Mathematical Programming Computation (2021) 13:339-413
https://doi.org/10.1007/s12532-020-00192-5

FULL LENGTH PAPER

®

Check for
updates

Managing randomization in the multi-block alternating
direction method of multipliers for quadratic optimization

Kregimir Mihi¢"2@® - Mingxi Zhu3@® - Yinyu Ye*

Received: 17 April 2019 / Accepted: 24 August 2020 / Published online: 23 September 2020
© The Author(s) 2020

Abstract

The Alternating Direction Method of Multipliers (ADMM) has gained a lot of attention
for solving large-scale and objective-separable constrained optimization. However, the
two-block variable structure of the ADMM still limits the practical computational effi-
ciency of the method, because one big matrix factorization is needed at least once even
for linear and convex quadratic programming. This drawback may be overcome by
enforcing a multi-block structure of the decision variables in the original optimization
problem. Unfortunately, the multi-block ADMM, with more than two blocks, is not
guaranteed to be convergent. On the other hand, two positive developments have been
made: first, if in each cyclic loop one randomly permutes the updating order of the mul-
tiple blocks, then the method converges in expectation for solving any system of linear
equations with any number of blocks. Secondly, such a randomly permuted ADMM
also works for equality-constrained convex quadratic programming even when the
objective function is not separable. The goal of this paper is twofold. First, we add
more randomness into the ADMM by developing a randomly assembled cyclic ADMM
(RAC-ADMM) where the decision variables in each block are randomly assembled.
We discuss the theoretical properties of RAC-ADMM and show when random assem-
bling helps and when it hurts, and develop a criterion to guarantee that it converges
almost surely. Secondly, using the theoretical guidance on RAC-ADMM, we con-
duct multiple numerical tests on solving both randomly generated and large-scale
benchmark quadratic optimization problems, which include continuous, and binary
graph-partition and quadratic assignment, and selected machine learning problems.
Our numerical tests show that the RAC-ADMM, with a variable-grouping strategy,
could significantly improve the computation efficiency on solving most quadratic opti-
mization problems.

Keywords Quadratic Optimization - ADMM - Decomposition - Randomization -
Machine learning applications

B KreSimir Mihi¢
kresimir.mihic @oracle.com

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-020-00192-5&domain=pdf
http://orcid.org/0000-0001-7896-2427
http://orcid.org/0000-0001-5513-0038

340 K. Mihi¢ et al.

Mathematics Subject Classification 90C20 - 65K05 - 90-04
1 Introduction

In this paper we consider the linearly constrained convex minimization model with
an objective function that is the sum of multiple separable functions and a coupled
quadratic function:

mxin fx) = 3x"Hx+c’x

P
S.t. ZA,’ x;=b (D
i=1
xeX
where H € R"*" is a symmetric positive semidefinite matrix, vector ¢ € R”" and the
problem parameters are the matrix A = [Ay, ..., A, A; € R7<di o= 1,2,....p

with Zf:] d; = n and the vector b € R™. The constraint set X’ is the Cartesian
product of possibly non-convex real, closed, nonempty sets, X = X; x --- x X,
where x; € X; C R%

Problem (1) naturally arises from applications such as machine and statistical
learning, image processing, portfolio management, tensor decomposition, matrix com-
pletion or decomposition, manifold optimization, data clustering and many other
problems of practical importance. To solve problem (1), we consider in particular
a randomly assembled multi-block and cyclic alternating direction method of multi-
pliers (RAC-ADMM), a novel algorithm with which we hope to mitigate the problem
of slow convergence and divergence issues of the classical alternating direction method
of multipliers (ADMM) when applied to problems with cross-block coupled variables.

ADMM was originally proposed in 1970°s [31,32] and after a long period with-
out too much attention it has recently gained in popularity for a broad spectrum of
applications [28,41,44,57,67]. Problems successfully solved by ADMM range from
classical linear programming (LP), semidefinite programming (SDP) and quadratically
constrained quadratic programming (QCQP) applied to partial differential equations,
mechanics, image processing, statistical learning, computer vision and similar prob-
lems (for examples see [10,39,45,53,58,70]) to emerging areas such as deep learning
[71], medical treatment [81] and social networking [2]. ADMM is shown to be a good
choice for problems where high accuracy is not a requirement but a “good enough”
solution is needed to be found fast.

Cyclic multi-block ADMM (C-ADMM) is an iterative algorithm that embeds
a Gaussian-Seidel decomposition into each iteration of the augmented Lagrangian
method (ALM) [36,59]. It consists of a cyclic update of the blocks of primal variables,

X; € Xi,Xx = (X1, ...,Xp), and a dual ascent type update of the variable y € R™, i.e.,
X = arg min{Lg(x1, x5, x5, ..., x’;; ¥y,
X]EXl
C-ADMM := { * .)
x’;“ = arg mm{Lﬁ(X/fH, xé“, x§+1, X YOL
xpeX,

Y =y =B, A Xt —b)

@ Springer

Managing randomization in the multi-block alternating... 341

where 8 > 0 is a penalty parameter of the Augmented Lagrangian function Lg,

p 14
Lexi, ..., %y ¥ = fx) —yT <ZA,~X,~—b) + ||ZAixi—b|\2. 3)
i=1 i=1

Note that the classical ADMM [31,32] admits only optimization problems that are
separable in blocks of variables and with p = 2.

Another variant of multi-block ADMM was suggested in [5], where the authors
introduce the distributed multi-block ADMM (D-ADMM) for separable problems.
The method creates a Dantzig-Wolfe-Benders decomposition structure and sequen-
tially solves a “master” problem followed by solving distributed multi-block “slave”
problems. It converts the multi-block problem into an equivalent two-block problem
via variable splitting [6] and performs a separate augmented Lagrangian minimization
over X;. The method assumes that the objective function is separable across blocks,
fx =Y, fitx)+ ¢’ x, and is not provably working for solving problems with
non-separable objective functions.

Update x;,i =1,...,p
i = arg minfi (x) — ()T (Aixi —A5) + §)1A; x; — A |2
x; €X;
D-ADMM := { Update A;,i =1,...,p
M = A (0 A)
Y =y L Aixt =),
“)
Because of the variable splitting, the distributed ADMM approach based on (4)
increases the number of variables and constraints in the problem, which in turn makes
the algorithm not very efficient for large p in practice.

The classical two-block ADMM (Eq. 2 with p = 2) and its convergence have been
extensively studied in the literature (e.g. [20,22,31,35,54]. However, the two-block
variable structure of the ADMM still limits the practical computational efficiency of
the method, because one factorization of a large matrix is needed at least once even
for linear and convex quadratic programming (e.g., [45,65]). This drawback may be
overcome by enforcing a multi-block structure of the decision variables in the original
optimization problem. Indeed, due to the simplicity and practical implications of a
direct extension of ADMM to the multi-block variant (2), an active research recently
has been going on in developing ADMM variants with provable convergence and
competitive numerical efficiency and iteration simplicity (e.g. [17,35,37,58]), and
on proving global convergence under some special conditions (e.g. [13,24,46,47]).
Unfortunately, in general the Cyclic multi-block ADMM, with more than two blocks,
is not guaranteed to be convergent even for solving a single system of linear equations,
which settled a long-standing open question [15].

