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Abstract This paper concerns with a noisy structured low-rank matrix recovery problem which
can be modeled as a structured rank minimization problem. We reformulate this problem as a
mathematical program with a generalized complementarity constraint (MPGCC), and show that
its penalty version, yielded by moving the generalized complementarity constraint to the objec-
tive, has the same global optimal solution set as the MPGCC does whenever the penalty parame-
ter is over a certain threshold. Then, by solving the exact penalty problem in an alternating way,
we obtain a multi-stage convex relaxation approach. We provide theoretical guarantees for our
approach under a mild restricted eigenvalue condition, by quantifying the reduction of the error
and approximate rank bounds of the first stage convex relaxation in the subsequent stages and es-
tablishing the geometric convergence of the error sequence in a statistical sense. Numerical exper-
iments are conducted for some structured low-rank matrix recovery examples to confirm our the-
oretical findings. Our code can be achieved from https://doi.org/10.5281/zenodo.3600639.
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1 Introduction

The task of noisy structured low-rank matrix recovery is to seek a low-rank matrix with a
certain structure consistent with some noisy linear measurements. Let X be the target matrix
to be recovered and b = AX + ξ be the noisy measurement vector, where A : Rn1×n2 → Rm is
the sampling operator and ξ ∈ Rm is the noisy vector with ‖ξ‖ ≤ δ for some δ > 0. The noisy
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structured low-rank matrix recovery problem can be modeled as the rank minimization problem

min
X∈Rn1×n2

{
rank(X) s.t. ‖AX − b‖ ≤ δ, X ∈ Ω

}
, (1)

where Ω ⊆ Rn1×n2 is a compact convex set describing the structure of X. Throughout this paper,
we assume that X is a global optimal solution of (1) with rank(X) = r, and that the sampling
operator A is defined by AX := (〈A1, X〉, . . . , 〈Am, X〉)T for X ∈ Rn1×n2 , where A1, . . . , Am are
the given matrices in Rn1×n2 . Such a structured rank minimization problem has wide applications
in system identification and control [11,13], signal and image processing [17,7], machine learning
[36], multi-dimensional scaling in statistics [31], finance [30], and quantum tomography [16]. For
instance, one is often led to seek a low-rank Hankel matrix in system identification and control,
a low-rank correlation matrix in finance and a low-rank density matrix in quantum tomography.

Due to the combinatorial property of the rank function, the problem (1) is generally NP-
hard. One popular way to deal with NP-hard problems is to use the convex relaxation technique,
which typically yields a desirable local optimal solution via a single or a sequence of numerically
tractable convex optimization problems. Fazel [11] initiated the research for the nuclear norm
relaxation method, motivated by the fact that the nuclear norm is the convex envelope of the
rank function in the unit ball on the spectral norm. In the past decade or so, this relaxation
method has received much attention from many fields such as information, computer science,
statistics, optimization, and so on (see, e.g., [5,16,33,20,21,28,38]), and it has been shown that
a single nuclear norm minimization problem can recover the target matrix X under a certain
restricted isometry property (RIP) of A when δ = 0 and Ω = Rn1×n2 [33] or yield a solution
satisfying a certain error bound when δ > 0 and Ω = Rn1×n2 [4]. For its recoverability and error
bounds under other conditions, the reader may refer to [10,28,34] and references therein.

Most of the existing low-rank matrix optimization models target the case Ω =Rn1×n2 . When
the structure on the target matrix is known, it is reasonable to consider the rank minimization
problem (1) with Ω indicating the available information. However, the (hard) constraint X ∈ Ω
often contradicts the role of the nuclear norm in promoting a low-rank solution. For example,
when Ω consists of the set of correlation matrices, the nuclear norm relaxation method for (1)
may fail in generating a low-rank solution since the nuclear norm becomes a constant in the set
Ω. In addition, although some error bounds have been established for the nuclear norm relaxation
method in the noisy setting [4,28,29], they are minimax-optimal up to a logarithmic factor of
the dimension [29], instead of a constant factor like the l1-norm relaxation method for sparse
regression [32]. These two considerations motivate us to seek more efficient convex relaxations.

1.1 Main contribution

The main contribution of this work is the introduction of a multi-stage convex relaxation approach
via an equivalent Lipschitz optimization reformulation. This approach can efficiently reduce the
error bounds obtained from the nuclear norm convex relaxation. More specifically, we reformulate
(1) as an equivalent MPGCC by using a variational characterization of the rank function and
verify that its penalized version, yielded by moving the generalized complementarity constraint
to the objective, has the same global optimal solution set as the MPGCC does once the penalty
parameter is over a certain threshold. This exact penalty problem not only has a convex feasible
set but also possesses a Lipschitz objective function with a bilinear structure, which offers a
favorable Lipschitz reformulation for (1). To the best of our knowledge, this is the first equiva-
lent Lipschitz characterization for low-rank optimization problems (although the nuclear norm
relaxation is a Lipschitz characterization for low-rank optimization problems, it generally does
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not have the same global optimal solution set as the rank optimization problem does). With this
reformulation, we propose a multi-stage convex relaxation approach by solving the exact penalty
problem in an alternating way. Under a restricted eigenvalue condition weaker than the RIP con-
dition used in [4,25], we quantify the reduction of the error and approximate rank bounds of the
first stage nuclear norm convex relaxation in the subsequent stages, and establish the geometric
convergence of the error sequence in a statistical sense. Among others, the latter entails an upper
estimation for the stage number of the convex relaxations to make the estimation error to reach
the statistical error level. The analysis shows that the error and approximate rank bounds of the
nuclear norm relaxation are reduced most in the second stage and the reduction rate is at least
40% for the problems with a relatively worse restricted eigenvalue property, and the reduction
becomes less as the number of stages increases and can be ignored after the fifth stage.

1.2 Related works

The idea of using the multi-stage convex relaxation for low-rank optimization problems is not
new. In order to improve the solution quality of the nuclear norm relaxation method, some re-
searchers pay their attention to nonconvex surrogates of low-rank optimization problems. Since
seeking a global optimal solution of a nonconvex surrogate problem is almost as difficult as solv-
ing a low-rank optimization problem itself, they relax nonconvex surrogates into a sequence of
simple matrix optimization problems, and develop the reweighted minimization methods (see [12,
26,22]). In contrast to our multi-stage convex relaxation approach, such sequential convex relax-
ation methods are designed by solving a sequence of convex relaxation problems of nonconvex
surrogates instead of the equivalent reformulation. We also notice that the theoretical analysis in
[25] for the reweighted trace norm minimization method [12] depends on the special property of
the log-determinant function, which is not applicable to general low-rank optimization problems,
and the theoretical guarantees in [22] were established only for the noiseless recovery problem.

Additionally, some researchers have reformulated low-rank optimization problems as smooth
nonconvex problems with the help of low-rank decomposition of matrices in the attempt to
achieve a desirable solution by solving the smooth nonconvex problems in an alternating way
(actually by solving a sequence of simple convex matrix optimization problems); see, e.g., [35,
19]. This class of convex relaxation methods has a theoretical guarantee, but is not applicable to
those problems with hard constraints such as the problem (1).

Finally, it is worthwhile to point out that our multi-stage convex relaxation approach is highly
relevant to the one proposed by Zhang [43] for sparse regularization problems and the rank-
corrected procedure for the matrix completion problem with fixed coefficients [24]. The former
is designed via solving a sequence of convex relaxation problems for the nonconvex surrogates
of the zero-norm regularization problem. Since the singular values vectors are involved in low-
rank matrix recovery, the analysis technique in [43] is not applicable to our multi-stage convex
approach to problem (1). In particular, for low-rank matrix recovery, it is not clear whether the
error sequence yielded by the multi-stage convex relaxation approach shrinks geometrically or
not in a statistical sense, and if it does, under what conditions. We will answer these questions
affirmatively in Section 4. The rank-corrected procedure [24] is actually a two-stage convex
relaxation approach in which the first-stage is to find a good initial estimator and the second-
stage is to solve the rank-corrected problem. This procedure has already been applied to nonlinear
dimensionality reduction problems [8] and tensor completion problems [1]. However, when the
rank of the true matrix is unknown, the rank-corrected problem in [24] needs to be constructed
heuristically with the knowledge of the initial estimator, while each subproblem in our multi-stage
convex relaxation approach stems from the global exact penalty of the equivalent MPGCC. In
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addition, the analysis in [24] is more reliant on concentration inequalities in probability analysis,
whereas our analysis is deterministic and relies on the restricted eigenvalue property of A.

1.3 Notation

We stipulate n1 ≤ n2. Let Rn1×n2 be the vector space of all n1×n2 real matrices endowed with
the trace inner product 〈·, ·〉 and its induced norm ‖ · ‖F . Let On×κ be the set in Rn×κ consisting
of all matrices whose columns are of unit length and are mutually orthogonal to each other,
and denote On×n by On. For a given matrix X ∈ Rn1×n2 , we denote by ‖X‖∗ and ‖X‖ the
nuclear norm and the spectral norm of X, respectively, and by σ(X) ∈ Rn1 the singular value
vector of X with entries arranged in a non-increasing order, and write On1,n2(X) := {(U, V ) ∈
On1 × On2 | X = U [Diag(σ(X)) 0]V T}. Let e and I be the vector of all ones and the identity
matrix whose dimensions are known from the context.

Let Φ be the family of closed proper convex functions φ : R→ (−∞,+∞] satisfying

int(domφ) ⊇ [0, 1], 1 > t∗ := arg min
0≤t≤1

φ(t), φ(t∗) = 0 and φ′−(1) < +∞. (2)

For each φ ∈ Φ, let ψ : R→ (−∞,+∞] be the associated closed proper convex function:

ψ(t) :=

{
φ(t) if t ∈ [0, 1],
+∞ otherwise. (3)

Then from convex analysis [37] we know that the conjugate ψ∗ of ψ has the properties:{
∂ψ∗(t) =

[
(ψ∗)′−(t), (ψ∗)′+(t)

]
⊆ [0, 1] ∀t ∈ R, (4a)

(ψ∗)′+(t1) ≤ (ψ∗)′−(t) ≤ (ψ∗)′+(t) ≤ (ψ∗)′−(t2) ∀t1 < t < t2. (4b)

In addition, we also need the eigenvalues of A∗A restricted to a set of low-rank matrices, where
A∗ denotes the adjoint of A. To this end, for a given positive integer k, we define

ϑ+(k) := sup
0<rank(X)≤k

〈X,A∗A(X)〉
‖X‖2F

and ϑ−(k) := inf
0<rank(X)≤k

〈X,A∗A(X)〉
‖X‖2F

. (5)

2 Exact penalty for an equivalent reformulation

First of all, we shall provide an equivalent reformulation of the rank minimization problem (1)
with the help of the following variational characterization of the rank function.

