have been proposed.

For the type of Jacobians typically encountered in CasADi, both in simulation and

optimization, the nonzeros are unlikely to be encountered in random locations. A

more typical sparsity pattern is one which has large regions that do not have a single

nonzero entry. An example of such a structured sparsity pattern, corresponding to the

Hessian of the Lagrangian of an NLP arising from direct collocation, can be seen in

Figure 1.

To exploit this block sparse structure, CasADi implements a hierarchical spar-

sity pattern calculation algorithm based on graph coloring. The algorithm alternates

between calculating successively less crude sparsity patterns and the same graph col-

oring algorithms used in the previous section.

In a first step, the rows and columns of the Jacobian are divided into 64 groups

of similar size. The sparsity pattern propagation algorithm, either forward or reverse,

is then executed yielding a coarse sparsity pattern. For the pattern in Figure 1, this

will result in either a block diagonal or block tridiagonal sparsity pattern, depending
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Fig. 1 The sparsity pattern of the Hessian of the Lagrangian of an NLP arising from direct collocation

on how the blocks are chosen. Either case is amenable for graph coloring. After ei-

ther symmetry exploiting or non-symmetry exploiting graph coloring, the process is

repeated for a finer sparsity pattern, using one sparsity propagation sweep for each

distinct color found in the coarse pattern.

This process is then repeated for successively finer sparsity patterns, until the the

actual sparsity pattern is obtained.

Example 1 Assume that the Jacobian has dimension 100,000-by-100,000 and has a

(a priori unknown) nonsymmetric tridiagonal sparsity pattern.

The proposed propagation algorithm first performs one sweep which results in a

block tridiagonal pattern, with block sizes no larger than ceil(100,000/64) = 1,563.

Tridiagonal patterns can trivially be colored with 3 colors, regardless of dimension,

meaning that the columns can be divided into 3 groups. For each color, we make one

sweep (3 in total) to find a finer sparsity pattern, which will also be tridiagonal. At

this point, the blocks are no larger than ceil(1,563/64) = 25. The graph coloring

algorithm is again executed and again resulting in 3 colors. Finally, with one sweep

for each color, we obtain the true sparsity pattern.

For this example, the sparsity pattern is thus recovered in 7 sweeps, which can

be compared with ceil(100,000/64) = 1,563 sweeps needed for the naive algorithm,

where 64 rows or columns are calculated in each sweep.
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This proposed hierarchical sparsity pattern calculation algorithm is not efficient if

the nonzero entries are spread out randomly and CasADi assumes that the user takes

this into account when e.g. formulating a large NLP.

2.7 Control flow handling

A common question posed by CasADi users is how to handle expressions that involve

flow control such as if-statements, for-loops and while-loops. Expressions contain-

ing flow control appear naturally in a range of applications, e.g. for physical models

governed by different equations for different value ranges. Being able to calculate

derivatives for such models, that are at least accurate in the almost everywhere sense,

is essential for practical numerical optimization.

The approach chosen in CasADi is to support flow control by implementing con-

cepts from functional programming languages such as Haskell.

Conditionals

Conditional expressions, which include switches and if-statements, can be expressed

using a dedicated Switch function object class in CasADi. This construction, which

is defined by a set of other function objects in CasADi, is defined by a vector of

function objects corresponding to the different cases as well as the default case, all

with the same input-output signature:

Algorithm 2 A Switch function object in CasADi defined by ( f0, . . . , fN)

input (c,x0, . . . ,xn−1)
if floor(c) = 0 then

(y0, . . . ,ym−1) = f0(x0, . . . ,xn−1)
else if . . . then

. . .
else if floor(c) = N −1 then

(y0, . . . ,ym−1) = fN−1(x0, . . . ,xn−1)
else

(y0, . . . ,ym−1) = fN(x0, . . . ,xn−1)
end if

return (y0, . . . ,ym−1)

Since CasADi calculates derivatives of function objects by generating expressions

for its directional derivatives, the derivative rules for the above class – for forward

mode and reverse mode – can be defined as new conditional function objects defined

by the corresponding derivative functions. Note that derivatives with respect to the

first argument (c above) are zero almost everywhere.

An important special case of the Switch construct is if-then-else operations, for

which N = 1.
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Maps

Another readily differentiable concept from functional programming is a map. A map

in this context is defined as a function being evaluated multiple times with different

arguments. This evaluation can be performed serially or in parallel.

The Map function object class in CasADi allows users to formulate maps. This

function object takes a horizontal concatenation of all inputs and returns a horizontal

concatenation of all outputs:

Algorithm 3 A Map function object in CasADi defined by f and N

input (X0, . . . ,Xn−1)
for i = 0, . . . ,N −1 do

(yi,0, . . . ,yi,m−1) = f (xi,0, . . . ,xi,n−1)
end for

return (Y0, . . . ,Ym−1)

where X j := [x0, j, . . . ,xN−1, j], j = 0, . . . ,m− 1 and Yk := [y0,k, . . . ,xN−1,k], k =
0, . . . ,n−1.

3 Implicitly defined differentiable functions

Optimization problems may contain quantities that are defined implicitly. An impor-

tant example of this, and one of the motivations to write CasADi in the first place,

is the direct multiple shooting method, where the NLP contains embedded solvers

for initial-value problems in differential equations. We will showcase this method in

Section 5.4. Another example is a dynamic system containing algebraic loops, which

can be made explicit by embedding a root-finding solver.

In the following, we discuss how certain implicitly defined functions can be em-

bedded into symbolic expressions, but still have their derivative and sparsity infor-

mation generated automatically and efficiently.