Moreover, in contrast to the work on separable convex problems, little work has
been done on understanding properties of the multi-block ADMM for (1) with a non-
separable convex quadratic or even non-convex objective function. One of the rare
works that addresses coupled objectives is [17] where authors describe convergence

@ Springer

342 K. Mihi¢ et al.

properties for non-separable convex minimization problems. A good description of
the difficulties of obtaining a rigorous proof is given in [23]. For solving non-convex
problems, a rigorous analysis of ADMM is by itself a very hard problem, with only a
couple of works being done for generalized, but still limited (by an objective function),
separable problems. For examples see [38,40,76,77,82].

Randomization is commonly used to reduce information and computation com-
plexity for solving large-scale optimization problems. Typical examples include
Q-Learning or Reinforced Learning, Stochastic Gradient Descent (SGD) for Deep
Learning, Randomized Block-Coordinate-Descent (BCD) for convex programming,
and so on. Randomization of ADMM has recently become a matter of interest as well.
In [68] the authors devised randomly permuted multi-block ADMM (RP-ADMM)
algorithm, in which on every cyclic loop the blocks are solved or updated in a ran-
domly permuted order. Surprisingly the algorithm eliminated the divergence example
constructed in [15], and RP-ADMM was shown to converge linearly in expectation
for solving any square system of linear equations with any number of blocks. Sub-
sequently, in [17] the authors focused on solving the linearly constrained convex
optimization with coupled convex quadratic objective, and proved the convergence in
expectation of RP-ADMM for the non separable multi-block convex quadratic pro-
gramming, which is a much broader class of computational problems.

Randomly permute (1, 2, ..., p) into (o1, 02, ..., 0p),
then solve:
X’;}H = arg min{Lg (X, , x];z, x§3, e x];p, YOl
X0y eXgl
x‘k,;fl = arg min{Lﬁ(Xf‘,Tl, Xf‘,jl,x(];jl N o ¥vO1,
xgpeX(,p
yk+1 — yk _ﬂ(Axk+1 —b)

The main goal of the work proposed in this paper is twofold. First, we add more
randomness into the ADMM by developing a randomly assembled cyclic ADMM
(RAC-ADMM) where the decision variables in each block are randomly assembled.
In contrast to RP-ADMM in which the variables in each block are fixed and unchanged,
RAC-ADMM randomly assembles new blocks at each cyclic loop. It can be viewed
as a decomposition-coordination procedure that decomposes the problem in a random
fashion and combines the solutions to small local sub-problems to find the solution
to the original large-scale problem. RAC-ADMM, in-line with RP-ADMM, admits
multiple blocks with possibly cross-block coupled variables and updates the blocks in
the cyclic order. The idea of re-constructing block variables at each cyclic loop was
first mentioned in [51], where the authors present a framework for solving discrete
optimization problems which decomposes a problem into sub-problems by randomly
(without replacement) grouping variables into subsets. Each subset is then used to
construct a sub-problem by considering variables outside the subset as fixed, and the
sub-problems are then solved in a cyclic fashion. Subsets are constructed once per
iteration. The algorithm presented in that paper is a variant of the block coordinate

@ Springer

Managing randomization in the multi-block alternating... 343

descent (BCD) method with an addition of methodology to handle a small number
of special constraints, which can be seen as a special case of RAC-ADMM. In the
current paper we discuss the theoretical properties of RAC-ADMM and show when
the additional random assembling helps and when it hurts.

Secondly, using the theoretical guidance on RAC-ADMM, we conduct multi-
ple numerical tests on solving both randomly generated and benchmark quadratic
optimization problems, which include continuous, and binary graph-partitioning and
quadratic assignment problems, and selected machine learning problems such as lin-
ear regression, LASSO, elastic-net, and support vector machine. Our numerical tests
show that RAC-ADMM, with a systematic variable-grouping strategy (designate a
set of variables always belonging to a same block), could significantly improve the
computation efficiency on solving most quadratic optimization problems.

The current paper is organized as follows. In the next section we present RAC-
ADMM algorithm and present theoretical results with respect to convergence. Next we
discuss the notion of special grouping, thus selecting variables in less-random fashion
by analyzing a problem structure, and the use of partial Lagrangian, approaches,
which improve convergence speed of the algorithm. In Sect. 3, we present a solver,
RACQP, we built that uses RAC-ADMM to address linearly constrained quadratic
problems. The solver is implemented in Matlab [50] and the source code available
online [61]. The solver’s performance is investigated in Sect. 4, where we compare
RACQP with commercial solvers, Gurobi [34] and Mosek [55], and the academic
OSQP which is a ADMM-based solver developed by [65]. We also consider machine
learning problems and compare our general purpose solver with tailored heuristic
solutions, Glmnet [30,64] and LIBSVM [14]. The summary of our contributions with
concluding remarks is given in Sect. 5.

2 RAC-ADMM

In this section we describe our randomly assembled cyclic alternating direction method
of multipliers (RAC-ADMM). We start by presenting the algorithm, then analyze
its convergence for linearly constrained quadratic problems, and finalize the section
by introducing accelerated procedures that improve the convergence speed of RAC-
ADMM by means of a grouping strategy of highly coupled variables and a partial
Lagrangian approach. Note that although our analysis of convergence is restricted
to quadratic and/or special classes of problems, it serves as a good indicator of the
convergence of the algorithm in more general case.

2.1 The algorithm

RAC-ADMM is an algorithm that is applied to solve convex problems (1). The algo-
rithm addresses equality and inequality constraints separately, with the latter converted

@ Springer

344 K. Mihi¢ et al.

into equalities using slack variables, s:

min f(x) = %XT Hx+c'x
X,S
S.t. qu X = beq (6)

Aineq X+Ss= bineq
xeX,s>0

where matrix A, € R™<*" and vector b, € R™¢ describe equality constraints and
matrix Ajneq € R™" and the vector bj,e, € R™ describe inequality constraints.
Primal variables x € X are in constraint set X € R" which is the Cartesian product
of possibly non-convex real, closed, nonempty sets, and slack variables s € RT. The
augmented Lagrangian function used by RAC-ADMM is then defined by

Lg(x;s; Yeq: Yineq) =fx - YZq (Aeq X— beq) - y,?;wq (Aineq X+Ss— bineq)
+ (] e X = beg |7+ | Aineq X+ = bineg |°)
@)

with dual variables y € R™¢ and z € R™, and penalty parameter 8 > 0. In (6) we
keep inequality and equality constraint matrices separate so to underline a separate
slack variable update step of (8) which has a close form solution described in more
details in Sect. 3.