Lemma 1 Let φ ∈ Φ. Then, for any given X ∈ Rn1×n2 , it holds that

φ(1)rank(X) = min
W∈Rn1×n2

{∑n1

i=1φ(σi(W )) : ‖X‖∗−〈W,X〉 = 0, ‖W‖ ≤ 1
}
. (6)

Proof We first argue that φ(1)rank(X) is a lower bound for the optimal value of (6). Indeed, let
W be an arbitrary feasible point of (6). From [18, Equation (3.3.25)],

‖X‖∗ = 〈W,X〉 ≤ 〈σ(W ), σ(X)〉 ≤ ‖σ(X)‖1 = ‖X‖∗,

which implies that
∑n1

i=1(1 − σi(W ))σi(X) = 0. Along with σi(W ) ∈ [0, 1] for i = 1, . . . , n1,
we obtain σi(W ) = 1 if σi(X) 6= 0, and consequently

∑n1

i=1 φ(σi(W )) ≥ φ(1)rank(X), i.e.,
φ(1)rank(X) is a lower bound for the optimal value of (6). Now consider the matrix

W ∗= U1V
T
1 + t∗U2[Diag(e) 0]V T

2 with ([U1 U2], [V1 V2]) ∈ On1,n2(X),
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where U1 ∈ On1×κ and V1 ∈ On2×κ for κ = rank(X), and t∗ is defined in (2). It is immediate
to check that W ∗ is feasible to (6) and

∑n1

i=1φ(σi(W
∗)) = φ(1)rank(X). This shows that the

optimal value of (6) is equal to φ(1)rank(X). The proof is completed. 2

Recall that φ(1) > 0 for each φ ∈ Φ. By Lemma 1, we readily have the following result.

Proposition 1 Let φ ∈ Φ. Then, the rank minimization problem (1) is equivalent to

min
X,W∈Rn1×n2

∑n1

i=1φ(σi(W ))

s.t. ‖A(X)−b‖ ≤ δ, X ∈ Ω, (7)
‖X‖∗−〈W,X〉 = 0, ‖W‖ ≤ 1

in the sense that if X∗ is globally optimal to (1), then (X∗, U∗1 (V ∗1 )T + t∗U∗2 [Diag(e) 0](V ∗2 )T)
is a global optimal solution of the problem (7) where ([U∗1 U∗2 ], [V ∗1 V ∗2 ]) ∈ On1,n2(X∗) with
U∗1 ∈ On1×r and V ∗1 ∈ On2×r for r = rank(X∗); and conversely, if (X∗,W ∗) is a global optimal
solution to (7), then X∗ is globally optimal to (1).

The constraints ‖X‖∗−〈W,X〉 = 0 and ‖W‖ ≤ 1 involve a complementarity relation which,
for the positive semidefinite (PSD) rank minimization problem, is exactly the PSD cone comple-
mentarity relation. In view of this, we call the problem (7) an MPGCC. Due to the presence of the
nonconvex constraint ‖X‖∗− 〈W,X〉= 0, the MPGCC (7) is as difficult as the original problem
(1). Nevertheless, it provides us a new view to tackle the difficult rank minimization problem (1).
Since numerically it is usually more convenient to handle nonconvex objective functions than to
handle nonconvex constraints, we are motivated to investigate the following penalization of (7):

min
X,W∈Rn1×n2

∑n1

i=1φ(σi(W )) + ρ(‖X‖∗−〈W,X〉)

s.t. ‖A(X)−b‖ ≤ δ, X ∈ Ω, ‖W‖ ≤ 1. (8)

Next we shall verify that (8) is an exact penalty version for (7) in the sense that there exists
a constant ρ > 0 such that the global optimal solution set of (8) associated to any ρ > ρ
coincides with that of (7). To the best of our knowledge, there are only a few works devoted
to mathematical programs with matrix cone complementarity constraints [9,41], which mainly
focus on the optimality conditions, but not the exact penalty conditions.

Theorem 1 Let φ ∈ Φ and denote by F the feasible set of the problem (1). Then, there exists a
constant α > 0 such that for all X ∈ F , σr(X) ≥ α, and the global optimal solution set of (8)
associated to any ρ > φ′−(1)/α is the same as that of (7).

Proof We prove the first part of the conclusions by contradiction. Suppose that there exists a
sequence {Xk} ⊂ F such that σr(Xk) → 0. Notice that {Xk} is bounded since F is bounded.
Let X̂ be an accumulation point of {Xk}. By the closedness of F and the continuity of σr(·),
we have X̂ ∈ F and σr(X̂) = 0. This implies rank(X̂) ≤ r − 1, contradicting the fact that the
optimal value of (1) is equal to r. So, such α exists.

Fix an arbitrary ρ > φ′−(1)/α. Then, for any X ∈ F and each i ∈ {1, 2, . . . , r},

{1} = arg mint∈[0,1]

{
φ(t) + ρσi(X)(1− t)

}
. (9)

Let Sρ and S∗ρ be the feasible set and the global optimal solution set of the penalty problem (8)
associated to ρ, respectively, and denote by S and S∗ the feasible set and the global optimal
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solution set of (7), respectively. We first establish the inclusion S∗ρ ⊆ S∗. To achieve this goal,
we need to verify that each (X∗,W ∗) ∈ S∗ρ satisfies

‖X∗‖∗ − 〈W ∗, X∗〉 = 0 and rank(X∗) = r. (10)

Since S∗ ⊂ S ⊂ Sρ and rφ(1) is the optimal value of the problem (7), it holds that

rφ(1) ≥
∑n1

i=1φ(σi(W
∗)) + ρ(‖X∗‖∗ − 〈W ∗, X∗〉). (11)

In addition, from [18, Equation (3.3.25)], it follows that∑n1

i=1φ(σi(W
∗)) +ρ(‖X∗‖∗−〈W ∗, X∗〉) ≥

∑n1

i=1

[
φ(σi(W

∗)) + ρσi(X
∗)(1− σi(W ∗))

]
≥
∑r
i=1

[
φ(σi(W

∗)) + ρσi(X
∗)(1− σi(W ∗))

]
≥
∑r
i=1 min

t∈[0,1]

[
φ(t)+ρσi(X

∗)(1−t)
]

= rφ(1),

where the second inequality is by the nonnegativity of φ(σi(W
∗)) and σi(X∗)(1 − σi(W ∗)) for

all i, and the last one is due to (9). Together with (11), we obtain that∑n1

i=1φ(σi(W
∗)) +ρ(‖X∗‖∗−〈W ∗, X∗〉)=

∑r
i=1

[
φ(σi(W

∗)) + ρσi(X
∗)(1− σi(W ∗))

]
=
∑r
i=1 min

t∈[0,1]

[
φ(t)+ρσi(X

∗)(1−t)
]

= rφ(1).

This, along with (9), implies that σi(W ∗) = 1 for i = 1, . . . , r. Substituting σi(W ∗) = 1 for
i = 1, . . . , r into the last equation and using the nonnegativity of φ in [0, 1], we deduce that∑n1

i=r+1 φ(σi(W
∗)) = 0 and ‖X∗‖∗ = 〈W ∗, X∗〉 = 〈σ(X∗), σ(W ∗)〉. This means that σi(W ∗) = t∗

for i = r+1, . . . , n1 and rank(X∗) = r. Thus, the claimed equalities in (10) hold. Hence, S∗ρ ⊂ S
and

∑n1

i=1 φ(σi(W
∗)) = rφ(1) for each (X∗,W ∗) ∈ S∗ρ . Since the optimal value of (7) is rφ(1),

we have S∗ρ ⊆ S∗. For the reverse inclusion, let (X∗,W ∗) be an arbitrary point from S∗. Then
(X∗,W ∗) ∈ Sρ and

∑n1

i=1 φ(σi(W
∗)) = rφ(1). While the last equation implies that the optimal

value of (8) is exactly rφ(1). Thus, S∗ ⊆ S∗ρ . The proof is then completed. 2

Theorem 1 extends the exact penalty result of [2, Theorem 3.3] for the zero-norm minimization
to the matrix setting, and further develops the exact penalty result of the rank-constrained
minimization problems in [3, Theorem 3.1]. Observe that the objective function of (8) is globally
Lipschitzian over its feasible set. Combining Theorem 1 with Proposition 1, we conclude that the
rank minimization problem (1) is equivalent to the Lipschitzian optimization problem (8).

3 A multi-stage convex relaxation approach

The penalty problem (8) is equivalent to the problem (1), but it depends on the lower bound α
for the rth largest singular value of all X ∈ F , which may be difficult to estimate. This means
that a sequence of penalty problems of the form (8) with non-decreasing ρ should be solved so
as to target achieving a global optimal solution of (1). The problem (8) associated to a given
ρ > 0 is not globally solvable due to the nonconvexity of the objective function, but it becomes
a nuclear semi-norm minimization with respect to X if the variable W is fixed and has a closed
form solution ofW (as will be shown later) if the variable X is fixed. This motivates us to propose
a multi-stage convex relaxation approach to (1) by solving (8) in an alternating way.
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Algorithm 1 (A multi-stage convex relaxation approach)
Initialization: Choose a function φ ∈ Φ. Take W 0 = 0 and set k := 1.

while the stopping conditions are not satisfied do

1. Solve the following nuclear semi-norm minimization problem

Xk ∈ arg min
X∈Rn1×n2

{
‖X‖∗−〈Wk−1, X〉 : ‖A(X)− b‖ ≤ δ, X ∈ Ω

}
. (12)

If k = 1, select a suitable ρ1 > 0 and go to Step (S.3); else go to Step (S.2).
2. Select a suitable ratio factor µk ≥ 1 and set ρk := µkρk−1.
3. Solve the following minimization problem

Wk ∈ arg min
W∈Rn1×n2

{∑n1
i=1φ(σi(W ))− ρk〈W,Xk〉 : ‖W‖ ≤ 1

}
. (13)

4. Let k ← k + 1, and then go to Step (S.1).

end while

The subproblem (12) corresponds to the penalty problem (8) associated to ρk−1 with the
variable W fixed to W k−1. Since the set Ω is assumed to be compact, its solution Xk is well
defined. Let Xk have the SVD as Uk[Diag(σ(Xk)) 0](V k)T. By [18, Eq.(3.3.25)], it is easy to
check that Z∗ = Uk[Diag(z∗) 0](V k)T is globally optimal to (13) where

z∗ ∈ arg min
z∈Rn1

{∑n1

i=1ψ(zi)− ρ〈z, σ(Xk)〉
}

; (14)

and conversely, if W ∗ is globally optimal to (13), then σ(W ∗) is optimal to (14). Write

W k := Uk[Diag
(
wk1 , . . . , w

k
n1

) 0](V k)T with wki ∈ ∂ψ∗(ρkσi(Xk)). (15)

Together with [37, Theorem 23.5], it follows that such W k is an optimal solution of the sub-
problem (13). This means that the main computational work of Algorithm 1 consists of solving a
sequence of subproblems (12). Unless otherwise stated, in the sequel we choose wki = wkj whenever
σi(X

k) = σj(X
k), which ensures that 1 ≥ wk1 ≥ · · · ≥ wkn1

≥ 0.
Since ‖W k−1‖ ≤ 1, the function ‖ · ‖∗ − 〈W k−1, ·〉 is a semi-norm over Rn1×n2 . So, the

subproblem (12) is a nuclear semi-norm minimization problem. When k = 1, it reduces to the
nuclear norm minimization problem, i.e., the first stage of Algorithm 1 is exactly the nuclear norm
convex relaxation. It should be emphasized that Algorithm 1 is different from the reweighted trace
norm minimization method [12,25] and the iterative reweighted algorithm [22]. The former is
proposed from the primal and dual viewpoint by solving an equivalent Lipschitz reformulation
in an alternating way, whereas the latter is proposed from the primal viewpoint by relaxing a
smooth nonconvex surrogate of (1).

To close this section, we illustrate the choice of wki in (15) with two specific φ ∈ Φ.