3.1 Linear systems of equations

As shown in [59], the solution to a linear system of equations y = X−1
2 x1 has forward

and reverse mode AD rules defined by:

ŷ = X−1
2 (x̂1 − X̂2 y); x̄1 = X−T

2 ȳ; X̄2 =−x̄1 yT

Apart from standard operations such as matrix multiplications, the directional

derivatives can thus be expressed using a linear solve with the same linear system

as the nondifferentiated expression. In the reverse mode case, a linear solve with the

transposed matrix is needed.

CasADi supports linear system of equations of this form through a linear solver

abstract base class, which is an oracle class able to factorize and solve dense or sparse



CasADi – A software framework for nonlinear optimization and optimal control 15

linear systems of equations. The solve step supports optional transposing, as required

by the reverse mode of AD. The linear solver class is a plugin class in CasADi, and

leaves to the derived class – typically an interface to a third-party linear solver – to

actually perform the factorization and solution.

The linear solver instances are embedded into CasADi’s MX expression graphs

using a dedicated linear solve node, which is similar to the more generic function

call node introduced in Section 2.3. The linear solve node implements the above

derivative AD rules, using MX’s nodes for horizontal split and concatenation to be

able to reuse the same factorization for multiple directional derivatives, i.e. multiple

right-hand-sides.

Sparsity pattern propagation for the linear solve node was implemented by first

making a block-triangular reordering of the rows and columns, exposing both uni-

directional and bidirectional dependencies between the elements. The reordering is

calculated only once for each sparsity pattern and then cached.

At the time of this writing, the linear solver plugins in CasADi – which may

impose additional restrictions such as symmetry or positive definiteness – included

CSparse [32] (sparse LU, sparse QR and sparse Cholesky decompositions), MA27

[6] (frontal method) and LAPACK [12] (dense LU and dense QR factorizations).

3.2 Nonlinear systems of equations

A more general implicitly defined function is the solution of a root-finding problem:

g(y,x) = 0 ⇔ y = f (x). (3)

If regularity conditions are satisfied, in particular the existence and invertibility of

the Jacobian ∂g
∂y

, the problem is well-posed and its Jacobian is given by the implicit

function theorem:

∂ f

∂x
=−

(
∂g

∂y

)−1 ∂g

∂x

which readily gives the forward and reverse AD propagation rules of (3)

ŷ =−
(

∂g

∂y

)−1 ∂g

∂x
x̂; x̄ =−

(
∂g

∂x

)T (
∂g

∂y

)−T

ȳ. (4)

For the forward mode, the problem of calculating directional derivatives for the

implicitly defined function f (x) is reduced to the problem of calculating forward

mode directional derivatives of the residual function g(y,x) followed by a linear solve.

For the reverse mode, the calculation involves a linear solve for the transposed system

followed by a reverse mode directional derivative for the residual function.

CasADi supports the above via so-called rootfinder function objects. These

use a generalization of (3) which includes multiple matrix-valued input parameters
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and a set of auxiliary outputs:








g0(y0,x1, . . . ,xn−1)
g1(y0,x1, . . . ,xn−1) − y1

...

gm−1(y0,x1, . . . ,xn−1) − ym−1








= 0 ⇔ (y0, . . . ,ym−1) = f (x0, . . . ,xn−1). (5)

where x0 has been introduced as an initial guess for y0. Note that the derivative with

respect x0 is zero almost everywhere.

Like linear solvers, root-finders are implemented using a plugin-design. In the

base class, rules for derivative calculation and sparsity pattern propagation are defined

whereas solving the actual nonlinear system of equations is delegated to a derived

class, typically in the form of an interfaced third-party tool. Root-finding objects in

CasADi can be differentiated an arbitrary number of times since both its forward and

reverse mode directional derivatives can be expressed by (arbitrarily differentiable)

CasADi constructs, namely directional derivatives for the residual function and the

linear solver operation treated in Section 3.1. The linear solver is typically the same

as the linear solver used in a Newton method for the nonlinear system of equations.

By default, the CSparse [32] plugin is used, but this can be changed by passing an

option to the rootfinder constructor.

3.3 Initial-value problems in ODE and DAE

Certain methods for optimal control, including direct multiple shooting and direct

single shooting, will result in optimization problem formulations that require solving

initial-value problems (IVP) in ODEs or DAEs. Since the integrator calls appear in

the constraint and/or objective functions of an NLP, we need ways to calculate first

and preferably second order derivative information.

The CasADi constructs introduced until now can be used to define either ex-

plicit or implicit fixed step-step integrator schemes. For example, a Runge-Kutta 4

(RK4) scheme can be implemented with less than 10 lines of code using CasADi’s

MX type, and derivatives can be generated automatically to any order. Similarily, an

implicit fixed-step scheme, such as a collocation method, can be implmemented using

CasADi’s rootfinder functionality, described in Section 3.2.