RAC-ADMM is an iterative algorithm that embeds a Gaussian-Seidel decomposi-
tion into each iteration of the augmented Lagrangian method (ALM). It consists of
a cyclic update of randomly constructed blocks’ of primal variables, x; € X, fol-
lowed by the update of slack variables s and a dual ascent type update for Lagrange
multipliers y,, and y;,,.,:

Randomly (without replacement) assemble primal
variables x' into p blocks, x;,i =1,..., p, then solve :
Xt = ar min{Lg(x1, x& xk sk yk o zk)
1 - g ﬁ 17 27"'5 pv 7y(3q5 ineq)
x1€X1
RAC-ADMM := { k41 _ : Kl ket ke ok Lok
X, = arg min{Lg(x|" ,X5" ,...,Xp: 8 ,yeq,zmeq)},
xpeX)
k+1 _ . k41 k+1 k41, oo gk .k
S = arg r})nn{Lﬁ(x1 Xy XSS yeq,zmeq)},
s>
k+1 k k41
Ye(—}_ = qu _ﬂ(AEq X + _beq),
k+1 k k41 | k+1
Yineqg = Yineq —B(Aineg X skt — bineq)-

1 Structure of a problem, if known, can be used to guide grouping

as described in Sect. 2.3.1
®)
Randomly assembled cyclic alternating direction method of multipliers (RAC-
ADMM), can be seen as a generalization of cyclic ADMM, i.e. cyclic multi-block
ADMM is a special case of RAC-ADMM in which the blocks are constructed at each
iteration using a deterministic rule and optimized following a fixed block order. Using

@ Springer

Managing randomization in the multi-block alternating... 345

Primal residual Dual residual

10 T 10 T T
N N B LLLH RAC-ADMM | | e RAC-ADMM
© =———RP-ADMM z | = RP-ADMM
2 5 —==Cyclic-ADMM 5 —==Cyclic-ADMM
g == =Distributed-ADMM 8 == =Distributed-ADMM
© 0 8 of
= =
= [
k] 1 3
2 -5 =" B
<] —— o
ﬁ —_
g -0+t S 0t
= e
s .| 5
o -15 V== ="e% o _ _ = -15

______ "«
20 I AN I I 20 I e 1 I I
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations

Fig. 1 Tteration evolution of primal and dual residuals of ADMM variants

the same analogy, RP-ADMM can be seen as a special case of RAC-ADMM, in which
blocks are constructed using some predetermined rule and kept fixed at each iteration,
but sub-problems (i.e. blocks minimizing primal variables) are solved in a random
order.

The main advantage of RAC-ADMM over other multi-block ADMM variants is in
its potential to significantly reduce primal and, especially, dual residuals, which is a
common obstacle for applying multi-block ADMMs. Intuitively, switching variables
between the blocks increases chances of finding descent directions which favor RAC-
ADMM. The following example further explains such intuition.

Example 1 Consider the problem

min x% — xy +u® — uv
X, Y0,V

st. (x,y,u,v) >0

Starting from the origin with two blocks, if we group (x, u) and (y, v) then we cannot
minimize further. But if we group (x, y) and (u, v) then we can find the problem is
unbounded from below. Thus, re-grouping the variables gives RAC-ADMM higher
chances of finding (better) descent direction(s), which consequently leads to a better
performance for dual residuals.

To illustrate this feature we ran a simple experiment in which we fix the number of
iterations and check the final residuals among the aforementioned multi-block ADMM
variants. In Table 1 we show performance of the ADMMSs when solving a simple
quadratic problem with a single constraint, represented by a regularized Markowitz
min-variance problem (defined in Sect. 4.1.3). Figure 1 gives the insight in evolution
of the both residuals with iterations. From the figure, it is noticeable that both D-
ADMM (Eq. 4) and RP-ADMM (Eq. 5) suffer from a very slow convergence speed,
with the main difference that the latter gives a slightly lower error on dual residual.
Multi-block Cyclic-ADMM (Eq. 2) does not converge to a KKT point for any k, but
oscillates around a very weak solution. RAC-ADMM converges to the KKT solution
very quickly with both residual errors below 1073 in less than 40 iterations.

@ Springer

K. Mihic et al.

346

1=4¢°0S=4d ‘000 =u

¢—01-T9 0T~ T°€ c-01-0'8 9-01-T'T 70181 90T L€ (v) WNav-d
0167 ¢—01- St ¢ 01-6F p—01 -89 2-01-T'1 01 +'L Q) WNQV-D
40189 01 €V c-01-€°€ 4010 2010’ 01 +'L () WNaV-dd
o1-01 ¥ p1-01-T'1 21-01- 9% 01-01-0°€ p—01-T°€ c-01-TL (8) WNAV-OVY

reng fewtid reng fewitig renq fewitid
suoneIaN 001 = ¥ SuoneIN O = ¥ suoneIN O] = ¥ WweLeA WNAY

woqoid QOUBLIBA—UTW Z)IMONIBJA PRJEIouas AJWIOpULI € 10 SUOTIRIAN ¥ IoYJe SJURLIBA NJNQY £Q PauInjal Jjnsal ay) Jo S[enpIsal [enp pue [ewrl | 3|qel

pringer

As

Managing randomization in the multi-block alternating... 347

2.2 Convergence of RAC-ADMM

This section concerns with convergence properties of RAC-ADMM when applied to
unbounded (i.e. x € R") linearly-equality constrained quadratic optimization prob-
lems. To simplify the notation, we use A = A,; and b = by,

n}in%xTHx—l—ch ©)
st. Ax=b
withHe R"”*" H>0,c e R",A ¢ R™*" b e R™ and x € R".
Convergence analysis of problems that include inequalities (bounds on variables
and/or inequality constraints) is still an open question and will be addressed in our
subsequent work.

2.2.1 Preliminaries

Double Randomness Interpretation LetI'g oc (n, py denote all possible updating combi-
nations for RAC with n variables and p blocks, and let ogac € I'rac(n, p) denote one
specific updating combination for RAC-ADMM. Then the total number of updating
combinations for RAC-ADMM is given by

n!
TraC,p)| = ——

(sh

where s € Z denotes size of each block with p - s = n.

RAC-ADMM could be viewed as a double-randomness procedure based on RP-
ADMM with different block compositions. Let ogp € I'gp(p) denote an updating
combinations of RP-ADMM with p blocks where the variable composition in each
block is fixed. Clearly, the total number of updating combinations for RP-ADMM is
given by

ICrP(p)| = p!

the total number of possible updating orders of the p blocks. Then, one may con-
sider RAC-ADMM first randomly chooses a block composition and then applies
RP-ADMM. Let v; € Y(n, p) denote one specific block composition or partition
of n decision variables into p blocks, where Y'(n, p) is the set of all possible block
compositions. Then, the total number of all possible block compositions is given by

ITRAC . p)] n!
T (n, p)| = tpl ' ’
ITrp(p)l (sHPp!