Example 1 Let φ1(t) = t for t ∈ R. Clearly, φ1 ∈ Φ with t∗ = 0. Moreover, for the function ψ1

defined by (3) with φ1, an elementary calculation yields that

ψ∗1(s) =

{
s−1 if s > 1;

0 if s ≤ 1
and ∂ψ∗1(s) =

 {1} if s > 1;
[0, 1] if s = 1;
{0} if s < 1.

(16)

Thus, one may choose wki =

{
1 if σi(Xk) ≥ 1

ρk
;

0 otherwise
for the matrix W k in formula (15).
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Example 2 Let φ2(t) = −t− q−1
q (1− t+ε)

q
q−1 +ε+ q−1

q for t ∈ (−∞, 1+ε) with 0 < q < 1, where
ε ∈ (0, 1) is a constant. One can check that φ2 ∈ Φ with t∗ = ε. For the function ψ2 defined by
the equation (3) with φ2, an elementary calculation yields that

∂ψ∗2(s) =


{1} if s ≥ ε

1
q−1 − 1;

{1 + ε− (s+1)q−1} if (1+ε)
1
q−1−1 < s <ε

1
q−1−1;

{0} if s ≤ (1+ε)
1
q−1 − 1.

Hence, one may take wki = min
[
1 + ε− (ρkσi(X

k)+1)q−1, 1
]
for the matrix W k in (15).

Remark 1 A constant ε ∈ (0, 1) is introduced in φ2 so as to ensure that (φ2)′−(1) < +∞, and then
the problem (8) is a global exact penalization of (1). Thus, once (X̂, Ŵ ) yielded by Algorithm 1
satisfies ‖X‖∗−〈X,W 〉 = 0, X̂ is at least a local minimum of the problem (1) since each feasible
solution of (1) is locally optimal.

4 Theoretical guarantees of Algorithm 1

In this section, we shall provide the theoretical guarantees of Algorithm 1 under a mild condition
for the restricted eigenvalues of A∗A, which is stated as follows.

Assumption 1 There exist a constant c ∈ [0,
√

2) and an integer s ∈ [1, n1−2r
2 ] such that

ϑ+(s)
ϑ−(2r+2s) ≤ 1 + 2c2s

r , where ϑ+(·) and ϑ−(·) are the functions defined by (5).

Assumption 1 requires the restricted eigenvalue ratio of A∗A to grow sublinearly in s. This
condition, extending the sparse eigenvalue condition used for the analysis of sparse regularization
(see [42,43]), is weaker than the RIP condition δ4r <

√
2− 1 used in [4] for n1 ≥ 4r, where δkr is

the kr-restricted isometry constant of A defined as in [4]. Indeed, from the definitions of ϑ+(·)
and ϑ−(·), it is immediate to have that

ϑ+(r)

ϑ−(2r + 2r)
≤ 1 + δ4r

1− δ4r
< 1 +

2
√

2−2

2−
√

2
< 1 + 2× 0.8432.

This shows that c = 0.843 is such that ϑ+(s)
ϑ−(2r+2s) ≤ 1 + 2c2s

r for s = r. In addition, this condition
is also weaker than the RIP condition δ3r < 2

√
5−4 used in [25] for n1 ≥ 3r, where r is an

arbitrary even number or r is an odd number greater than 11. To see this, let r be an arbitrary
even number or be an odd number greater than 11. Then,

max

(
ϑ+(r/2)

ϑ−(2r+r)
,
ϑ+((r−1)/2)

ϑ−(2r+r−1)

)
≤

1 + δr/2

1− δ3r
≤ 1 + δ3r

1− δ3r
< 1 +

4
√

5−8

5−2
√

5
. (17)

So, c = 1.34 and 1.403 are respectively such that ϑ+(s)
ϑ−(2r+2s) ≤ 1 + 2c2s

r for s = r
2 and r−1

2 .
Recall that X is assumed to be a global optimal solution of (1) with rank(X) = r. In

the sequel, we let X have the SVD as U [Diag(σ(X)) 0]V
T
, where U = [U1 U2] ∈ On1 and

V = [V 1 V 2] ∈ On2 with U1 ∈ On1×r and V 1 ∈ On2×r, and write T := T (X) where T (X) is
the tangent space at X associated to the constraint rank(X) ≤ r (see (32)). Let

γk−1 :=
‖PT (W k−1 − U1V

T
1 )‖F√

2r(1− ‖PT ⊥(W k−1)‖)
for k = 1, 2, . . . . (18)

The proofs of all the results in the subsequent subsections are given in Appendix 7.3.
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4.1 Error and approximate rank bounds

Under Assumption 1, when γk−1 ∈ [0, 1/c) for some k ≥ 1, we can establish the following error
bound and approximate rank bound for the solution Xk of the kth subproblem.

Proposition 2 Suppose that Assumption 1 holds and 0 ≤γk−1 < 1/c for some k≥ 1. Then∥∥Xk−X
∥∥
F
≤ Ξ(γk−1) and

∥∥PT ⊥(Xk)
∥∥
∗ ≤ Γ (γk−1), (19)

where Ξ : [0, 1/c)→ R+ and Γ : [0, 1/c)→ R+ are the increasing functions defined by

Ξ(t) :=
2δ
√
ϑ+(2r+s)

ϑ−(2r+s)
· 1

1−ct

√
1+

rt2

2s
and Γ (t) :=

2δ
√
ϑ+(2r+s)

ϑ−(2r+s)
·
√

2rt

1−ct
. (20)

Remark 2 (a) Since ‖PT ⊥(Xk)‖∗ = 0 implies that rank(Xk) ≤ 2r, it is reasonable to view
‖PT ⊥(Xk)‖∗ as a measure for the approximate rank of Xk. So, the second inequality in (19)
provides an approximate rank bound for Xk. The error and approximate rank bounds in (19)

consist of two parts: one part is the statistical error Ξ(0) =
2δ
√
ϑ+(2r+s)

ϑ−(2r+s) from the noise and the
operator A, and the other part is the estimation error from γk−1.

(b) Since W 0 = 0, we have γ0 = 1√
2r
‖U1V

T
1‖F = 1√

2
< 1

c . Hence, under Assumption 1, the error
and approximate rank bounds of the nuclear norm convex relaxation are∥∥X1−X

∥∥
F
≤ Ξ(γ0) = Ξ(1/

√
2) and

∥∥PT ⊥(X1)
∥∥
∗ ≤ Γ (γ0) = Γ (1/

√
2). (21)

Moreover, if Assumption 1 is satisfied with s = r/2 and c <
√

2− 2(1−δ3r(1+
√

5/2))√
3(1−δ3r)

for δ3r < 2
√

5−4,

then the error bound Ξ(γ0) is tighter than the bound 3δ
√

1+δ3r
1−δ3r(1+

√
5/2)

given by [25, Theorem III.1]
with C1,1 = 1 for the nuclear norm relaxation because

Ξ(γ0) =

√
ϑ+(2.5r)

√
6δ(

1−c/
√

2
)
ϑ−(2.5r)

≤
√

1 + δ3r
√

6δ(
1−c/

√
2
)
(1− δ3r)

<
3δ
√

1 + δ3r

1−δ3r(1+
√

5/2)
.

Remark 2 (b) says that under Assumption 1 the solutionX1 of the first stage convex relaxation
has the error and approximate rank bounds as in (21). However, it is not clear whetherXk (k ≥ 2)
has such error and approximate rank bounds or not. The following theorem states that if in
addition σr(X) > 2Ξ(γ0) and ρ1 and µk are appropriately chosen, allXk (k ≥ 2) have the bounds
as in (19), and more importantly, their error and approximate rank bounds are, respectively,
smaller than those of X1. To achieve this result, we need the sequence {γ̃k}k≥1, which is defined
recursively with γ̃0 = γ0 as

γ̃k :=

√
r(1− b̃k) + (

√
2ãk + 1)β̃k√

2r(1− ãk)(1−β̃2
k)

with ãk = (ψ∗)′+ [ρkΞ(γ̃k−1)] , (22a)

b̃k = (ψ∗)′−
[
ρk(σr(X)−Ξ(γ̃k−1))

]
, β̃k = − 1√

2
ln
[
1−
√

2Ξ(γ̃k−1)

σr(X)

]
. (22b)

Theorem 2 Suppose that Assumption 1 holds and σr(X) > 2Ξ(γ0). If the parameters ρ1 and µk
are chosen such that ã1 <

(̃b1−β̃2
1)
√
r−β̃1

(1−β̃2
1)
√
r+
√

2β̃1
and µk ∈

[
1, Ξ(γ̃k−2)

Ξ(γ̃k−1)

]
, respectively, then all Xk (k ≥ 1)

satisfy the inequalities in (19), and for k = 2, 3, . . . it holds that∥∥Xk−X
∥∥
F
≤ Ξ(γk−1) ≤ Ξ(γ̃k−1) < Ξ(γ̃k−2) < · · · < Ξ(γ̃0) = Ξ(γ0),

‖PT ⊥(Xk)‖∗ ≤ Γ (γk−1) ≤ Γ (γ̃k−1) < Γ (γ̃k−2) < · · · < Γ (γ̃0) = Γ (γ0).



10 Shujun Bi, Shaohua Pan, Defeng Sun.

Remark 3 (a) Theorem 2 shows that under Assumption 1 and σr(X)>2Ξ(γ0), if ρ1 and µk are
chosen appropriately, then the error and approximate rank bounds of Xk (k ≥ 2) improve those
of X1 at least by 1− Ξ(γ̃k−1)

Ξ(γ0) and 1− Γ (γ̃k−1)
Γ (γ0) , respectively.

(b) The choice of ρ1 depends on Ξ(γ0). Take the function φ1 in Example 1 for instance. If
σr(X) = αΞ(γ0) for α ≥ 2.5, by virtue of the definitions of ã1, b̃1 and β̃1 and (16), it is easy to
check that ã1 = 0, b̃1 = 1 and β̃1 ∈ [0, 0.6), and hence (̃b1 − β̃2

1)
√
r − β̃1 > 0. This means that(

1
(α−1)Ξ(γ0) ,

1
Ξ(γ0)

)
is the range of choice for ρ1. For numerical computations, one may estimate

r and σr(X) with the help of σ(X1).

To close this subsection, we illustrate the ratios Ξ(γ̃k−1)
Ξ(γ0) and Γ (γ̃k−1)

Γ (γ0) by using φ1 and φ2 with
q = 1/2 and ε = 10−3. To this end, we suppose that Assumption 1 holds with r = 10, s= r/2
and σr(X) = αΞ(γ0) for α≥4.5. Then, for those c in the first row of Table 1, one may compute
the ratios Ξ(γ̃k−1)

Ξ(γ0) and Γ (γ̃k−1)
Γ (γ0) as those in the last six columns of Table 1 with ρ1 chosen as the

middle point of the interval and µk ≡ 1. We see that the error bound of the first stage is reduced
most in the second stage, and as the number of stages increases, the reduction becomes less. For
Algorithm 1 with φ1, the reduction is close to the limit Ξ(0)

Ξ(γ̃0) when k = 5, but for Algorithm 1
with φ2, there is a little room for the reduction especially for those A∗A with c ≥ 0.5.

4.2 Geometric convergence

Generally speaking, because of the presence of the noise, it is impossible for the error sequence
{‖Xk−X‖F }k≥1 to decrease and then converge geometrically. However, one may achieve its
geometric convergence in a statistical sense as in the following theorem.