More advanced integrator schemes, such as backwards difference formula (BDF)

methods with variable order and/or adaptive step-size, cannot be handled with this

approach. Compared to a fixed-step integrator scheme, an adaptive scheme often re-

sults in fewer steps for the same accuracy and the user is relieved from choosing

appropriate step-sizes. CasADi’s integrator functionality enables the user to em-

bed solvers of initial-value problems in ODEs or DAEs and have derivatives to any
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order calculated exactly using state-of-the-art codes such as those in the SUNDIALS

suite [72]. CasADi’s integrator objects solve problems of the following form:

f : Rnx ×R
nz ×R

nu ×R
nr ×R

ns ×R
nv → R

nx ×R
nz ×R

nq ×R
nr ×R

ns ×R
np ,

(x0,z0,u,rT ,sT ,v) 7→ (x(T ),z(T ),q(T ),r(0),s(0), p(0))






ẋ(t) = φ(x(t),z(t),u),
0 = θ(x(t),z(t),u),

q̇(t) = ψ(x(t),z(t),u),
−ṙ(t) = φ ∗(x(t),z(t),u,r(t),s(t),v),

0 = θ ∗(x(t),z(t),u,r(t),s(t),v),
− ṗ(t) = ψ∗(x(t),z(t),u,r(t),s(t),v),

t ∈ [0,T ]

x(0) = x0

z0 initial guess for z(0)
q(0) = 0

r(T ) = rT

sT initial guess for s(T )
p(T ) = 0

(6)

The problem consists of two semi-explicit DAEs with initial and terminal con-

straints, respectively, and both with support for calculation of quadratures. The sec-

ond DAE is coupled to the solution trajectory of the first DAE. We impose the ad-

ditional requirement that θ ∗(x,z,u,r,s,v), φ ∗(x,z,u,r,s,v) and ψ∗(x,z,u,r,s,v) are

affine in r, s and v. Initial guesses for z(0) and s(T ) are included for efficiency, ro-

bustness and to ensure solution uniqueness.

This integrator formulation has two major advantages in the context of optimiza-

tion and sensitivity analysis. Firstly, it is general enough to handle most industry

relevant simulation problems and the quadrature functionalty allows integral terms in

objective functions to be calculated efficiently using quadrature formulas. Secondly,

it can be shown [13] that both forward and reverse mode directional derivatives of

this problem can be calculated efficiently by solving a problem that has exactly the

same structure.

By performing the differentiation repeatedly, we can calculate derivatives to any

order, using an appropriate mix of forward and adjoint sensitivity analysis. In partic-

ular, we can perform forward-over-adjoint sensitivity analysis for efficient Hessian

calculation. A potential drawback, which is inherent with this so-called variational

approach to sensitivity analysis, is that when used inside a gradient-based optimiza-

tion code, the calculated derivatives may not be consistent with the nondifferentiated

function evaluation, due to differences in time discretization.

Like linear solvers and root-finding solvers, integrators are implemented using

a plugin design in CasADi. The base class implements the rules for differentiation

and sparsity pattern propagation and the derived class, which can be an interface to

a third-party tool, performs the actual solution. Integrator plugins in CasADi include

IDAS and CVODES from the SUNDIALS suite [72], a fixed step-size RK4 code, and

an implicit Runge-Kutta code implementing Legendre or Radau collocation.

4 Optimization

Just like conventional algebraic modeling languages, CasADi combines support for

modeling with support for mathematical optimization. Two classes of optimization

problems are supported; nonlinear programs (NLPs) and conic optimization prob-

lems. The latter class includes both linear programs (LPs) and quadratic programs
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(QPs). The actual solution typically takes place in a derived class, and may use a

tool distributed with CasADi or be an interface to a third-party solver. The role of

CasADi is to extract information about structure and generate the required derivative

information as well as to provide a common interface for all solvers.

4.1 Nonlinear programming

CasADi uses the following formulation for a nonlinear program (NLP):

minimize
x, p

f (x, p)

subject to x ≤ x ≤ x, p = p, g ≤ g(x, p)≤ g.

(7)

This is a parametric NLP where the objective function f (x, p) and the constraint

function g(x, p) depend on the decision variable x and a known parameter p. For

equality constraints, the variable bounds [x,x] or constraint bounds [g,g] are equal.

The solution of (7) yields a primal (x, p) and a dual (λx,λp,λg) solution, where

the Lagrange multipliers are chosen to be consistent with the following definition of

the Lagrangian function:

L (x, p,λx,λp,λg) := f (x, p)+λ T
x x+λ T

p p+λ T
g g(x, p). (8)

This formulation drops all terms that do not depend on x or p and uses the same

multipliers (but with different signs) for the inequality constraints according to

λx (x− x)+λx (x− x) = (λx −λx
︸ ︷︷ ︸

:=λx

)Tx−λ T
x x+λ T

x x
︸ ︷︷ ︸

ignored

and equivalently for g(x, p). Note that λx(i) and λx(i) cannot both be positive and

that the dropped terms do not appear in the KKT conditions of (7).

In this NLP formulation, a strictly positive multiplier signals that the correspond-

ing upper bound is active and vice versa. Furthermore, λp is the parametric sensitivity

of the objective with respect to the parameter vector p.

Table 2 lists the available NLP solver plugins at the time of this writing. The list

includes both open-source solvers that are typically distributed along with CasADi

and commercial solvers that require separate installation. The table attempts to make

a rough division of the plugins between solvers suitable for very large but very sparse

NLPs, e.g., arising from direct collocation, and large and structured NLPs, e.g. arising

from direct multiple shooting, cf. Section 4.3. The plugin ’sqpmethod’ corresponds

to a “vanilla” SQP method, mainly intended to serve as a boilerplate code for users

who intend to develop their own solver codes. A subset of the solvers supports mixed-

integer nonlinear programming (MINLP) formulations, where a subset of the decision

variables are restricted to take integer values.
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Table 2 NLP solver plugins in CasADi 3.1

Solver Plugin name License Method Problem

IPOPT [134] ’ipopt’ EPL Nonlinear interior point b NLP

BONMIN [1] ’bonmin’ EPL Nonlinear interior point b MINLP

KNITRO [28] ’knitro’ Commercial Multiple b, c MINLP

WORHP [27] ’worhp’ Commercial a SQP b NLP

SNOPT [60] ’snopt’ Commercial SQP c NLP

casadi::Blocksqp d ’blocksqp’ zlib SQP c NLP

casadi::Sqpmethod ’sqpmethod’ LGPL SQP boilerplate code NLP

casadi::Scpgen ’scpgen’ LGPL SQP c NLP

a Free for academic use
b Suitable for large and sparse NLPs

c Suitable for structured NLPs
d Fork of blockSQP [77]

4.2 Conic optimization

When the objective function f (x, p) is quadratic in x and the constraint function

g(x, p) is linear in x, (7) can be posed as a quadratic program (QP) of the form

minimize
x

1
2
xTHx+gTx

subject to x ≤ x ≤ x, a ≤ Ax ≤ a.