For convenience, in what follows let I'g p(p),,; denote all possible updating orders
with a fixed block composition v;. To further illustrate the relations of RP-ADMM
and RAC-ADMM, consider the following simple example.

@ Springer

348 K. Mihi¢ et al.

Example2 Letn = 6, p = 3, s0 |I'gp(6,3)] = 3! = 6, and the total number of block
compositions or partitions is 15:

v € 1(6,3) = { {[x1, x2], [x3, x4, [x5, x61}, {[x1, x2], [x3, x5], [x4, X561},
{[x1, x21, [x3, x6], [x4, x51}, {[x1, x31, [x2, x4], [x5, x61},
{[x1, x31, [x2, x5, [x4, x61}, {[x1, x3], [x2, x6], [x4, x5},
{[x1, xal, [x2, x3], [x5, x6]}, {[x1, x4], [x2, x5], [x3, x6]1},
{[x1, x4], [x2, x6], [x3, x51}, {[x1, x5], [x2, x3], [x4, 61},
{[x1, x5, [x2, x4], [x3, x61}, {[x1, x5], [x2, x6], [x3, x41},
{[x1, x6], [x2, x3], [x4, x5]}, {[x1, 6], [x2, x4], [
{Lx1, x6], [x2, x5], [x3, x41}}

x3, x5},

RAC-ADMM could be viewed as if, at each cyclic loop, the algorithm first selects
a block composition v; uniformly random from all possible 15 block compositions
Y (n, p), and then performs RP-ADMM with the chosen specific block composition
v;. In other words, RAC-ADMM then randomly selects o € I'grp(p),v;» which leads
to a total of 90 possible updating combinations.

RAC-ADMM as a linear transformation Recall that the augmented Lagrangian func-
tion for (9) is given by

1
Lg(x,y) = —x Hx+c¢' x—y ' (Ax—b) + ,3||Ax b

Consider one specific update order generated by RAC, ogac € I'rac(n, p)- Note that
we use o instead op 4c When there is no confusion. One possible update combination

generated by RAC, o = [o7, ..., 0,], where o; is an index vector of size s, is as
follows,
k+1 . k .
X, = ar%‘mm{L,g(xal, b SN x’f,p, yk)},
ol
RAC-ADMM; 41 =
k+1 k+1 k+1 . vk
xa‘; =argmin{Lg(X,] , X5 ..., Xgp: Y},
xc,p

yk+l =y _IB(Axk—H —b).

For convenience, we follow the notation in [17] and [68,69] to describe the iterative
scheme of RAC-ADMM in a matrix form. Let L, € R"*" be s x s block matrix
defined with respect to o; rows and o; columns as

H(Tl',o'j +/3AZ;AO-], l Z]

. (10)
0, otherwise

(La)cr,-,oj = {

and let R, be defined as
R, :=L, —(H+BAT A).

@ Springer

Managing randomization in the multi-block alternating... 349

By setting z := (x;y), RAC-ADMM could be viewed as a linear system mapping
iteration .
7 =M,z +L, b

where
M, =L, R, (11)
and Lo - -
Ly := |:,321i| R, = |:1})U AI] b:= [—c;ﬂbA b:|
Define the matrix Q by
Q= Eolly 1= et Zoerancy. Lo

1 1 —1
Y (n,p)] ZuieT(n,p) ol ZO’EFRP(p)Yui La }
Notice that for any block structure v; any update order within this fixed block structure
o € 'rp(p),u;» We have LZ = L5, where o is areverse permutation of 0 € I'rp(p), ;-

Specifically, let 0 = [o1,...,0,], wehave 0 = [01,...,0,], and 6; = 0p41—;. For
a specific fixed block structure v;, define matrix QU‘. as

. 1 -
Qu = Elly' juil= 1) L.,

! 0i €T RP(n,v;) %i
and because Lg = Lg, matrix Q,, is symmetric for all 7, and

1
Q= m ZviET(n,p) Qu (12)

Finally, the expected mapping matrix M is given by

1
M:=E,[M;]= —— Y M
e IT'RAC, p)| S0 €T RACG.p)

or, by direct computation,

— I-QS QAT
M= [ﬁ(AQS—A) I—ﬁAQATj| (13)

where S = H+p AT A.

2.2.2 Expected convergence of RAC-ADMM

With the preliminaries defined, we are now ready to show that RAC-ADMM converges
in expectation under the following assumption:

@ Springer

350 K. Mihi¢ et al.

Assumption 1 Assume that for any block of indices o; that generated by RAC-ADMM

H, o +BAL Ay =0

Oi
where o; is the index vector describing indices of primal variables of the block i.

Theorem 2 Suppose that Assumption (1) holds, and that RAC-ADMM (8) is employed
to solve problem (9). Then the expected output converges to some KKT point of (9).

Theorem 2 suggests that the expected output converges to some KKT point of (9).
Such convergence in expectation criteria has been widely used in many randomized
algorithms, including convergence analysis for RP-BCD and RP-ADMM (e.g. [16,
68]), and stochastic quasi-newton methods (e.g. [12]). It is worth mentioning that if
the optimization problem is strictly convex (H > 0), we are able to prove that the
expected mapping matrix has spectrum that is strictly less than 1 (Corollary 1).

Although convergence in expectation is widely used in many literature, it is still a
relatively weak convergence criteria. This is why in Sect. 2.2.4 we propose a sufficient
condition for almost surely convergence of RAC-ADMM. The section also provides
an example showing a problem with p(M) < 1 which does not converge. Rather
it oscillates almost surely (Example 3). To the best of our knowledge, this is the
first example showing that even if a randomized optimization algorithm has expected
spectrum radius strictly less than I, the algorithm may still oscillate—to construct
an example with expected spectrum radius equals to 1 that does not converge is an
easy task. Consider for example a sequence {x;, > 0} withx, = —l and x;, = 1,
chosen with equal probabilities (prob=1/2). Then, the sequence does not converge
with probability 1. However, under the such example, the expected spectrum of this
mapping procedure p(M) actually equals to 1, which implies that the sequence may
not converge. Despite the fact that such example exists for RAC-ADMM, in all the
numerical tests provided in Sect. 4, RAC-ADMM converges to the KKT point of the
optimization problem under few iterations. Such strong numerical evidences imply that
in practice, our algorithm does not require taking expectation over many iterations to
converge.

The proof of Theorem 2 follows the proof structure of [17,68,69] to show that under
Assumption 1:

(1) ¢ig(Q9) €0, 3);

(2) VA € eig(M), eig(QS) € [0, %) — |Al<lori=1;

(3) if 1 € eig(M), then the eigenvalue 1 has a complete set of eigenvectors;

(4) Steps (2) and (3) imply the convergence in expectation of the RAC-ADMM.