Theorem 3 Suppose that Assumption 1 holds and σr(X) > max(2,
√

2 +α)Ξ(γ0) holds with
α = 1+

√
2ã1

(1−ã1)(1−β̃2
1)
√
r+4s

. If ρ1 and µk are chosen as in Theorem 2, then for k = 1, 2, . . .,

∥∥Xk−X
∥∥
F
≤ Ξ(0)

1−cγ̃1

[
1 +

(1− b̃1)
√
r

2(1−ã1)(1−β̃2
1)
√
s

]
+
[ αΞ(γ0)

σr(X)−
√

2Ξ(γ0)

]k−1∥∥X1−X
∥∥
F
. (23)

Remark 4 (a) The requirement σr(X)> max(2,
√

2+α)Ξ(γ0) in Theorem 3 is bit stronger than
σr(X)> 2Ξ(γ0). Take φ1 for example. When σr(X) ≥ 2.4Ξ(γ0), this requirement is automati-
cally satisfied. Also, now we have that % := αΞ(γ0)

σr(X)−
√

2Ξ(γ0)
≤ 0.76.

(b) The first term of the sum on the right hand side of (23) represents the statistical error arising
from the noise and the sampling operator A, and the second term is the estimation error related
to the multi-stage convex relaxation. Clearly, the statistical error is of a certain order of Ξ(0).
Thus, to guarantee that the second term is less than the statistical error, at most k stage convex
relaxations are required, where

k =
log(Ξ(0))− log(‖X1 −X‖F )

log %
+ 1 ≤ log(Ξ(0)/Ξ(γ0))

log %
+ 1.

Take % = 0.7 for example. When s = r, one can calculate that k ≤ 2 if c = 0.3, and k ≤ 4 if
c = 0.7. This means that, for those A∗A with a worse restricted eigenvalue condition, more than
two stage convex relaxations are needed to yield a satisfactory solution.
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For the analysis in the previous two subsections, the condition σr(X)≥ αΞ(γ0) for a certain
α > 2 is required for the decreasing of the error and approximate rank bounds of the first stage
convex relaxation and the contraction of the error sequence. Such a condition is necessary for the
low-rank recovery since, when the smallest nonzero singular is mistaken as a zero, the additional
singular vectors will yield a large error. In fact, in the geometric convergence analysis of sparse
vector optimization (see [43]), the error bound of the first stage was implicitly assumed not to
be too large. In addition, we observe that the structure information of X does not lend any help
to the low-rank matrix recovery in terms of convergence rates. However, when the true matrix
has a certain structure, it is necessary to incorporate such structure information into model (1).
Otherwise, the solution Xk yielded by the multi-stage convex relaxation may not satisfy the
structure constraint, and then it is impossible to control the error of Xk to the true matrix X.

Finally, we point out that when the components ξ1, ξ2, . . . , ξm of the noisy vector ξ are inde-
pendent (but not necessarily identically distributed) sub-Gaussians, i.e., there exists a constant
σ ≥ 0 such that E[etξi ] ≤ eσ2t2/2 holds for all i and any t ∈ R, by Lemma 8 in Appendix 7.3, the
conclusions of Theorems 2 and 3 hold with δ =

√
mσ with probability at least 1− exp(1− c1m

4 )
for an absolute constant c1 > 0. For the random A, the following result is immediate by [4,
Theorem 2.3] and the first inequality in (17).

Theorem 4 Fix δ ∈ (0, 1/2) and let A be a random measurement ensemble obeying the following
conditions: for any given X ∈ Rn1×n2 and any fixed 0 < t < 1,

P
{
|‖A(X)‖2 − ‖X‖2F | > t‖X‖2F

}
≤ C exp(−c2m) (24)

for fixed constants C, c2 > 0 (which may depend on t). Ifm ≥ 3C(n1+n2+1)r with C > log(36
√

2/δ)
c2

,

then Assumption 1 holds for s = r/2 and c =
√

2δ
1−δ with probability exceeding 1−2 exp(−dm)

where d= c2 − log(36
√

2/δ)
C . Consequently, when 0 ≤ γk−1 < 1/c, the bounds in (19) holds with

probability at least 1−2 exp(−dm) for such random measurements.

As remarked after [4, Theorem 2.3], the condition in (24) holds when A is a Gaussian random
measurement ensemble (i.e., A1, . . . , Am are independent from each other and each Ai contains
i.i.d. entries N (0, 1/m)); or when each entry of each Ai has i.i.d. entries that are equally likely
to take 1√

m
or − 1√

m
; or when A is a random projection (see [33]).

5 Numerical experiments

In this section, we shall test the theoretical results of Section 4 with Algorithm 1 solving low-rank
matrix recovery problems, including matrix sensing and matrix completion problems. During the
testing, we choose φ2 with q = 1/2 and ε = 10−3 for the function φ in Algorithm 1. Although
Table 1 shows that Algorithm 1 with φ1 reduces the error faster than Algorithm 1 with φ2 does,
our preliminary testing indicates that the latter has a little better performance in reducing the
relative error. In addition, we choose ρ1 = 10/‖X1‖ and µk = 5/4 (k ≥ 2) for Algorithm 1. All
the results were run on the Windows system with an Intel(R) Core(TM) i7-7700 CPU 2.80GHz.

5.1 Low-rank matrix sensing problems

We test the performance of Algorithm 1 with some matrix sensing problems in which some entries
are known exactly. Specifically, there are 5 entries of the true X ∈ Rn1×n2 assumed to be known
exactly. We generate the true X of rank r in the following command
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XR = randn(n1,r); XL = randn(n2,r); Xbar = XR*XL’.

For these problems, Ω=
{
X ∈ Rn1×n2 | B(X) = d, ‖X‖ ≤ R

}
for a constant R > 0 with

B(X) := (〈Eij , X〉 : (i, j) ∈Υfix)T and d := (〈Eij , X〉 : (i, j) ∈Υfix)T, (25)

where Eij is an n1 ×n2 matrix with the (i, j)th entry being 1 and other entries being 0, and
Υfix is the set consisting of the indices of known entries. We successively generate the matrices
A1, . . . , Am ∈ Rn1×n2 with i.i.d. standard normal entries to formulate the sampling operator A.
Such A satisfies the RIP property with a high probability by [33], which means that the restrict-
ed eigenvalues of A∗A can satisfy Assumption 1 with a high probability from the discussions
after Assumption 1. Then, we successively generate the standard Gaussian noises ε1, . . . , εm to
formulate the observation vector b by

b = A(X) + 0.1(‖A(X)‖/‖ε‖)ε with ε = (ε1, . . . , εm)T. (26)

For the testing in the rest of this subsection, we choose R=103‖X‖ and δ= 0.1‖b‖.
Let δS(·) denote the indicator function of a set S, i.e., δS(x) = 0 if x ∈ S and otherwise

δS(x) = +∞, and let C = W k−1. Then the subproblem (12) can be equivalently written as

min
X,Z∈Rn1×n2 ,z∈Rm

‖X‖∗ − 〈C,X〉+ δR(z) + δΛ(Z)

s.t. A(X)− z − b = 0, B(X)− d = 0, X − Z = 0 (27)

where R := {z ∈ Rm | ‖z‖ ≤ δ} and Λ := {Z ∈ Rn1×n2 | ‖Z‖ ≤ R}. After an elementary
calculation, one may obtain the dual problem of (27) as follows

min
Y,Γ∈Rn1×n2 ,ξ,u∈Rm,ζ∈R|Υfix|

〈b, ξ〉+ 〈d, ζ〉+ δ‖u‖+R‖Y ‖∗

s.t. C −A∗(ξ)− B∗(ζ)− Y − Γ = 0, ξ − u = 0, ‖Γ‖ ≤ 1. (28)

Based on the optimality condition of (27), we measure the accuracy of an approximate optimal
solution (X,Z, z, Y, Γ, ξ, u, ζ) for the problem (27) and its dual (28) via

η = max
{
ηP , ηz, ηZ , ηD, ηΓ

}
and ηgap :=

|objP + objD|
1 + |objP |+ |objD|

where

ηP :=

√
‖A(X)− z − b‖2 + ‖B(X)− d‖2 + ‖X − Z‖2F

1 + ‖b‖
,

ηz =
max(‖z‖ − δ, 0)

1 + ‖z‖
, ηZ =

max(‖Z‖ −R, 0)

1 + ‖Z‖
, ηΓ =

max(‖Γ‖ − 1, 0)

1 + ‖Γ‖
,

ηD :=

√
‖C −A∗(ξ)− B∗(ζ)− Y − Γ‖2F + ‖ξ − u‖2

1 + ‖C‖F
.

We solve the problem (27) with the powerful Schur-complement based semi-proximal ADMM (al-
ternating direction method of multipliers) [23] for its dual (28). We terminate the semi-proximal
ADMM when max(η, ηgap) ≤ 10−6. In the sequel, if Xk is the output of Algorithm 1 in a certain
stage, its relative error is defined by ‖Xk −X‖F /‖X‖F .
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5.1.1 Performance of Algorithm 1 in different stages

We generate randomly a matrix sensing problem with 5 known entries as above with n1 = n2 =
100, r = 6 and m = 2328 to test the performance of Algorithm 1 in different stages. Figure 1
plots the relative error of Algorithm 1 in the first fifteen stages. We see that Algorithm 1 reduces
the relative error of the nuclear norm relaxation method most in the second stage, and after the
third stage the reduction becomes insignificant. This performance coincides with the analysis
results shown as in Table 1.
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Fig. 1 Performance of Algorithm 1 in the first fifteen stages

5.1.2 Performance of Algorithm 1 with different samples

We generate randomly a matrix sensing problem with 5 known entries as above with n1 = n2 =
100 and r = 5 to test the performance of Algorithm 1 with the number of samplesm = αr(2n1−r)
for α ∈ {1.0, 1.1, . . . , 3.0}. Figure 2 plots the relative error and rank curves of the first stage convex
relaxation and the first five stages convex relaxation, respectively. We see that the relative errors
of the first stage convex relaxation and the first five stages convex relaxation decrease as the
number of samples increases, but the relative error of the latter is always smaller than that
of the former. Moreover, the first five stages convex relaxation reduces those of the first stage
convex relaxation at least 25% for α ∈ [1.0, 3.0], and the reduction becomes less as the number of
samples increases. In particular, the rank of X1 is higher than that of X even for α = 3, i.e., the
number of samples m = 3r(2n1−r), but the rank of X5 equals that of X for m = 1.2r(2n1−r).