(9)

CasADi supports solving QPs, formulated either as (7) or as (9). In the former

case, AD is used to reformulate the problem in form (9), automatically identifying

the sparse matrices H and A as well as the vectors g, a and a.

As with NLP solvers, the solution of optimization problems takes place in one

of CasADi’s conic solver plugins, listed in Table 3. Some plugins impose additional

restrictions on (9); linear programming solvers require that the H term is zero and

most interfaced QP solvers require H to be positive semi-definite. A subset of the

solvers supports mixed-integer formulations. Note that mixed integer quadratic pro-

gramming (MIQP) is a superset of QP and that QP is a superset of LP. Future versions

of CasADi may allow more generic conic constraints such as SOCP and SDP [25].

4.3 Sparsity and structure exploitation

NLPs and QPs arising from transcription of optimal control problems are often either

sparse or block-sparse. A sparse QP in this context is one where matrices – i.e. A

and H in (9) – have few enough nonzero entries per row or column to be handled

efficiently by general sparse linear algebra routines. For a sparse NLP, the same ap-

plies to the matrices that arrise from the linearization of the KKT conditions, i.e. to
∂g
∂x

and ∇2
xL in (7) and (8). A direct collocation type OCP transcription will typically

result in sparse NLPs or QPs, provided that the Jacobian of the ODE right-hand-side

function (or DAE residual function) is sufficiently sparse. Several tools exist that can
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Table 3 Conic solver plugins in CasADi 3.1

Solver Plugin name License Method Problem

qpOASES [47] ’qpoases’ LGPL Active-set QP b

CPLEX [76] ’cplex’ Commercial Multiple d MIQP

GUROBI [5] ’gurobi’ Commercial Multiple d MIQP

CLP [3] ’clp’ CPL Simplex LP

OOQP [56] ’ooqp’ Open-source Interior point d QP

HPMPC [53] ’hpmpc’ LGPL Interior point QPe

a Free for academic use
b Supports non-convex QPs
c Supports integer decision variables

d For large and sparse problems
e For structured problems

handle these problems efficiently, cf. Table 2 and Table 3. These solvers generally

rely on sparse direct linear algebra routines, e.g. from the HSL Library [6].

A direct multiple shooting type transcription, on the other hand, will typically

result in NLPs or QPs that have dense sub-blocks and hence an overall block-sparse

pattern, with too many nonzero entries to be handled efficiently by general sparse

linear algebra routines. Condensing [84] in combination with a dense solver such

as qpOASES [47] is known to work well for certain structured QPs, in particular

when the time horizon is short and the control dimension small relative to the state

dimension. Other QPs can be solved efficiently with tools such as FORCES [38],

qpDUNES [51] and HPMPC [53]. The lifted Newton method [9] is a generalization

of the condensing approach to NLPs and nonlinear root-finding problems. We refer

to [78] for a comprehensive treatment of structured QPs and NLPs.

At the time of this writing, CasADi supported one structured QP solver, HPMPC

[53], and two structured NLP solvers, Scpgen and blockSQP. Scpgen [13] is an im-

plementation of the lifted Newton method using CasADi’s AD framework and block-

SQP [77], incorporated into CasADi in modified form, can handle NLPs with a block-

diagonal Hessian matrices.

5 Tutorial examples

In the following, we showcase the CasADi syntax and usage paradigm through a se-

ries of tutorial examples of increasing complexity. The first two examples introduce

the optimization modeling approach in CasADi, which differs from that of conven-

tional algebraic modeling languages such as AMPL, GAMS, JuMP or Pyomo. In

Section 5.3, we demonstrate the automatic ODE/DAE sensitivity analysis in CasADi

and finally, in Section 5.4, we combine the tools introduced in the previous examples

in order to implement the direct multiple shooting method.

We will use a syntax corresponding to CasADi version 3.1 in both MATLAB/Oc-

tave and Python, side-by-side. The presentation attempts to convey a basic under-

standing of what modeling in CasADi entails. For a more comprehensive and up-to-

date introduction to CasADi, needed to understand each line of the example scripts,

we refer to the user guide [14].
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5.1 An unconstrained optimization problem

Let us start out by finding the minimum of Rosenbrock’s banana-valley function:

minimize
x,y

x2 +100(y− (1− x)2)2 (10)

By insprection, we can see that its unique solution is (0,1). The problem can be

formulated and solved with CasADi as follows:

% MATLAB / Octave

i m p o r t c a s a d i . ∗

% S y m b o l i c r e p r e s e n t a t i o n

x=SX . sym ( ’ x ’ ) ;

y=SX . sym ( ’ y ’ ) ;

z=y−(1−x ) ˆ 2 ;

f =x ˆ2+100∗ z ˆ 2 ;

P= s t r u c t ( ’ x ’ , [ x ; y ] , ’ f ’ , f ) ;