The proof builds on Theorem 2 from [17], which describes RP-ADMM convergence in
expectation under specific conditions put on matrices H and A, and Weyl’s inequal-
ity, which gives the upper bound on maximum eigenvalue and the lower bound on
minimum eigenvalue of a sum of Hermitian matrices. Proofs for items (2) and (3) are
identical to proofs given in [17, Section 3.2], so here the focus in on proving item (1).
The following lemma completes the proof of expected convergence of RAC.

@ Springer

Managing randomization in the multi-block alternating... 351

Lemma 1 Under Assumption 1, the matrix Q is positive definite, and

4
eig(QS) C [0, 3)

To prove Lemma 1, we first show that for any block structure v;, the following propo-
sition holds:

Proposition 1 Q,, S is positive semi-definite and symmetric, and

4
eig(Qvi S) g [O» 5)

Intuitively, a different block structure of RAC-ADMM iteration could be viewed as
relabeling variables and performing RP-ADMM procedure as described in [17].

Proof Define block structure {[x1, ..., xs], [Xs41, ... X25] [X(p=1)s+15 - - - Xps]} as
vy. For any block structure v;, there exists S and Q,,, s.t.

eig(Q,, S) = eig(Q,,S)

where Qvl represents formulation of E, [L;l] matrix with respect to block structure

v and matrix S. To prove this, we introduce permutation matrix P, as follows.
Given

vi={[1,....sl,[s+1,...,2s],[(p— Ds+1,..., psl}
vi={lz(D),....,7®] [r+1),....72s)], [z((p — Ds + 1), ..., 7(ps)]}

define
€x(1)
€r(2)
P, = .

i

€ (ps)

Where e; is the row vector with it/ element equal to 1. Notice P, is orthogonal matrix
for any v;, i.e. Py, Pgi = [. For any fixed block structure v;, with an update order
within ogp € I'rp(p), the following equality holds

T
Logpsv =P, L

Vi “ogp.S,ui

P,

where Ly, 5.0, 1s the construction of L following update order ogp € I'gp(p) and
block structure v; with respect to S, and LaRp S is the construction of L following
update order ogp € I'rp(p) and block structure vy, with coefficient matrix S, and

S=p,SP]

@ Springer

352 K. Mihi¢ et al.

and
-1 T
La,s = (P, L

\Uj vi ~o,S,v

IPU,.)—1 =pP’LL p,.

Vi "o,8,u

Then by the definition of Q matrix (Eq. 12), we get
QU,‘,S = Pl’];l QU],S Pui

so that 3 3 L
Q,sS=P} Q, 3P, P,'SP, =P/ Q, SP,.

Considering the eigenvalues of Q,, s S,
eig(Q,, s S) = eig(P}, Q, §SPy,) =cig(Q, ¢S
and from [17], under Assumption (1), QUI S is positive definite, and
eig(Q,, §S) C 10, g)
which implies Q,, is positive definite, and

4
eig(Q,, S) C [0, 5)-

Notice that by definition of Q, we have

QS = 10,8

T Yo
and since S is positive definite and symmetric, we could write S = BT B, so
1
S=_—— B'B.
QS =+ Z Q,

Because m Zu,- Q,, is real symmetric, we have

eig(QS) = eig (x5 ., Qu B' B)
= eigB (3755 2o, Qu) B
= Clg <m ZU,‘ BQU,' BT)

@ Springer

Managing randomization in the multi-block alternating... 353

Let A1(A) denote the maximum eigenvalue of matrix A, then as all BQ,, BT are
Hermitian matrices, by Weyl’s theorem, we have

11@8) =1 (7 L., BQy, BT
svémzhxmBQwBS
= YWn 2 11(Qy S)

and as 11(Q,, S) < % for each i,

ciz @) < [0.3)

which completes the proof of Lemma 1, and thus establishes that RAC-ADMM is
guaranteed to converge in expectation. O

When the problem is strongly convex (H > 0), we introduce the following corollary.

Corollary 1 Under Assumption 1, and H > 0,
opM) <1

Proof When H > 0, by definition S = H+8 AT A > 0, and by Lemma 1, Q > 0,
4
hence eig(QS) < (O, 5)’ and this implies p(M) < 1. O

Note that there are random sequences converging in expectation where their spectrum-
radius equal to one. Therefore, for solving strongly non-separable convex quadratic
optimization, the expected convergence rate of RAC-ADMM is proved to be linear,
which result is stronger than just “convergence in expectation”.

2.2.3 Convergence speed of RAC-ADMM versus RP-ADMM

Following is a corollary to show that on average or in expectation, RAC-ADMM
outperforms RP-ADMM with a fixed block composition in sense of spectral radius of
mapping matrix.

Corollary 2 Under Assumption 1, withH = 0 so that S = B AT A, where A € R™ " s
anon-singular matrix, there exists some RP-ADMM (with specific block compositions),
such that expected spectral radius of RAC-ADMM mapping matrix is (weakly) smaller
than expected spectral radius of that of RP-ADMM.

Proof We prove the corollary in solving linear system with A non singular, with null

objective function. In this setup, the expected output converges to the unique primal
dual optimal solution to (9).

@ Springer

354 K. Mihi¢ et al.

Notice in this setup, we have

(1—2)?2
1 —2A

)‘U; € eig(MRP,U[) < Ty =

ceig(QAT A)

(1 = 2y)?
1 — 24y,

reeigM) & 1=

€ eig(Q,, AT A)

By calculation, we could characterize X as roots of quadratic polynomial [69],

M=l—-t+yt(t—=1), Mm=1—1—/1(r—1).

Suppose corollary doesn’t hold, p(E[Mgracl) > p(E[Mgp,,,]) for all possible block
structure. Define 7,, as the the smallest eigenvalue with respect to Q,, S, and 7y, as
the largest eigenvalue with respect to Q,, S. Similarly, as the smallest eigenvalue
with respect to Q S, and 7 the largest eigenvalue of Q S. Consider the following two
cases:

Case 1. 1* = max; |A;| € Cand A* ¢ R & 13+ < 1, where 1+ € eig(QS) satisfies
(1 =272
— =Ty
1—2x%
We have, p(E[Mgacl) > p(E[Mgp ;1) Vi, which implies that

V=1 > max{,/l — Ty Ty, — L+ /Ty (T, — 1)] Vi.

Specifically
VIi—10x> /1 — I, Yv;,

As f(x) = +/1 — x is monotone decreasing with respect to x, the above implies that
T < LU,‘ VU[.

and as 1)+ > 7, the above equation implies

which is impossible, as by Weyl’s theorem,

I |
> > .
£2 v by &t = B

l

Case 2. A* = max; [A;] € R & 1)+ > 1.
We have p(E[Mgacl) = p(E[Mgp,,,]) Vi, what implies that

T — 1+ /o (tx — 1) > max{y/1 — 7, 7y, — 1 + /7y, (7, — D} Vi.

@ Springer

Managing randomization in the multi-block alternating... 355

Specifically,

Tx*—1+\/m>fvi_1+ Ty (T, — 1) Vi, V.