5.2 Comparison with the nuclear norm relaxation method

In this subsection, we shall compare the performance of Algorithm 1 with that of the popular nu-
clear norm relaxation method (NNRM) by taking the low-rank PSD matrix completion problem
for example. Though the sampling operators for such problems do not satisfy the RIP property,
it is possible for the restricted eigenvalues of A∗A to satisfy Assumption 1. For these problems,
the sampling operator A : Sn→ Rm is defined by

A(X) := (〈Eij , X〉 : (i, j) ∈Υsample)T (29)
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Fig. 2 Performance of the first stage and the first five stages convex relaxation

where Eij is same as the one in equation (25), and Υsample is the set consisting of the indices of
sampled entries; the observation vector b is generated randomly in the same way as in (26); and
Ω =

{
X ∈ Sn+ | E1(X) = d, E2(X) ≤ g

}
where E1 : Sn → Rl1 and E2 : Sn → Rl2 are the linear

operators, and d ∈ Rl1 and g ∈ Rl2 are the given vectors.
Since Ω ⊆ Sn+, the objective function ‖X‖∗−〈W k−1, X〉 of (12) over the feasible set becomes

〈I−W k−1, X〉. Write C = I−W k−1. Then, the subproblem (12) takes the following form

min
X∈Sn,z∈Rm,y∈Rl2

〈C,X〉+ δSn+(X) + δR(z) + δRl2+
(y)

s.t. AX − z − b = 0,

(
E1
E2

)
X −

(
d
g

)
+

(
0
y

)
= 0. (30)

After an elementary calculation, the dual problem of (30) has the following form

min
Γ∈Sn,ξ∈Rm,ζ∈Rl1 ,s,u∈Rl2

〈b, ξ〉+ 〈d, ζ〉+ 〈g, s〉+ δ‖ξ‖+ δSn+(Γ ) + δRl2+
(u)

s.t. C +A∗(ξ) + E∗1 (ζ) + E∗2 (s)− Γ = 0, s− u = 0. (31)

Notice that the NNRM for the problem (1) is solving the problem (30) with C ≡ 0. For Algorithm
1 and the NNRM, we solve the subproblem of the form (30) with the Schur-complement based
semi-proximal ADMM [23] for its dual (31). Based on the optimality condition of (30), we
measure the accuracy of an approximate optimal solution (X, z, y, Γ, ξ, ζ, s, u) for the problem
(30) and its dual problem (31) in terms of

η = max
{
ηP , ηX , ηy, ηD, ηΓ , ηu

}
and ηgap :=

|objP + objD|
1 + |objP |+ |objD|

,

where ηP and ηD are defined as in Section 5.1, and ηX , ηy, ηΓ , ηu are defined by

ηX =
‖X −ΠS+(X)‖F

1 + ‖X‖F
, ηy =

‖y −ΠRl2+
(y)‖

1 + ‖y‖
, ηΓ =

‖Γ −ΠS+(Γ )‖F
1 + ‖Γ‖F

, ηu =
‖u−ΠRl2+

(u)‖

1 + ‖u‖
.
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Here, for a given closed convex set S, ΠS(·) denotes the projection mapping onto S. During
the testing, we terminate the semi-proximal ADMM once max(η, ηgap) ≤ 10−6, and terminate
Algorithm 1 at the kth iterate when rank(Xk−1)=rank(Xk), where rank(Xk) is the number of
nonzero singular values of Xk less than 10−8‖Xk‖. In the rest of this subsection, the sampling
ratio is defined by 2m

n(n+1)−2nfix
where m is the number of samples and nfix is the number of

known entries, and the relative error is defined by ‖X
f−X‖F
‖X‖F

where Xf is the output of solvers.

5.2.1 Low-rank correlation matrix completion problems

A correlation matrix is a real symmetric PSD matrix with all diagonals being 1. We generate
the true correlation matrix X ∈ Sn+ of rank r in the following command:

L = randn(n,r); W = weight*L(:,1:1); L(:,1:1) = W; G = L*L’;
M = diag(1./sqrt(diag(G)))*G*diag(1./sqrt(diag(G))); Xbar = (M+M’)/2.

In this way, one can control the ratio of the largest eigenvalue and the smallest nonzero eigenvalue
of X by weight. We assume that some off-diagonal entries of X are known. Thus, E1(X) =(

diag(X)
B(X)

)
for X ∈ Sn, g1 =

(
e
d

)
, E2 ≡ 0 and g2 = 0, where the operator B : Sn → R|Υfix| and

the vector d ∈ R|Υfix| are defined as in Subsection 5.1. The noise vector ξ and the observation
vector b are generated in the same way as in (26).

Table 2 reports the numerical results of NNRM and Algorithm 1 for some examples generated
randomly with n = 1000. The information of X is reported in the first three columns, where
the second column lists the number of known off-diagonal entries for X, and the third column
gives the ratio of the largest eigenvalue of X to the smallest nonzero eigenvalue of X. For each
test example, we sample partial unknown off-diagonal entries uniformly at random to formulate
the operator A, where the sample ratio is 1.92% for rank(X) = 5 and 4.32% for rank(X) = 10.
The fourth and the fifth columns report the results of the NNRM and Algorithm 1, respectively,
where relerr and rank mean the relative error and the rank of solutions, iter and time are the
total number of iterations and the total computing time in second for the semi-proximal ADMM,
and ns is the number of stages required by Algorithm 1.

We see that the solutions yielded by the NNRM have high relative errors as well as full ranks,
while those given by Algorithm 1 not only have much lower relative error but also achieve the
rank of the true matrix. Among others, the relative error of the NNRM is reduced at least 25%
by that of Algorithm 1, and for those problems with 1.92% sample ratio, the reduction is close
to 45%. The last column of Table 2 shows that Algorithm 1 yields the desirable results for almost
all problems within 3 stages.

5.2.2 Low-rank covariance matrix completion problems

We generate the true covariance matrix X ∈ Sn+ of rank r in the following command:

L = randn(n,r)/sqrt(sqrt(n)); W = weight*L(:,1:1);
L(:,1:1) = W; G = L*L’; Xbar = (G+G’)/2.

In this case, E1 = B and g1 = d where B : Sn → R|Υfix| and d ∈ R|Υfix| are defined as in Subsection
5.1, E2(X) := 〈Eii, X〉 for (i, i) ∈ Υdiag where Eii is an n×n matrix with the (i, i)th entry being
1 and other entries being 0, and Υdiag is the index set of unknown diagonal entries of X, and
g2 ∈ R|Υdiag| is the vector consisting of the upper bounds for unknown diagonal entries of X. We
set g2 = (1 + 0.01rand(1, 1))‖X‖∞ones(|Υdiag|, 1).
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Table 3 reports the numerical results of NNRM and Algorithm 1 for some problems generated
randomly with n = 1000. The information of the true covariance matrix X is reported in the first
two columns, where the second column lists the number of known diagonal and off-diagonal entries
of X, and the third one reports the ratio of the largest eigenvalue of X to the smallest nonzero
eigenvalue of X. For each test example, we sample the upper triangular entries uniformly at
random to formulate the sampling operator A, where the sample ratio is 1.91% for rank(X) = 5
and 5.72% for rank(X) = 13. The fourth and the fifth columns report the results of NNRM and
Algorithm 1, respectively.

Table 3 Performance of NNRM and Algorithm 1 for low-rank covariance completion

r
(diag,

offdiag) eigr NNRM Algorithm 1

relerr(rank) iter time relerr(rank) iter time ns

(200, 0) 1.18 4.80e-1(36) 950 244.6 2.25e-1(5) 2443 631.1 4
(200, 0) 4.59 3.19e-1(32) 777 205.6 1.82e-1(5) 2292 597.4 45
(0, 200) 1.20 4.86e-1(36) 350 88.1 2.21e-1(5) 1240 316.2 4
(0, 200) 4.26 3.24e-1(33) 272 69.9 1.90e-1(5) 827 213.1 4

(100, 100) 1.21 4.74e-1(36) 1409 366.5 2.24e-1(5) 3696 960.2 4
(100, 100) 4.07 3.33e-1(33) 715 181.1 1.80e-1(5) 2206 563.4 4
(200, 0) 5.33 2.20e-1(53) 290 75.2 1.54e-1(13) 638 164.2 3
(200, 0) 7.72 1.90e-1(48) 309 79.1 1.45e-1(13) 619 159.8 313
(0, 200) 5.17 2.20e-1(53) 147 37.6 1.55e-1(13) 386 101.3 3
(0, 200) 9.01 1.78e-1(45) 142 36.7 1.43e-1(13) 385 99.2 3

(100, 100) 4.58 2.30e-1(54) 286 74.8 1.56e-1(13) 599 155.0 3
(100, 100) 8.11 1.85e-1(48) 248 64.4 1.46e-1(13) 481 124.2 3

We see that the solutions yielded by the NNRM have high relative errors and ranks, while
the solutions given by Algorithm 1 have the desirable relative errors as well as the same rank as
the true matrix does. The relative error of the NNRM is reduced at least 20% by Algorithm 1,
and for those problems with 1.92% sample ratio, the reduction is at least 40%. Comparing with
the time columns in Table 2, we see that for the low-rank matrix covariance completion, the time
gap between Algorithm 1 and NNRM becomes much smaller, and the time of the former is only
about twice that of the latter. In addition, along with the results in Table 2, Algorithm 1 has no
direct relation with the ratio of the largest eigenvalue and the smallest nonzero eigenvalue of X.

5.3 Applications to real data

LetM be an estimated n×n correlation matrix. In this part, we shall seek a low-rank correlation
matrix under a given noise level δ > 0 by applying Algorithm 1 to the problem (1) with b = A(M),
where A is the sampling operator formulated as in Subsection 5.2.

Example 3 TheM is a 500×500 correlation matrix extracted from the correlation matrix, which
is based on a 10, 000 gene micro-array data set obtained from 256 drugs treated rat livers; see
Natsoulis et al. [27] for details.

Example 4 TheM is an estimated 943×943 correlation matrix based on 100, 000 ratings for 1682
movies by 943 users. Due to missing data, the generated matrix M is not positive semi-definite
[15]. This rating data set can be downloaded from http://www.grouplens.org/node/73.

We apply NNRM, Tstage (Algorithm 1 with the first two stages) and Algorithm 1 to solving
the problem (1) with b = A(M). We adopt the stopping criterion as described in Section 5.2 for
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Algorithm 1. Figure 3 and 4 below plot the relative error, rank and time curves of the three solvers
with M from Example 3 and 4, respectively, under the number of samples m = α(n

2+n
2 − nfix)

where nfix = nfix_diag = n for α ∈ {0.1, 0.2, . . . , 1.0}. Here, the relative error is defined by
‖Xf−M‖F
‖M‖F where Xf denotes the output of three solvers. Since the matrix M in Example 4 is

highly polluted, we take δ = 0.75 for it instead of δ = 0.1 as for M from Example 3.
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Fig. 4 Performance of NNRM, Tstage and Algorithm 1 for low-rank correlation estimation

From Figure 3 and 4, we see that NNRM gives the outputs with the lowest relative error
but full rank within the least time, Tstage yields the outputs with much lower rank and a little
higher relative error than those of NNRM by using about 5 times computing time of NNRM,
while Algorithm 1 gives the outputs with the lowest rank and a little higher relative error than
those of NNRM and Tstage though it requires more computing time. We find that when the
number of samples is over 0.7(n

2+n
2 − nfix), for the M in Example 3, Tstage and Algorithm 1

yield a solution with the rank lower than 120 and 81, respectively, and the relative error is less
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than 0.12 and 0.14, respectively; while for the M from Example 4, they give a solution with the
rank lower than 28 and 18 respectively, and the relative error is less than 0.8027 and 0.8043,
respectively. That is, the relative error of the solution to the M is close to the given noise level.
Notice that the matrixM from these two examples has a high rank; for example, for theM from
Example 3, its rank (i.e., the number of singular values greater than 10−5‖M‖) is 300. So, if one
wants to seek the lowest rank estimation, Algorithm 1 is an ideal choice; and if one only wants
to seek a low rank estimation, then Algorithm 1 with the first two stages is a desirable choice.