% C r e a t e s o l v e r i n s t a n c e

F= n l p s o l ( ’F ’ , ’ i p o p t ’ , P ) ;

% S o l v e t h e problem

r =F ( ’ x0 ’ , [ 2 . 5 3 . 0 ] )

di sp ( r . x )

# Python

from c a s a d i import ∗

# S y m b o l i c r e p r e s e n t a t i o n

x=SX . sym ( ’ x ’ )

y=SX . sym ( ’ y ’ )

z=y−(1−x )∗∗2

f =x∗∗2+100∗ z ∗∗2

P= d i c t ( x= v e r t c a t ( x , y ) , f = f )

# C r e a t e s o l v e r i n s t a n c e

F= n l p s o l ( ’F ’ , ’ i p o p t ’ , P )

# S o l v e t h e problem

r =F ( x0 = [ 2 . 5 , 3 . 0 ] )

p r i n t ( r [ ’ x ’ ] )

The solution consists of three parts. Firstly, constructing a symbolic representa-

tion of the problem in the form of a MATLAB/Octave struct or a Python dict. A

naming scheme, consistent with (7), is used for the different fields. The variable z

is an intermediate expression; more complex models will contains a large number of

such expressions. Secondly, a solver instance is created, here using IPOPT. During

this step, the AD framework is invoked to generate a set of solver-specific functions

for numerical evaluation, here corresponding to the cost function, its gradient, and

its Hessian. Finally, the solver instance is evaluated numerically in order to obtain

the optimal solution. We pass the initial guess (2.5,3.0) as an input argument. Other

inputs are left at their default values, e.g. the bounds on x are x =−∞ and x = ∞.

The above script converges to the optimal solution in 26 iterations. The total so-

lution time on a MacBook Pro is in the order of 0.02 s.
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5.2 Nonlinear programming example

Let us reformulate (10) as a constrained optimization problem, introducing a decision

variable corresponding to z above:

minimize
x,y,z

x2 +100z2

subject to z+(1− x)2 − y = 0.

(11)

The problem can be formulated and solved with CasADi as follows:

% MATLAB / Octave

i m p o r t c a s a d i . ∗

% Formula te t h e NLP

x=SX . sym ( ’ x ’ ) ;

y=SX . sym ( ’ y ’ ) ;

z=SX . sym ( ’ z ’ ) ;

f =x ˆ2+100∗ z ˆ 2 ;

g=z+(1−x )ˆ2−y ;

P= s t r u c t ( ’ f ’ , f , ’ g ’ , g , . . .

’ x ’ , [ x ; y ; z ] ) ;

% C r e a t e s o l v e r i n s t a n c e

F= n l p s o l ( ’F ’ , ’ i p o p t ’ , P ) ;

% S o l v e t h e problem

r =F ( ’ x0 ’ , [ 2 . 5 3 . 0 0 . 7 5 ] , . . .

’ ubg ’ , 0 , ’ l b g ’ , 0 ) ;

di sp ( r . x )

# Python

from c a s a d i import ∗

# Formula te t h e NLP

x=SX . sym ( ’ x ’ )

y=SX . sym ( ’ y ’ )

z=SX . sym ( ’ z ’ )

f =x∗∗2+100∗ z ∗∗2

g=z+(1−x)∗∗2−y

P= d i c t ( f =f , g=g , \
x= v e r t c a t ( x , y , z ) )

# C r e a t e s o l v e r i n s t a n c e

F= n l p s o l ( ’F ’ , ’ i p o p t ’ , P )

# S o l v e t h e problem

r =F ( x0 = [ 2 . 5 , 3 . 0 , 0 . 7 5 ] , \
ubg =0 , l b g =0)

p r i n t ( r [ ’ x ’ ] )

We impose the equality constraint by setting the upper and lower bound of g to 0

and use the (2.5,3.0,0.75) as an initial value, consistent with the initial guess for the

unconstrained formulation. The above script converges to the optimal solution in 10

iterations taking around 0.01 s.

Notice how lifting the optimization problem to a higher dimension like this re-

sulted in faster local convergence of IPOPT’s Newton-type method. This behavior

can often be observed for structurally complex nonlinear problems as discussed in

e.g. [9]. This faster local convergence is one of the advantages of the direct multiple

shooting method, which we will return to in Section 5.4.

5.3 Automatic sensitivity analysis example

We now shift our attention to simulation and sensitivity analysis using the CasADi’s

integrator objects introduced in Section 3.3. Consider the following initial-value

problem in ODE corresponding to a Van der Pol oscillator:



CasADi – A software framework for nonlinear optimization and optimal control 23

{
ẋ1 = (1− x2

2)x1 − x2 + p, x1(0) = 0

ẋ2 = x1, x2(0) = 1
(12)

With p fixed to 0.1, we wish to solve for xf := x(1). This can be solved as follows:

% MATLAB / Octave

i m p o r t c a s a d i . ∗

% Formula te t h e ODE

x=SX . sym ( ’ x ’ , 2 ) ;

p=SX . sym ( ’ p ’ ) ;

z=1−x ( 2 ) ˆ 2 ;

f =[ z∗x (1)−x ( 2 ) + p ; x ( 1 ) ] ;

dae= s t r u c t ( ’ x ’ , x , ’ p ’ , p , . . .

’ ode ’ , f ) ;

% C r e a t e i n t e g r a t o r

op= s t r u c t ( ’ t 0 ’ , 0 , ’ t f ’ , 1 ) ;

F= i n t e g r a t o r ( ’F ’ , . . .