As g(x) = x — 1 + /x(x — 1) is a monotone increasing function for x € [1, 00), the
above implies
T > T)x > ?Ui Vv,

which is impossible, as by Weyl’s theorem,

- 1 -
T E) & =
l

2.2.4 Variance of RAC-ADMM

Convergence in expectation may not be a good indicator of convergence for solving
all problems, as there may exist a problem for which RAC-ADMM is not stable or
possesses greater variance. In order to give another probabilistic measure on perfor-
mance of RAC-ADMM, this section introduces convergence almost surely (a.s.) as an
indicator of the algorithm convergence. Convergence almost surely as a measure for
stability has been used in linear control systems for quite some time, and is based on
the mean-square stability criterion for stochastically varying systems [19]. The crite-
rion establishes conditions for asymptotic convergence of covariance of the system
states (e.g. variables).

This section builds on those results and establishes sufficient condition for RAC-
ADMM to converge almost surely when applied to solve (9). The condition utilizes
the Kronecker product of the mapping matrix, which captures the dynamics of the
second moments of the random sequences generated by RAC-ADMM algorithm, and
the expectation over the products of mapping matrices that provides the bounds on the
variance of the distance between the KKT point and the random sequence generated
by our algorithm.

Theorem 3 Suppose that Assumption 1 holds, and that RAC-ADMM (8) is employed
to solve problem (9). Then the output of RAC-ADMM converges almost surely to some
KKT point of (9) if

p(E[My; ®M,]) < 1

where M @ M is the Kronecker product of M with itself.

Proof letz = [X;y] € RY denote the KKT point of (9), then, at k + 1¢h iteration we
have

(Zk+1 —2) = My, (2 —2).

Define d; = z; —z, and
P, = E[d; d]].

@ Springer

356 K. Mihi¢ et al.

There exists a linear operator 7 s.t.
vec(Pr41) = 7 vec(Py) (14)
where vec(-) is vectorization of a matrix, and 7 = E[M, ® M,], as

vec(Pr41) = VeC(E[dk-H a.D
\T(n Pl . TimT
IT(n ST Do vec(M; E[d; d; 1M;)
= E[M, ® M,] vec(Py)

and p(E[My; ® M,]) < | implies di 230. To prove this, let || - || be the Frobenius
norm of a matrix, || A || = \/Z;”Zl Zl}:l |a;j|?, thus we can write

E[]| dx [|*] = Trace(Py) < || vec(Py)||,
and by (14),
|| vec(Pp)|1* = || T vec(Pr_1)|[* = [|T* vec(Po)[|> < ||T¥[1* - || vec(Po)|[>
If p(7) < 1, we know that 7 is convergent, and there exists © > 0,0 < y < 1, s.t.
T < v,

thus there exists M such that,

o0
ZE[||dk||]<M <C<oo
k=0 k=0
For any € > 0, by Markov inequality we have
o0 o0
Y Ellldi |1 < C =) Prob(||di||* > €) < oo,

k=0 k=0

and as Z,fio Prob(|| dy ||? < €) < oo, by Borel-Cantelli, and || dx 12 e mFy,

dka—“;'O ask — oo

which then implies that randomized ADMM converges almost surely. O

To illustrate the stability issues with RAC-ADMM, consider the following example.

@ Springer

Managing randomization in the multi-block alternating... 357

. RP-ADMM g xa0t RAC-ADMM
X

4 L

2
< 0 <

2

-4

-6 L L L L A " ' ' N

0 200 400 600 800 1000 0 200 400 600 800 1000
lterations lterations
(a) p(Erp[My ® M,]) = 0.99 (b) p(EracMy ®M,) = 1.09

Fig.2 Effect of variance on convergence for problem (15). Evaluation of xlf (optimal xT =0)

Example 3 Consider the following problem

max 0-x
s.t. Ax=0

where
1 1 1

1

1 1 I 14y

1 I 1+yl+4+y

1 1+yl4+yl4+y
I 1+yl+yl+yl+y

I+yl4+yl4+yl4+yl+y

Let [xo, yo] ~ N(0,5I), B = 1, y = 1, and number of blocks p = 3. Consider
RP-ADMM with the fixed block composition [x1, x2], [x3, x4], [x5, Xe].

Convergence in expectation for this particular block structure finds p (E[Mgp v, 1)
= 0.9887 > p(E[Mgac]) = 0.8215. In fact, for all block compositions for this
example we have, p(E[Mgracl) > p(E[Mgp,,,;] . However, RAC-ADMM does not
converge, as shown in Fig. 2, showing that convergence in expectation may not be a
sufficient indicator from this particular example.

Indeed, if we apply Theorem 3, we find out that RAC-ADMM does not converge
almost surely, while RP-ADMM does for solving this example: p(Erac[Ms @ My]) =
1.0948 > 1while p(Erp[Ms; @ My 1) = 0.9852 < 1, what explains the results shown
in Fig. 2. In fact, RP-ADMM converges almost surely for all 15 block compositions
of this example.

15)

— = e e
—_—

2.3 Variance reduction in RAC-ADMM

The previous section described sufficient condition for the almost sure convergence of
RAC-ADMM algorithm. This section address controlability of the algorithm. More

@ Springer

358 K. Mihi¢ et al.

precisely we ask, given a linearly constrained quadratic problem (LCQP) (Eq. 9), what
means do we have at our disposal to control convergence of a LCQP— how to bound
the covariance and how to improve the convergence rate.

2.3.1 Detecting and utilizing a structure in LCQP

Although some problem types inherit a known structure (e.g. network-flow problems),
in general, the structure is not known. There are many sophisticated techniques used to
detect a structure of a matrix one can use and apply towards improving performance of
RAC-ADMM. Although such elaborate methods have a potential of detecting hidden
structure of Hessian and Jacobian matrices almost perfectly, using them or developing
our own is beyond the scope of this paper. Instead, we adopt a simple matrix partitioning
approach outlined in [27].

In general, for RAC-ADMM we are interested in a structure of a constraint matrix,
which can be detected using the following simple approach. Given a constraint matrix
A (describing equalities, inequalities or both), a desirable structure such as one shown
in (16) can be derived by applying a graph partitioning method.

Vi 0 - 0 x| by
O : . — .
L v, 0 x | | by |- (16)
Wi Wy Wy | Xt byt1
A X b

The outline of the process is as follows:

1. Build a graph representation of matrix A: Each row i and column j is a vertex;
vertices are connected with edges if a; ; # 0.

2. Partition the graph using a graph partitioning algorithm or solver, for example [43].

3. Recreate A as a block matrix from the graph partitions.

Using graph partitioning as a procedure for decomposing a problem in a way that
maximizes the modularity has been studied for a while. Although the problem itself
is an NP-hard integer program, many efficient algorithms have been proposed that
achieve near-optimal performance with good computational scalability [1,7,56]. In
addition, successful implementations such as those used by GCG (generic solver for
mixed integer programs, part of SCIP Optimization Suite [63]) exist. Currently our
solver RACQP, described in Sect. 3, does not implement an automatic routine for
modularity detection, but we plan to add it.