6 Conclusions

We have proposed a multi-stage convex relaxation approach to the structured rank minimization
problem (1) by solving the exact penalty problem of its equivalent MPGCC in an alternating
way. It turned out that this approach not only has favorable theoretical guarantees but also
reduces effectively the rank and error of the nuclear norm relaxation method. There are several
topics worthwhile to pursue, such as to develop more effective algorithms for seeking the solution
of subproblems, to establish the theoretical guarantee for the case where the subproblems are
solved inexactly, and to apply this approach to other classes of low-rank optimization problems,
say, low-rank plus sparse problems.
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7 Appendix

7.1 Technical lemmas

Let M ∈ Rn1×n2 be a matrix of rank κ > 0, and let T (M) be the tangent space at M associated
to the rank constraint rank(X) ≤ κ (see [6, Section 2.3]). Then, the subspace T (M) and its
orthogonal complementarity T (M)⊥ in Rn1×n2 take the form of

T (M) =
{
X ∈ Rn1×n2 | X = U1U

T
1 X +XV1V

T
1 − U1U

T
1 XV1V

T
1

}
, (32)

T (M)⊥ =
{
X ∈ Rn1×n2 | X = U2U

T
2 XV2V

T
2

}
,

where ([U1 U2], [V1 V2]) ∈ On1,n2(M) with U1 ∈ On1×κ and V1 ∈ On2×κ. In this part, letting
X̃ ∈ Rn1×n2 be a matrix of rank κ > 0, and letting ([Ũ1 Ũ2], [Ṽ1 Ṽ2]) ∈ On1,n2(X̃) with
Ũ1 ∈ On1×κ and Ṽ1 ∈ On2×κ, we shall derive an upper bound for the projection of the perturbed
Ũ1Ṽ

T
1 by a matrix W ∈ Rn1×n2 onto T (X̃) and T (X̃)⊥, respectively.

Lemma 2 For a given W ∈ Rn1×n2 , by letting ([U1 U2], [V1 V2]) ∈ On1,n2(W ) with U1 ∈ On1×κ

and V1 ∈ On2×κ, and writing w = σ(W ), the following inequalities hold:

‖PT (X̃)⊥(W )‖ ≤ wκ+1 + (w1 − wκ+1)
∥∥Ũ1Ṽ

T
1 − U1V

T
1

∥∥2
, (33a)

‖PT (X̃)(Ũ1Ṽ
T
1 −W )‖F ≤(1+

√
2wκ+1)‖U1V

T
1 −Ũ1Ṽ

T
1 ‖F +

√
κmax

(
|1−w1|, |1−wκ|

)
. (33b)
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Proof Let Σ1 :=Diag(w1, . . . , wκ) and Σ2 :=Diag(wκ+1, . . . , wn1). Then, we have∥∥PT (X̃)⊥(W )
∥∥ =

∥∥Ũ2Ũ
T
2

[
U1(Σ1−wκ+1I)V T

1 + (wκ+1U1V
T
1 + U2[Σ2 0]V T

2 )
]
Ṽ2Ṽ

T
2

∥∥
≤
∥∥Ũ2Ũ

T
2 U1

∥∥∥∥Σ1−wκ+1I
∥∥∥∥Ṽ2Ṽ

T
2 V1

∥∥+ wκ+1

= (w1 − wκ+1)
∥∥Ũ2Ũ

T
2 U1V

T
1

∥∥∥∥Ṽ2Ṽ
T
2 V1U

T
1

∥∥+ wκ+1

= (w1 − wκ+1)
∥∥Ũ2Ũ

T
2 (U1V

T
1 − Ũ1Ṽ

T
1 )
∥∥∥∥Ṽ2Ṽ

T
2 (V1U

T
1 − Ṽ1Ũ

T
1 )
∥∥+ wκ+1

≤ (w1 − wκ+1)
∥∥U1V

T
1 − Ũ1Ṽ

T
1

∥∥2
+ wκ+1,

where the first inequality is using ‖wκ+1U1V
T
1 +U2[Σ2 0]V T

2 ‖≤wκ+1, and the second equality
is due to ‖Z‖ = ‖ZQT‖ for any Z and Q with QTQ = I. So, the inequality (33a) holds. In order
to establish (33b), we first notice that for any Z ∈ R(n1−κ)×(n2−κ),∥∥PT (X̃)(U2ZV

T
2 )
∥∥
F

=

√∥∥Ũ1ŨT
1 U2ZV T

2

∥∥2

F
+
∥∥Ũ2ŨT

2 U2ZV T
2 Ṽ1Ṽ T

1

∥∥2

F

≤
√
‖Z‖2

∥∥ŨT
1 U2

∥∥2

F
+ ‖Z‖2

∥∥V T
2 Ṽ1

∥∥2

F

= ‖Z‖
√∥∥(Ṽ1ŨT

1 − V1UT
1 )U2

∥∥2

F
+
∥∥V T

2 (Ṽ1ŨT
1 − V1UT

1 )
∥∥2

F

≤
√

2‖Z‖‖Ṽ1Ũ
T
1 − V1U

T
1 ‖F ,

where the first equality is by the expression of PT (X̃)(·). Then, it holds that∥∥PT (X̃)(W− Ũ1Ṽ
T
1 )
∥∥
F
≤
∥∥PT (X̃)(Ũ1Ṽ

T
1 −U1Σ1V

T
1 )
∥∥
F

+
∥∥PT (X̃)(U2[Σ2 0]V T

2 )
∥∥
F

≤
∥∥Ũ1Ṽ

T
1 − U1Σ1V

T
1

∥∥
F

+
√

2‖[Σ2 0]‖‖Ṽ1Ũ
T
1 − V1U

T
1 ‖F

≤ (1 +
√

2wκ+1)
∥∥U1V

T
1 − Ũ1Ṽ

T
1

∥∥
F

+
∥∥U1(I −Σ1)V T

1

∥∥
F

≤ (1 +
√

2wκ+1)‖U1V
T
1 −Ũ1Ṽ

T
1 ‖F +

√
κmax

(
|1−w1|, |1−wκ|

)
.

This shows that the inequality (33b) holds. Thus, we complete the proof. 2

When the matrix W in Lemma 2 and a matrix X close to X̃ have a simultaneous ordered
SVD, the term ‖Ũ1Ṽ

T
1 −U1V

T
1 ‖ in (33a)-(33b) can be upper bounded as follows.

Lemma 3 ([24, Theorem 3]) Let X ∈ Rn1×n2 be an arbitrary matrix of rank κ > 0. For any
given ω > 2, if ‖X−X̃‖F ≤ η for some η ∈

(
0, σκ(X̃)/ω

]
, then it holds that∥∥U1V

T
1 − Ũ1Ṽ

T
1

∥∥
F
≤ 1√

2
ln
( ω

ω −
√

2

)
,

where ([U1 U2], [V1 V2]) ∈ On1,n2(X) with U1 ∈ On1×κ and V1 ∈ On2×κ.

7.2 Properties of restricted eigenvalues

This part includes two results on the restricted eigenvalues of A∗A. The first gives a relation
among ϑ+(·), ϑ−(·) and π(·, ·) where for given positive integers k, l with k + l≤ n1,

π(k, l) := sup
0<rank(X)≤k,

0<rank(Y )≤l,〈X,Y 〉=0

〈X,A∗A(Y )〉‖X‖F
‖A(X)‖2‖Y ‖

. (34)
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Lemma 4 For any given positive integer k, l with k + l ≤ n1, π(k, l) ≤
√
l

2

√
ϑ+(l)

ϑ−(k+l) − 1.

Since the proof of Lemma 4 is similar to that of [42, Proposition 3.1], we omit it. The second
one is an extension of [42, Lemma 10.1] in the matrix setting, stated as follows.

Lemma 5 Let G ∈ Rn1×n2 , UJ ∈ On1×|J| with J ⊆ {1, . . . , n1} and VJ′ ∈ On2×|J′| with J ′ ⊆
{1, . . . , n2} be given matrices. Let ([P1 P2], [Q1 Q2]) ∈ O|J|,|J′|(UT

J GVJ′) with P1 ∈ O|J|×s and
Q1 ∈ O|J′|×s for an integer 1 ≤ s ≤ min(|J |, |J ′|). Define G := L⊥⊕J1 where L =

{
UJZV

T
J′ | Z ∈

R|J|×|J′|
}
and J1 =

{
UJP1Z(VJ′Q1)T | Z ∈ Rs×s

}
. Then, for any H ∈ G, the following inequality

holds with l = maxZ∈L⊥ rank(Z):

max
(
0, 〈H,A∗A(G)〉

)
≥ ϑ−(l + s)

(
‖H‖F − s−1π(l + s, s)

∥∥PL(G)
∥∥
∗

)
‖H‖F

− ϑ+(l + s)‖H‖F ‖PG(G−H)‖F .

Proof Let H be an arbitrary matrix from G. If ‖H‖F ≤ π(l+s,s)
s

∥∥PL(G)
∥∥
∗, the conclusion is clear.

So, we assume that ‖H‖F > π(l+s,s)
s

∥∥PL(G)
∥∥
∗. By the definition of ϑ+(l+ s), ‖APG(H −G)‖2 ≤

ϑ+(l + s)‖PG(H −G)‖2F and ‖A(H)‖2 ≤ ϑ+(l + s)‖H‖2F . Then,〈
H,A∗APG(G−H)

〉
≥ −‖A(H)‖‖APG(H −G)‖ ≥ −ϑ+(l + s)‖H‖F ‖PG(H −G)‖F . (35)

We proceed the arguments by considering the following two cases.
Case 1: rank(UT

J GVJ′) ≤ s ≤ min(|J |, |J ′|). Now, by the expression of PJ1
, we have

PJ1
(G) = UJP1P

T
1 U

T
J GVJ′Q1Q

T
1V

T
J′ = UJP1

[
Diag(σ(UT

J GVJ′)) 0
]
QT

1V
T
J′ = UJU

T
J GVJ′V

T
J′ ,

where the last two equalities are due to UT
J GVJ′=P1[Diag

(
σ(UT

J GVJ′)
)

0]QT
1 . Note that PL(G) =

UJU
T
J GVJ′V

T
J′ by the definition of L. So, PL(G) = PJ1(G), i.e., G ∈ G. Then,

〈A(H),A(G)〉 = 〈A(H),A(H)〉+ 〈A(H),APG(G−H)〉
≥ ϑ−(l + s)‖H‖2F − ϑ+(l + s)‖H‖F ‖PG(H −G)‖F .

This inequality implies the desired result. Thus, we complete the proof for this case.
Case 2: 1 ≤ s < rank(UT

J GVJ′). Let k be the smallest positive integer such that sk ≥ min(|J |, |J ′|).
Clearly, k ≥ 2. Let li and l̃i for i = 1, 2, . . . , k be such that

l1 = · · · = lk−1 = s, lk = |J | − s(k − 1), l̃1 = · · · = l̃k−1 = s, l̃k = |J ′| − s(k − 1).