’ cvodes ’ , dae , op ) ;

% I n t e g r a t e

r =F ( ’ x0 ’ , [ 0 , 1 ] , ’ p ’ , 0 . 1 ) ;

di sp ( r . x f )

# Python

from c a s a d i import ∗

# Formula te t h e ODE

x=SX . sym ( ’ x ’ , 2 )

p=SX . sym ( ’ p ’ )

z=1−x [ 1 ]∗∗2

f = v e r t c a t ( z∗x [0]−x [ 1 ] + p , \
x [ 0 ] )

dae= d i c t ( x=x , p=p , ode= f )

# C r e a t e i n t e g r a t o r

op= d i c t ( t 0 =0 , t f =1)

F= i n t e g r a t o r ( ’F ’ ,\
’ cvodes ’ , dae , op )

# I n t e g r a t e

r =F ( x0 = [ 0 , 1 ] , p = 0 . 1 )

p r i n t ( r [ ’ x f ’ ] )

As for the optimization examples above, the solution consists of three parts; con-

struction of a symbolic representation of the problem, creating a solver instance, and

evaluating this solver instance in order to obtain the solution. In the scripts above,

we used CVODES from the SUNDIALS suite [72] to solve the initial value prob-

lem, which implements a variable step-size, variable-order backward differentiation

formula (BDF) method.

Since F in the above scripts is a differentiable CasADi function, as described in

Section 3.3, we can automatically generate derivative information to any order. For

example, the Jacobian of x(1) with respect to x(0) can be calculated as follows:

% C r e a t e J a c o b i a n f u n c t i o n

D=F . f a c t o r y ( ’D’ , . . .

{ ’ x0 ’ , ’ p ’ } ,{ ’ j a c : x f : x0 ’ } ) ;

% S e n s i t i v i t y a n a l y s i s

r =D( ’ x0 ’ , [ 0 , 1 ] , ’ p ’ , 0 . 1 ) ;

di sp ( r . j a c x f x 0 )

# C r e a t e J a c o b i a n f u n c t i o n

D=F . f a c t o r y ( ’D’ ,\
[ ’ x0 ’ , ’ p ’ ] , [ ’ j a c : x f : x0 ’ ] )

# S e n s i t i v i t y a n a l y s i s

r =D( x0 = [ 0 , 1 ] , p = 0 . 1 )

p r i n t ( r [ ’ j a c x f x 0 ’ ] )

The automatic sensitivity analysis is often invoked indirectly, when using a gradient-

based optimization solver, as the next example shows.
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5.4 The direct multiple shooting method

By combining the nonlinear programing example in Section 5.2 with the embeddable

integrator in Section 5.3, we can implement the direct multiple shooting method by

Bock and Plitt [23,22]. We will consider a simple OCP with the same IVP as in (12),

but reformulated as a DAE and with p replaced by a time-varying control u:

minimize
x(·),z(·),u(·)

∫ T

0

(
x1(t)

2 + x2(t)
2 +u(t)2

)
dt (13)

subject to







ẋ1(t) = z(t)x1(t)− x2(t)+u(t)
ẋ2(t) = x1(t)
0 = x2(t)

2 + z(t)−1

−1.0 ≤ u(t)≤ 1.0, x1(t)≥−0.25

t ∈ [0,T ] (14)

x1(0) = 0, x2(0) = 1 (15)

where x(·) ∈R
2 is the (differential) state, z(·) ∈R is the algebraic variable and u(·) ∈

R is the control. We let T = 10.

Our goal is to transcribe the OCP (15) to a problem of form (7). In the direct

approach, the first step in this process is a parameterization of the control trajectory.

For simplicity, we assume a uniformly spaced, piecewise constant control trajectory:

u(t) := uk for t ∈ [tk, tk+1), k = 0, . . . ,N −1 with tk := k T/N.

With the control fixed over one interval, we can use an integrator to reformulate

the problem from continuous time to discrete time. This can be done as in Section 5.3.

Since we now have a DAE, we introduce an algebraic variable z and the correspond-

ing algebraic equation g and use IDAS instead of CVODES. We also introduce a

quadrature for calculating the contributions to the cost function.
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% MATLAB / Octave

i m p o r t c a s a d i . ∗

% Formula te t h e DAE

x=SX . sym ( ’ x ’ , 2 ) ;

z=SX . sym ( ’ z ’ ) ;

u=SX . sym ( ’ u ’ ) ;

f =[ z∗x (1)−x ( 2 ) + u ; x ( 1 ) ] ;

g=x ( 2 ) ˆ 2 + z−1;

h=x ( 1 ) ˆ 2 + x ( 2 ) ˆ 2 + u ˆ 2 ;

dae= s t r u c t ( ’ x ’ , x , ’ p ’ , u , . . .

’ ode ’ , f , . . .

’ z ’ , z , ’ a l g ’ , g , ’ quad ’ , h ) ;

% C r e a t e s o l v e r i n s t a n c e

T = 1 0 ; % end t i m e

N = 2 0 ; % d i s c r e t i z a t i o n

op= s t r u c t ( ’ t 0 ’ , 0 , ’ t f ’ ,T /N ) ;

F= i n t e g r a t o r ( ’F ’ , . . .