2.3.2 Smart grouping
Smart-grouping is a pre-processing method in which we use block structure of con-

straint matrix A to pre-group certain variables as a single “super-variable” (a group
of variables which always stay together in one block). Following the block structure

@ Springer

Managing randomization in the multi-block alternating... 359

shown in (16), we make one super-variable X; for each group x;,i =1, ..., v. Primal
variables x, 4 stay shared and are randomly assigned to sub-problems to complement
super-variables to which they are coupled with via block-matrices W;,i =1, ..., v.

More than one super-variable can be assigned to a single sub-problem, dependent upon
the maximum size of a sub-problem, if defined. Note that matrix partitioning based on
H+ AT A may result in a better grouping, but is unpractical and thus not considered
as a viable approach.

2.3.3 Partial Lagrangian

The idea of smart-grouping described in the previous section can be further extended
by the means of the partial Lagrangian approach. Consider a LCQP (6) having the
constraint matrix A structure as shown in (16). Now consider the scenario in which
we split the matrix A such that the block W = [W, ..., W, ;1] is admitted by the
augmented Lagrangian while the rest of the constraints (blocks V;) are solved exactly
as a part of a sub-problem, i.e. a sub-problem i is solved as

k+1

k+1 _ :
X, = argmin{Lp(X]

,...,xi,...,x’[‘,;yk) |[V;X;=b;,jeJ, x; € X},
where J is a set of indices of super-variables X; constituting sub-problem i at any
given iteration. The partial augmented Lagrangian is defined with

1
Lp(x.y) = 3 X" Hx 4l x—y" Wx—bye) + SIWx by 12

There are two advantages of the partial Lagrangian approach. First, the rank of the
constraint matrix used for the global constraints (matrix W) is lower than the rank
of A, and the empirical results (Sect. 4) suggest a strong correlation between a rank
of a matrix and the stability of the algorithm and its rate of convergence. Next, local
constraints (matrices V;) imply there is a feasibility region in which x; exist, and that
region may not be infinite. In other words, even when the variables themselves are
unbounded (i.e. x € R"), local constraints may put implicit bounds on maximum
variation of values of x;.

Empirical results of the partial Lagrangian applied to mixed integer problems
(Sect. 4.2) show the approach to be very useful. In such a scenario, local constraints
are sets of rules that relate integer variables, while constraints between continuous
variables are left global. In the case of a problems where such straight separation does
not exist, or when problems are purely integer, a problem structure is let to guide the
local/global constraints decision.

Although shown to be useful, the partial Lagrangian method suffers form being a
mostly heuristic approach that depends on quality of solution methods applied to sub-
problems—in the case of continuous problems, a simple barrier based methodology
can be applied, but for the mixed integers problems (MIP), sub-problems require a
more complex solution (e.g. an external MIP solver).

Example 4 To illustrate the usefulness of the smart grouping and partial Lagrange
approaches, consider the following experiments done on selected instances taken from

@ Springer

360 K. Mihi¢ et al.

the Mittelmann LP test set [73] augmented with a diagonal quadratic objective to form
a standard LCQP (9)).

For each instance, a constraint matrix (Aeg, Ajneq Or A = [Ag; Ajyeq]) Was sub-
jected to graph-partitioning procedure outlined in Sect. 2.3.1, and then solved using the
smart grouping (“s_grp”) and the partial Lagrangian approach (“partial_L"). Table 2
reports on the number of iterations required by RAC-ADMM algorithm to find a solu-
tion satisfying the primal/dual residual tolerance of € = 10™*. If the solution was
not found the reason is noted (“time limit” for exceeding sub-problem maximum run-
time and “iter. limit” for exceeding maximum number of iterations). Fields showing
“divergence” or “oscillation” mark experiments for which RAC-ADMM algorithm
experienced an unstable behavior. The baseline for the comparison is the default
approach (sub-problems created at random) shown in column “Default RAC”.

The partial Lagrangian approach has a potential to help stability and rate of con-
vergence. However, before generalizing, one needs to consider the following: stability
(i.e. convergence) of RAC-ADMM algorithm, is a function, among other factors, of
mapping operators (matrices My, Eq. 11) which are in turn functions, among other
factors, of the constraint matrix of a problem being solved. In the case of partial
Lagrangian methodology, this matrix is the matrix W, meaning that if W produces an
unstable system (e.g. conditions set by Theorem 3 not met), no implicit bounding can
help to stabilize it. At the same time, a “correct” W can stabilize a problem which is
unstable in its original form. Consider a problem that is not convergent in its original
formulation. Amending A by moving “bad” rows to sub-problems, thus constructing
W that produces mapping matrices satisfying p(E[M, ® M;]) < 1 makes such a
problem stable. Theoretical work on structures of W and conditions that stabilize and
improve RAC-ADMM are works in progress.

Using smart grouping alone does not make RAC-ADMM unstable, but in some
cases increases the number of iterations needed to satisfy feasibility tolerance, a con-
sequence of having less randomness as described by Corollary 2.

3 RAC-ADMM quadratic programming solver

In this section we outline the implementation of the RAC-ADMM algorithm for lin-
early constrained quadratic problems as defined below:

min %XTHX-}-CTX
X

S.L. Aeq X = bgq (17)
Aineq X < bineq
xed

where symmetric positive semidefinite matrix H € R"*" and vector ¢ € R” define
the quadratic objective while matrix A, € R"*" and the vector b,, € R" describe
equality constraints and matrix A;,., € R**" and the vector bj,., € R* describe
inequality constraints. Primal variables x € X, can be integer or continuous, thus
the constraint set X is the Cartesian product of nonempty sets X; € Ror X; C Z,

@ Springer

361

Managing randomization in the multi-block alternating...

pringer

Qs

9l 20UaBIAI L0TC UONE[sO €011 20UABIAAIQ €801 99 vl 896°'€T gl1zelq
¥Z9 ¥29 91§ UONE[sO 1454 LEY €96 8TL'61 8¥7°0C pIg-gosnu
0Ly UOLB[sO 0ly UONE[sO 0€9 18¢C (43 80969 089°LI 0rxe
96tC 08¥1 9e 0LET 6v¢ 0re GeSS ¥89°691 OLLP1 Oreseayoddns
86¢1 871 6181 11¢ (4% JTur swiLy, L6LY 0sIS 000°01 BOLEU
8L8¢ L8CI 86L iy I 0€sT LLS CL8T £56C SESL 20-spd
0SS 201 - - 0ss 201 81 0281 0ST¥ o1deb
di37s T rended di37s T rented di37s T rented

VY uo Suruonnied baulyy uo Sutuonnieg bay uo Sutuonnregq OV Ineeq (V) SmoI ‘wnN '[0o "wnN Qoue)suy