For each 2 ≤ i ≤ k, define the subspace Ji :=
{
UJ P̃iZ(VJ′Q̃i)

T | Z ∈ Rli×l̃i
}
, where P̃i ∈ O|J|×li

is the matrix consisting of the (
∑i−1
j=1 lj + 1)th column to the (

∑i
j=1 lj)th column of P ; and

Q̃i ∈ O|J′|×l̃i is the matrix consisting of the (
∑i−1
j=1 l̃j+1)th column to the (

∑i
j=1 l̃j)th column

of Q. Clearly, J1 ⊥ Ji for i ≥ 2. From the definition of G, we have G ⊥ Ji for i 6= 1. For each
i ≥ 1, it is easy to calculate that

PJi(Z) = UJ P̃i(UJ P̃i)
TZVJ′Q̃i(VJ′Q̃i)

T ∀Z ∈ Rn1×n2 .
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This, together with PL(G) = UJU
T
J GVJ′V

T
J′ , implies that PL(G) =

∑k
i=1 PJi(G). Then, 〈H,A∗A(G)〉 =

〈H,A∗APG(G)〉+
∑
i>1

〈
H,A∗APJi(G)

〉
. Consequently, we have〈

H,A∗A(G)
〉
−
〈
H,A∗APG(G−H)

〉
= 〈H,A∗A(H)〉+

∑
i>1

〈
PG(H),A∗APJi(G)

〉
= 〈H,A∗A(H)〉

[
1 +

∑
i>1

〈H,A∗APJi(G)〉‖H‖F
‖A(H)‖2‖PJi(G)‖

‖PJi(G)‖
‖H‖F

]

≥ 〈H,A∗A(H)〉
[
1− π(l + s, s)

∑
i>1 ‖PJi(G)‖
‖H‖F

]
≥ 〈H,A∗A(H)〉

[
1− π(l + s, s)‖PL(G)‖∗

s‖H‖F

]
≥ ϑ−(l + s)‖H‖F

[
‖H‖F − s−1π(l + s, s)‖PL(G)‖∗

]
, (36)

where the first inequality is using the definition of π by the fact that H ∈ G,PJi(G) ∈ Ji and
rank(PJi(G)) ≤ s, G ⊥ Ji for i > 1, and the second inequality is due to∑

i>1 ‖PJi(G)‖ ≤ s−1
∑
i=1

∥∥PJi(G)
∥∥
∗ = s−1‖PL(G)‖∗

implied by ‖PJi+1
(G)‖ ≤ s−1‖PJi(G)‖∗. Combining (36) with (35), we get the result. 2

7.3 Proofs of the results in Section 4

This part includes the proofs of all the results in Section 4. For convenience, in this part we write
∆k := Xk−X for k = 1, 2, . . .. We first establish two preliminary lemmas.

Lemma 6 If ‖PT ⊥(W k−1)‖ < 1 for some k ≥ 1, then with γk−1 defined by (18) we have

‖PT ⊥(∆k)‖∗ ≤ γk−1

√
2r‖PT (∆k)‖F .

Proof By the optimality of Xk and the feasibility of X to the subproblem (12),

‖Xk‖∗ − 〈W k−1, Xk〉 ≤ ‖X‖∗ − 〈W k−1, X〉.

Recall from [40] that ∂‖X‖∗ = {U1V
T
1 +W | W ∈ R(n1−r)×(n2−r) with ‖W‖ ≤ 1}. Then,

‖Xk‖∗ − ‖X‖∗ ≥ 〈U1V
T
1 , X

k −X〉+ ‖PT ⊥(Xk −X)‖∗.

The last two equations imply that 〈U1V
T
1 , ∆

k〉+ ‖PT ⊥(∆k)‖∗ ≤ 〈W k−1, ∆k〉. Hence,

〈U1V
T
1 ,PT (∆k)〉+ ‖PT ⊥(∆k)‖∗ ≤ 〈W k−1, ∆k〉.

This, along with 〈W k−1, ∆k〉 = 〈PT ⊥(W k−1),PT ⊥(∆k)〉+ 〈W k−1,PT (∆k)〉, yields that

‖PT ⊥(∆k)‖∗ − 〈PT ⊥(W k−1),PT ⊥(∆k)〉 ≤ 〈PT (W k−1−U1V
T
1 ),PT (∆k)〉.

Using the relation |〈Y,Z〉| ≤ ‖Y ‖‖Z‖∗ for any Y,Z ∈ Rn1×n2 , we obtain that(
1− ‖PT ⊥(W k−1)‖

)
‖PT ⊥(∆k)‖∗ ≤ ‖PT (W k−1−U1V

T
1 )‖F ‖PT (∆k)‖F .

From this inequality and the definition of γk−1, we obtain the desired result. 2
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Lemma 7 Suppose that ‖PT ⊥(W k−1)‖ < 1 for some k ≥ 1. Let ([P k1 P k2 ], [Qk1 Qk2 ]) ∈
On1−r,n2−r(U

T
2 ∆

kV2) with P k1 ∈ O(n1−r)×s and Qk1 ∈ O(n2−r)×s for an integer s ∈ [1, n1− r],
and defineMk := T ⊕Hk with Hk=

{
U2P

k
1 Y (V2Q

k
1)T | Y ∈ Rs×s

}
. Then,∥∥∆k∥∥

F
≤
√

1 + rγ2
k−1/(2s)

∥∥PMk(∆k)
∥∥
F
.

Proof By the definitions of the subspaces T ⊥ and Hk, for any Z ∈ Rn1×n2 we have

PT ⊥(Z) = U2U
T
2ZV 2V

T
2 and PHk(Z) = U2P

k
1 (U2P

k
1 )TZV 2Q

k
1(V 2Q

k
1)T.

By this, it is easy to check that PHk(∆k)=PHk(PT ⊥(∆k)). By the SVD of U
T
2∆

kV 2,

PT ⊥(∆k) = U2

(
U

T
2∆

kV 2

)
V

T
2 = U2P

k
[
Diag(σ(U

T
2∆

kV 2)) 0
]
(Qk)TV

T
2 (37)

where P k = [P k1 P k2 ] and Qk = [Qk1 Qk2 ]. Together with the expression of PHk(PT ⊥(∆k)),

PHk(∆k) = PHk(PT ⊥(∆k)) = U2P
k
1

[
Diag

(
σs,↓(U

T
2∆

kV 2)
)

0
]
(Qk1)TV

T
2 , (38)

where σs,↓(U
T
2 ∆

kV2) is the vector consisting of the first s components of σ(U
T
2 ∆

kV2). Notice that
PMk(∆k) = PT (∆k)+PHk(∆k) since the subspaces T and Hk are orthogonal. By combining this
with equalities (37) and (38), it follows that

‖∆k−PMk(∆k)‖ = ‖PT ⊥(∆k)−PHk(∆k)‖ ≤ s−1‖PHk(∆k)‖∗,
‖∆k−PMk(∆k)‖∗ = ‖PT ⊥(∆k)−PHk(∆k)‖∗ = ‖PT ⊥(∆k)‖∗−‖PHk(∆k)‖∗.

Together with ‖P(Mk)⊥(∆k)‖2F ≤ ‖P(Mk)⊥(∆k)‖‖P(Mk)⊥(∆k)‖∗ and Lemma 6,

‖P(Mk)⊥(∆k)‖F ≤
(
‖∆k−PMk(∆k)‖‖∆k−PMk(∆k)‖∗

)1/2 ≤ 1

2
√
s
‖PT ⊥(∆k)‖∗

≤ γk−1

√
2r

2
√
s

∥∥PT (∆k)
∥∥
F
≤ γk−1

√
2r

2
√
s

∥∥PMk(∆k)
∥∥
F
,

where the second inequality is using the fact that ab ≤ (a + b)2/4 for a, b ∈ R. The result then
follows by noting that ‖∆k‖2F = ‖PMk(∆k)‖2F + ‖P(Mk)⊥(∆k)‖2F . 2

Proof of Proposition 2: Since γk−1 ∈ [0, 1/c), by the definition of γk−1, it is clear that
‖PT ⊥(W k−1)‖ < 1. From Assumption 1 and Lemma 4 of Appendix B,

π(2r + s, s)γk−1

s
≤ ck−1√

2r
with ck−1 = cγk−1 < 1. (39)

Let Hk and Mk be defined as in Lemma 7. Using Lemma 5 of Appendix B with L = T ⊥,
J1 = Hk,G =Mk, H = PMk(∆k) and G = ∆k and the fact PMk(G−H) = 0, we have

max
(
0, 〈PMk(∆k),A∗A(∆k)〉

)
≥ ϑ−(2r+s)

(∥∥PMk(∆k)
∥∥
F
− π(2r+s, s)

s

∥∥PT ⊥(∆k)
∥∥
∗

)∥∥PMk(∆k)
∥∥
F

≥ ϑ−(2r+s)
(
‖PMk(∆k)‖F − ck−1

∥∥PT (∆k)
∥∥
F

)
‖PMk(∆k)‖F

≥ ϑ−(2r+s)(1− ck−1)‖PMk(∆k)‖2F ≥ 0, (40)
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where the second inequality is due to Lemma 6 and equation (39), and the last one is due to
‖PT (∆k)‖F ≤ ‖PMk(∆k)‖F . In addition, by the definition of ϑ+(·), it holds that

max
(
0, 〈PMk(∆k),A∗A(∆k)〉

)
≤ ‖A(PMk(∆k))‖‖A(∆k)‖ ≤ 2δ

√
ϑ+(2r+s)‖PMk(∆k)‖F

where the second inequality is using ‖A(∆k)‖ ≤ ‖A(Xk)− b‖+ ‖A(X)− b‖ ≤ 2δ. Together with

(40), we obtain ‖PMk(∆k)‖F ≤
2δ
√
ϑ+(2r+s)

(1−ck−1)ϑ−(2r+s) . The first inequality in (19) then follows by
Lemma 7. For the second inequality in (19), from Lemma 6 it follows that∥∥PT ⊥(Xk)

∥∥
∗ =

∥∥PT ⊥(∆k)
∥∥
∗≤
√

2rγk−1

∥∥PT (∆k)
∥∥
F
≤
√

2rγk−1

∥∥PMk(∆k)
∥∥
F

≤
2δ
√

2rγk−1

√
ϑ+(2r+s)

(1− ck−1)ϑ−(2r+s)

where the first equality is due to X ∈ T , and the second inequality is sinceMk = T ⊕Hk. This
shows that the second inequality in (19) holds. We complete the proof. 2

Proof of Theorem 2: By the strict increasing of Ξ(·) in (20), it suffices to prove that

0 ≤ γk ≤ γ̃k < γ̃k−1 < · · · < γ̃1 < γ̃0 = 1/
√

2. (41)

To establish the relations in (41), by the definition of γ̃k in (22a), we need to prove that{
0 ≤ ãk ≤ ãk−1 ≤ · · · ≤ ã1 ≤ b̃1 ≤ · · · ≤ b̃k−1 ≤ b̃k ≤ 1, (42a)

0 ≤ β̃k < β̃k−1 < · · · < β̃1 < 1. (42b)

By the definitions of ãk and b̃k and equation (4a), {ãk}k≥1 ⊆ [0, 1] and {b̃k}k≥1 ⊆ [0, 1]. We
next establish the monotone relations in (42a)-(42b) and (41) by induction on k. Let (U1, V 1) ∈
On1,n2(X1) where U1 = [U1

1 U1
2 ] with U1

1 ∈ On1×r and V 1 = [V 1
1 V 1

2 ] with V 1
1 ∈ On2×r. By

(15), W 1 = U1
[
Diag(w1

1, . . . , w
1
n1

) 0
]
(V 1)T with 1 ≥ w1

1 ≥ · · · ≥ w1
n1
≥ 0. Since γ0 = 1/

√
2,

by Proposition 2 we have ‖X1−X‖F ≤ Ξ(γ0) = Ξ(γ̃0). From [18, Theorem 3.3.16], σi(X1) ≥
σr(X) − Ξ(γ̃0) for i = 1, . . . , r and σi(X