’ i d a s ’ , dae , op ) ;

# Python

from c a s a d i import ∗

# Formula te t h e DAE

x=SX . sym ( ’ x ’ , 2 )

z=SX . sym ( ’ z ’ )

u=SX . sym ( ’ u ’ )

f = v e r t c a t ( z∗x [0]−x [ 1 ] + u , \
x [ 0 ] )

g=x [1 ]∗∗2+ z−1

h=x [0 ]∗∗2+ x [1 ]∗∗2+ u∗∗2

dae= d i c t ( x=x , p=u , ode=f , \
z=z , a l g =g , quad=h )

# C r e a t e s o l v e r i n s t a n c e

T = 1 0 . # end t i m e

N = 20 # d i s c r e t i z a t i o n

op= d i c t ( t 0 =0 , t f =T /N)

F= i n t e g r a t o r ( ’F ’ ,\
’ i d a s ’ , dae , op )

Our next step is to construct a symbolic representation of the NLP. We will use

the following formulation:

minimize J(w)
subject to G(w) = 0, w ≤ w ≤ w

(16)

For this we start with an empty NLP and add a decision variable corresponding

to the initial conditions:

% Empty NLP

w={} ; lbw = [ ] ; ubw = [ ] ;

G={} ; J =0 ;

% I n i t i a l c o n d i t i o n s

Xk=MX. sym ( ’X0 ’ , 2 ) ;

w{end+1}=Xk ;

lbw =[ lbw ; 0 ; 1 ] ;

ubw=[ubw ; 0 ; 1 ] ;

# Empty NLP

w= [ ] ; lbw = [ ] ; ubw = [ ]

G= [ ] ; J =0

# I n i t i a l c o n d i t i o n s

Xk=MX. sym ( ’X0 ’ , 2 )

w+=[Xk ]

lbw + = [ 0 , 1 ]

ubw + = [ 0 , 1 ]

Inside a for loop, we introduce decision variables corresponding to each control

interval and the state at the end of each interval:
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f o r k =1:N

% Loca l c o n t r o l

Uname=[ ’U’ num2str ( k −1 ) ] ;

Uk=MX. sym ( Uname ) ;

w{end+1}=Uk ;

lbw =[ lbw ; −1] ;

ubw=[ubw ; 1 ] ;

% C a l l i n t e g r a t o r

Fk=F ( ’ x0 ’ ,Xk , ’ p ’ ,Uk ) ;

J=J+Fk . q f ;

% New l o c a l s t a t e

Xname=[ ’X’ num2str ( k ) ] ;

Xk=MX. sym ( Xname , 2 ) ;

w{end+1}=Xk ;

lbw =[ lbw ;− .25;− i n f ] ;

ubw=[ubw ; i n f ; i n f ] ;

% C o n t i n u i t y c o n s t r a i n t

G{end+1}=Fk . xf−Xk ;

end

f o r k in range ( 1 ,N+ 1 ) :

# Loca l c o n t r o l

Uname= ’U’+ s t r ( k−1)

Uk=MX. sym ( Uname )

w+=[Uk ]

lbw +=[−1]

ubw+=[ 1 ]

# C a l l i n t e g r a t o r

Fk=F ( x0=Xk , p=Uk )

J +=Fk [ ’ q f ’ ]

# New l o c a l s t a t e

Xname= ’X’+ s t r ( k )

Xk=MX. sym ( Xname , 2 )

w+=[Xk ]

lbw +=[−.25 ,− i n f ]

ubw+=[ i n f , i n f ]

# C o n t i n u i t y c o n s t r a i n t

G+=[ Fk [ ’ x f ’ ]−Xk ]

With symbolic expressions for (16), we can use CasADi’s fork of blockSQP [77]

to solve this block structured NLP, as in Section 5.2:

% C r e a t e NLP s o l v e r

n l p = s t r u c t ( ’ f ’ , J , . . .

’ g ’ , v e r t c a t (G { : } ) , . . .

’ x ’ , v e r t c a t (w{ : } ) ) ;

S= n l p s o l ( ’S ’ , . . .

’ b l o c k s q p ’ , n l p ) ;

% S o l v e NLP

r =S ( ’ l b x ’ , lbw , ’ ubx ’ , ubw , . . .

’ x0 ’ , 0 , ’ l b g ’ , 0 , ’ ubg ’ , 0 ) ;

di sp ( r . x ) ;

# C r e a t e NLP s o l v e r

n l p = d i c t ( f =J , \
g= v e r t c a t (∗G) ,\
x= v e r t c a t (∗w) )

S= n l p s o l ( ’S ’ ,\
’ b l o c k s q p ’ , n l p )

# S o l v e NLP

r =S ( l b x =lbw , ubx=ubw , \
x0 =0 , l b g =0 , ubg =0)

p r i n t ( r [ ’ x ’ ] )

5.5 Further examples

More examples on CasADi usage can be found in CasADi’s example collection.

These examples include other OCP methods such as direct single shooting, direct

collocation as well as two indirect methods and a dynamic programming method for

comparison.
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6 Applications of CasADi

Since the first release of CasADi in 2011, the tool has been used to teach optimal

control in graduate level courses, to solve optimization problems in science and engi-

neering as well as to implement new algorithms and software. An overview of applied

research using CasADi, as of early 2017, is presented in the following.

6.1 Optimization and simulation in science and engineering

In energy research, applications include the exploitation [79,30,102] and transport

[130] of fossil fuels, power-to-gas systems [26], control of combined-cycle [80] and

steam [17] power plants, solar thermal power plants [114], production models [87]

and control [65] of classical wind-turbines, design and control of airborne wind en-

ergy systems [75,66,85,43,89,104], MEMS energy harvesters [82], design of geother-

mal heat pumps [135], thermal control of buildings [105,33], electrical grids [45,

118], electrical grid balancing [44], and price arbitrage on the energy market [34].

In the automotive industry, applications include design and operation of drive-

trains [20,108,109], electrical power systems [121], control of combustion engines

[120], research towards self-driving cars [95,39,71,19], traffic control [119], and op-

eration of a driving simulator [129].

In the process industries, applications include control [88,73,92], optimal exper-

imental design [90,106], and parameter estimation [74] of (bio-)chemical reactors.

In robotics research, applications include control of agricultural robots [125], re-

mote sensing of icebergs with UAVs [15,70], time-optimal control of robots [132],

motion templates for robot-human interaction [133], motion planning of robotic sys-

tems with contacts [8,99], and multi-objective control of complex robots [86].

Further assorted applications include estimation in systems biology [124,122],

biomechanics [18], optimal control of bodily processes [24,57], signal processing

[117], and machine learning [113].

6.2 Nonstandard optimization problem formulations

Most applications above deal with either system design, parameter estimation, model

predictive control (MPC) or moving horizon estimation [55] (MHE) formulations.

For some of these problems, it is the nonstandard formulation of the optimization

problem that poses the main challenge.

Some applications transcend the classical subdivisions; dual control combines

control and learning [123,68,46], codesign of optimal trajectory and reference fol-

lower [61], multi-objective design [100,126], the use of different transcription meth-

ods on different parts of the system statespace [10].

Concerning robustness, formulations include the use of scenario trees [88], ellip-

soidal calculus [91], spline-relaxations [127], stochastic control using linearizations

[116,61], using sigma-points [111], and using polynomial chaos expansion [111,

110]. In [61], stochastic optimal control was efficiently implemented by embedding

a discrete periodic Lyapunov solver in the CasADi expression graphs.
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In MPC research, formulations include multi-level iterations [52], offset-free de-

sign [112], Lyapunov-based MPC [42,41], multi-objective MPC [101], distributed

MPC [128,103], time-optimal path following [36] and tube following [37].

Further formulations include hybrid OCP [49], treatment of systems with invari-

ants [115,67], an improved Gauss-Newton method for OCP [131].

6.3 Software packages using CasADi

Software packages that rely on CasADi for algorithmic differentiation and optimiza-

tion include the JModelica.org package for simulation and optimization [16,98],

the Greybox tool for constructing thermal building models [35], the do-mpc envi-

ronment for efficient testing and implementation of robust nonlinear MPC [93,94],

mpc-tools-casadi for nonlinear MPC [7], the casiopeia toolbox for parameter

estimation and optimum experimental design [2], the RTC-Tools 2 package for con-

trol of hydraulic networks, the omgtools package for real-time motion planning in

the presence of moving obstacles, the Pomodoro toolbox for multi-objective optimal

control [29], the spline toolbox for robust optimal control [127], and a MATLAB

optimal control toolbox [83].

7 Discussion and outlook

Since the release of CasADi 3.0 in early 2016, the scope and syntax can be con-

sidered mature and no more major non-backwards compatible changes are foreseen.

Current development focusses on making existing features more efficient, by address-

ing speed and memory bottlenecks, and adding new functionality.

An area of special interest are mixed integer optimal control problems (MIOCPs).

Problems of this class appear naturally across engineering fields, e.g. in the form of

discrete actuators in model predictive control (MPC) formulations. At the time of

this writing, CasADi included support for mixed-integer QP and NLP problems, as

explained in Section 4, but MIOCPs are largely unexplored.

Another ongoing development is to enable automatic sensitivity analysis for NLPs.

Assuming the optimal NLP solution meets regularity criteria as described in e.g. [48],

directional derivatives of an NLP solver object are guarenteed to exist and can be cal-

culated using information that can be extracted from the expression graphs. Paramet-

ric sensitivity information is useful in a range of applications, including the estimation

of covariances in parameter estimation.
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University (2016)



32 Joel A. E. Andersson et al.

84. Leineweber, D.: Efficient reduced SQP methods for the optimization of chemical processes described

by large sparse DAE models, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 613. VDI

Verlag, Düsseldorf (1999)
85. Licitra, G., Sieberling, S., Engelen, S., Williams, P., Ruiterkamp, R., Diehl, M.: Optimal control for

minimizing power consumption during holding patterns for airborne wind energy pumping system.

In: European Control Conference (ECC), pp. 1574–1579 (2016)
86. Liu, M., Tan, Y., Padois, V.: Generalized hierarchical control. Autonomous Robots 40, 17–31 (2016)
87. Lopes, V.V., et al.: On the use of markov chain models for the analysis of wind power time-series.

In: Conf. on Environment and Electrical Engineering (EEEIC), pp. 770–775 (2012)
88. Lucia, S., Andersson, J.A., Brandt, H., Bouaswaig, A., Diehl, M., Engell, S.: Efficient robust eco-

nomic nonlinear model predictive control of an industrial batch reactor. IFAC Proceedings Volumes

47(3), 11,093–11,098 (2014)
89. Lucia, S., Engell, S.: Control of towing kites under uncertainty using robust economic nonlinear

model predictive control. In: European Control Conference (ECC), pp. 1158–1163 (2014)
90. Lucia, S., Paulen, R.: Robust nonlinear model predictive control with reduction of uncertainty via

robust optimal experiment design. IFAC Proceedings Volumes 47(3), 1904–1909 (2014)
91. Lucia, S., Paulen, R., Engell, S.: Multi-stage nonlinear model predictive control with verified robust

constraint satisfaction. In: IEEE Conf. on Decision and Control (CDC), pp. 2816–2821 (2014)
92. Lucia, S., Schliemann-Bullinger, M., Findeisen, R., Bullinger, E.: A set-based optimal control ap-

proach for pharmacokinetic/pharmacodynamic drug dosage design. IFAC-PapersOnLine 49(7), 797–

802 (2016)
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