1) ≤ Ξ(γ̃0) for i = r + 1, . . . , n1. From the given
assumption σr(X) > 2Ξ(γ0) = 2Ξ(γ̃0), clearly, ρ1Ξ(γ̃0) < ρ1(σr(X) − Ξ(γ̃0)). Together with
(22a)-(22b) and (4b), we obtain ã1 ≤ b̃1. In addition, by recalling that w1

i ∈ ∂ψ∗(ρ1σi(X
1)) for

each i, from (22a)-(22b) and (4b),

w1
i ≥ b̃1, i = 1, 2, . . . , r and 0 ≤ w1

i ≤ ã1, i = r + 1, . . . , n1. (43)

Now using Lemma 2 with X̃ = X and W = W 1 and the relations in (43) yields that

‖PT ⊥(W 1)‖ ≤ w1
r+1 + (1− w1

r+1)
∥∥U1

1 (V 1
1 )T−U1V

T
1

∥∥2
,

‖PT (W 1−U1V
T
1 )‖F ≤

√
r(1− b̃1) + (

√
2ã1 + 1)

∥∥U1
1 (V 1

1 )T−U1V
T
1

∥∥.
Since ‖X1−X‖F ≤ Ξ(γ̃0), applying Lemma 3 with ω = σr(X)/Ξ(γ̃0), X̃ = X,X = X1 and
η = Ξ(γ̃0) we obtain ‖U1

1 (V 1
1 )T−U1V

T
1‖ ≤ β̃1 < 1. Thus, it holds that{

1−‖PT ⊥(W 1)‖ ≥ (1−ã1)
(
1−β̃2

1

)
, (44a)

‖PT (W 1−U1V
T
1 )‖F ≤

√
r(1− b̃1) + (

√
2ã1 + 1)β̃1. (44b)
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Along with ã1 <
√
r(̃b1−β̃2

1)−β̃1√
r(1−β̃2

1)+
√

2β̃1
< 1 and the definitions of γ1 and γ̃1, we have 0 ≤ γ1 ≤ γ̃1. Also,

γ̃1 <
1√
2
is implied by ã1 <

√
r(̃b1−β̃2

1)−β̃1√
r(1−β̃2

1)+
√

2β̃1
. The desired (41) holds for k = 1.

Now assume that the conclusion holds for k ≤ l − 1 with l ≥ 2. We shall show that it holds
for k = l. Since the conclusion holds for k = l−1, we have γl−1 ≤ γ̃l−1 < 1/

√
2. This means that

the assumption of Proposition 2 holds for k = l. Consequently,

‖X l−X‖F ≤ Ξ(γl−1) ≤ Ξ(γ̃l−1).

By [18, Theorem 3.3.16], σi(X l) ≥ σr(X) − Ξ(γ̃l−1) for i = 1, . . . , r and σi(X
l) ≤ Ξ(γ̃l−1)

for i = r+1, . . . , n1. Let (U l, V l) ∈ On1,n2(X l) where U l = [U l1 U l2] with U l1 ∈ On1×r and
V l = [V l1 V l2 ] with V l1 ∈ On2×r. From equation (15), W l =U l

[
Diag(wl1, . . . , w

l
n1

) 0
]
(V l)T with

1 ≥ wl1 ≥ · · · ≥ wln1
≥ 0. Along with the definitions of ãl and b̃l and equation (4b),

wli ≥ b̃l, i = 1, 2, . . . , r and 0 ≤ wli ≤ ãl, i = r+1, . . . , n1. (45)

Since the conclusion holds for k = l−1, we have Ξ(γ̃l−1) < Ξ(γ̃0), and then σr(X)
Ξ(γ̃l−1) > 2. Using

Lemma 2 with X̃ = X and W = W l and Lemma 3 with ω = σr(X)
Ξ(γ̃l−1) , X̃ = X, X = X l and

η = Ξ(γ̃l−1) and following the same arguments as those for k = 1, we have{
1−‖PT ⊥(W l)‖ ≥ (1−ãl)(1−β̃2

l ), (46a)

‖PT (W l−U1V
T
1 )‖F ≤

√
r(1− b̃l) + (

√
2ãl + 1)β̃l. (46b)

Notice that 1 ≤ µl ≤ Ξ(γ̃l−2)
Ξ(γ̃l−1) . So, ρl−1 ≤ ρl ≤ ρl−1Ξ(γ̃l−2)

Ξ(γ̃l−1) . By the definitions of ãl and b̃l and

equation (4b), ãl ≤ ãl−1 and b̃l ≥ b̃l−1. In addition, since γ̃l−1 < γ̃l−2, we have Ξ(γ̃l−1) <

Ξ(γ̃l−2), and then β̃l < β̃l−1. Equations (46a) and (46b) and the definitions of γl and γ̃l imply
that 0 ≤ γl ≤ γ̃l < γ̃l−1. Thus, the conclusion holds for k = l. 2

Proof of Theorem 3: Notice that the assumption of Theorem 2 is satisfied. The monotone
relations in (42a)-(42b) hold for all k ≥ 2. For k = 1, clearly, (23) holds. Now fix k ≥ 2. Let
(Uk−1, V k−1) ∈ On1,n2(Xk−1) where Uk−1 = [Uk−1

1 Uk−1
2 ] with Uk−1

1 ∈ On1×r and V k−1 =
[V k−1

1 V k−1
2 ] with V k−1

1 ∈ On2×r. Then W k−1 = Uk−1[Diag
(
wk−1

1 , . . . , wk−1
n1

) 0](V k−1)T with
1 ≥ wk−1

1 ≥ · · · ≥ wk−1
n1
≥ 0. By following the same arguments as those for Theorem 2, we have

1−‖PT ⊥(W k−1)‖ ≥ (1−ãk−1)(1−β̃2
k−1),∥∥PT (W k−1−U1V

T
1 )
∥∥
F
≤
√
r(1−b̃k−1) + (1+

√
2ãk−1)

∥∥Uk−1
1 (V k−1

1 )T−U1V
T
1

∥∥.
Also, from [24, Equation(49)-(51)],

∥∥Uk−1
1 (V k−1

1 )T−U1V
T
1

∥∥
F
≤ ‖Xk−1−X‖F

σr(X)−
√

2Ξ(γ0)
. Thus, together

with the definition of γk−1, it immediately follows that

γk−1 ≤
1− b̃1√

2(1− ã1)(1−β̃2
1)

+
1 +
√

2ã1√
2r(1− ã1)(1−β̃2

1)
· ‖X

k−1 −X‖F
σr(X)−

√
2Ξ(γ0)

.

From the first part of Theorem 2 and the first inequality of (19), it follows that

‖Xk−X‖F ≤
2δ
√
ϑ+(2r+s)

(1−cγk−1)ϑ−(2r+s)

(
1+

√
r

2s
γk−1

)
=

Ξ(0)

(1−cγk−1)

(
1+

√
r

2s
γk−1

)
≤ Ξ(0)

1−cγ̃1

[
1 +

(1− b̃1)
√
r

2(1−ã1)(1−β̃2
1)
√
s

]
+
[ αΞ(γ0)

σr(X)−
√

2Ξ(γ0)

]
‖Xk−1−X‖F (47)
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where the second inequality is using Ξ(γ0) = Ξ(0)
1−cγ̃0

√
4s+r

4s . Since σr(X) > (
√

2 +α)Ξ(γ0) implies

0 ≤ αΞ(γ0)

σr(X)−
√

2Ξ(γ0)
< 1, the desired inequality follows by the recursion (47). 2

Lemma 8 If the components ξ1, ξ2, . . . , ξm of ξ are independent sub-Gaussians, then ‖ξ‖ ≤
√
mσ

with probability at least 1− exp(1− c1m
4 ) for an absolute constant c1 > 0.

Proof Notice that ‖ξ‖ = supu∈Sm−1〈u, ξ〉, where Sm−1 denotes the unit sphere in Rm. Let
U := {u1, . . . , um} denote 1/2 covering of Sm−1. Then, for any u ∈ Sm−1, there exists u ∈ U
such that u = u+∆u with ‖∆u‖ ≤ 1/2. Consequently, 〈u, ξ〉 = 〈u, ξ〉+ 〈∆u, ξ〉 ≤ 〈u, ξ〉+ 1

2‖ξ‖.
This, by ‖ξ‖ = supu∈Sm−1〈u, ξ〉, implies that ‖ξ‖ ≤ 2〈u, ξ〉 = 2

∑m
i=1 uiξi. By the Hoeffding-type

inequality (see [39]), there exists an absolute constant c1 > 0 such that for every t > 0,

P {‖ξ‖ ≥ t} ≤ P
{∣∣∑m

i=1uiξi
∣∣ ≥ t/2} ≤ exp

(
1−c1t2/(4σ2)

)
.

Taking t =
√
mσ, we obtain the desired result from the last equation. 2
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Table 1 Reduction rate of the error bounds of the first stage in the 2nd-5th stage

ρ1 c 0 0.1 0.3 0.5 0.7 0.9
φ1

[
0.29α
σr(X)

, α
σr(X)

)
Ξ(γ̃1)/Ξ(γ0) 0.819 0.766 0.658 0.547 0.433 0.316
Ξ(γ̃2)/Ξ(γ0) 0.818 0.763 0.652 0.537 0.420 0.302
Ξ(γ̃3)/Ξ(γ0) 0.818 0.763 0.651 0.536 0.420 0.302
Ξ(γ̃4)/Ξ(γ0) 0.818 0.763 0.651 0.536 0.420 0.302

φ2

[
0.24α
σr(X)

, 4.42α
σr(X)

]
Ξ(γ̃1)/Ξ(γ0) 0.975 0.969 0.955 0.934 0.905 0.856
Ξ(γ̃2)/Ξ(γ0) 0.967 0.958 0.931 0.888 0.816 0.689
Ξ(γ̃3)/Ξ(γ0) 0.965 0.954 0.920 0.760 0.752 0.572
Ξ(γ̃4)/Ξ(γ0) 0.965 0.953 0.915 0.744 0.714 0.516
Ξ(0)/Ξ(γ0) 0.817 0.759 0.644 0.528 0.413 0.297

Table 2 Performance of NNRM and Algorithm 1 for low-rank correlation completion

r off-diag eigr NNRM Algorithm 1
relerr(rank) iter time relerr(rank) iter time ns

0 1.19 5.06e-1(1000) 95 25.7 1.58e-1(5) 2279 579.7 4
0 2.86 3.86e-1(1000) 101 25.1 1.51e-1(5) 906 228.9 3
0 4.36 2.68e-1(1000) 105 27.1 1.51e-1(5) 883 226.5 35
100 1.17 4.92e-1(1000) 94 23.5 1.53e-1(5) 1941 491.1 4
100 2.79 3.40e-1(1000) 114 28.6 1.47e-1(5) 916 231.3 3
100 4.23 2.73e-1(1000) 105 27.8 1.48e-1(5) 932 240.3 3
0 1.36 3.29e-1(1000) 73 19.0 1.44e-1(10) 849 217.9 3
0 3.52 2.59e-1(1000) 76 19.7 1.39e-1(10) 626 163.2 3
0 6.39 1.80e-1(1000) 84 21.5 1.33e-1(10) 520 132.2 310
100 1.42 3.08e-1(1000) 73 18.2 1.42e-1(10) 949 241.8 3
100 3.31 2.50e-1(1000) 76 19.8 1.38e-1(10) 623 159.3 3
100 6.35 1.86e-1(1000) 85 22.4 1.37e-1(10) 551 141.5 3