SQOUR)SUT YIRWYOUSQ SNOLIBA JOJ JOW ST BLIAJLIO UONBUIULIS) [[JUN SUOTJEIAI JO JaquinN ¢ d|qel

362 K. Mihi¢ et al.

i =1,...,n. QP problems arise from many important applications themselves, and
are also fundamental in general nonlinear optimization.
Introducing auxiliary variables s and X, results in the following equivalent of (17):

min %XTHX+CTX
X,X,S
s.t. Agg X = by
Aineq X+s= bineq
x—X=0
Xxe X, s>0, xfree

(18)
where the augmented Lagrangian, Lg(X; S} Y.4: Yineq 2), 18 given as
Lg(-) = %XT Hx+c' x
- yz(] (Aeq X— beq) - y,'j;leq (Aineq X+s— bineq) - ZT (X _ﬁ)
+ 5 (1 Acg X =beq 7 + | Ajneg X+5 = bineg II* + [x —%%)
(19)

RAC-ADMM, or simply RAC, quadratic programming (RACQP) solver admits
continuous, binary and mixed integer problems. Algorithm 1 outlines the solver: the
solution vector is initialized to —oo at the beginning of the algorithm, and the main
RAC-ADMM loop described (lines 2—24). The main loop calls different procedures to
optimize blocks of x (lines 4-16), followed by updates of slack and then dual variables.

Types of the block optimizing procedure being called to update the blocks depend
on the structure of the problem being solved. The default, multi-block implementa-
tion for continuous problems is based on the Cholesky factorization, with a specialized
one-block variant for very sparse problems that solves the iterates using the LDL factor-
ization. Continuous problems that exhibit a structure (see Sect. 2.3.1) can be addressed
using the partial Lagrangian approach. In such a case, sub-problems are solved using
either a simple interior point method based methodology, or, when sub-problems
include only equality constraints, by employing Cholesky for solving KKT condi-
tions. In addition to the aforementioned methods, the solver supports calls to external
solver(s) and specialized heuristic solution to handle hard sub-problem instances.

Binary and mixed integer problems require specialized optimization techniques
(e.g. branch-and-bound), that require implementations which are beyond the scope
of this paper, so we have decided to delegate optimizing of the blocks with mixed
variables to an external solver. Mixed integer problems are addressed by using the
partial Lagrangian to solve for primal variables and a simple procedure that helps to
escape local optima, as described by Algorithm 2.

Note that Algorithms given in this section are pseudo-algorithms which describe
functionality of the solver rather than actual implementation. The implementation can
be downloaded from [61].

@ Springer

Managing randomization in the multi-block alternating... 363

Algorithm 1 RACQP

Require: Problem model (Eq. 18), run-time parameters+ with termination criteria’t
Ensure: The optimal solution x* or the best solution found before termination criteria met
1: X < —00

2: while termination criteria not met do

3: Q < construct blocks at random; use smart grouping if applicable (Sect. 2.3.2)

4. for all vectors w; € Q of block indices do > Solve X, blocks
S: Prepare Qq), o, » Ao and q following Egs. (20) and (22)

6: Xo; < solve Qq; o; Xo; = —(qq,; +@) using:

7 if (sub-problem is mixed integer) then

8: An external solver

9: else if (partial Lagrangian (26) used and sub-problem includes inequalities) then

10: Interior point method based procedure or an external solver

11: else if (partial Lagrangian used) then

12: Cholesky factorization and back substitution solving KKT conditions

13: else

14: Cholesky factorization and back substitution

15: end if

16: end for

17: s* < max(0, % Yineq T Pineq — Aineq X) > Update slack variables
18: if (bounds on x not addressed by the partial Lagrangian) then

19: X < min(max(l, x 7% z),u) > Update auxiliary split variables X
20: Z < z2—B(xX—X) > Update dual variables for split variables
21: endif

220 Yoq < Yeq —B(Aeg X —Dbeg) > Update dual variables for equality constraints
23: Yineq < Yineq —B(Aineq X —DPineq) > Update dual variables for inequality constraints

24: end while

25: return x

T Number of groups p, penalty parameter f, initial point X(, pre-grouped vars set V.

F1 Termination criteria may include maximum run-time, number of attempts to find a better solution,
solution quality and so on.

3.1 Solving continuous problems

For the continuous QP problems, we consider (18) where X" are possible simple lower
and upper bounds on each individual variable:

liff(ifui, i=1,...,l’l.

Continuous problems are solved as described by Algorithm 1, which repeats three
steps until termination criteria is met: first update or optimize primal variables X in
the RAC fashion, then update X and s in close forms and finally update dual variables
Yeq> Yineq and z.

Step 1 Update primal variables x Let w; € €2 be a vector of indices of a block i,
i =1,..., p, where p is the number of blocks. The set of vectors €2 is randomly
generated (with smart grouping when applicable as described in Sect. 2.3.2) at each
iteration of the Algorithm 1 (lines 2-24). Let x,,; be a sub-vector of x constructed of
components of x with indices w;, and let x_,, be the sub-vector of x with indices not
chosen by w;. Algorithm 1 uses either Cholesky factorization or partial Lagrangian to

@ Springer

364 K. Mihi¢ et al.

solve each block of variables x,,, while holding x_,, fixed. By rewriting (19) to reflect
the sub-vectors, we get

Lﬂ() = [Xw,-; X—wi]T(% H +§ AZq Aeq +§ Aiy;,eq Aineq +§ I)[le.; X—w,-]
+(c— qu Yeqg — Aij;;eq Yineq -B AZq beq —B Al‘Tneq bineq)T[Xa),-; X—wi]
+ (:3 A,'Tneq S—z _ﬁﬁ)T[Xa),- ; Xfw,']
= 3 [Xu;s X 17 QX3 X1 + Q7 X X]

(20)
where Q = (H+8 AETq Ay +B AiTneq Ajjeq +B1). Then we can minimize in X, by
solving

Qw,-,a),- X = _(qa)[+(]) 21

using Cholesky factorization and back substitution. The linear term resulting from Q,
q, is given as

4= HR),, +BAL AX) — (Hy, o, +BA] Au) X0, (22)

where A = [A.4, 0; Ajjeq, Il and X = [X; s]. A square sub-matrix H,, ., and column
sub-matrix A, are constructed by extracting w; rows and columns from H and A
respectively.

When p = 1, i.e. we are solving a problem using a single-block approach, then we
solve the block utilizing LDL factorization to avoid calculating AT A. Although the
factorization can be relatively expensive if the problem size is large as we then factorize
a large matrix, the factorization is done only once and re-used in each iteration of the
algorithm. From (19), we find minimizer x by solving

Qx=-q (23)

where

T T T T T o
q=c —Aeq Yeq —Aineq Yineg —Z—B Aeq b.y —B Aineq bineg +B Aineq s —pBX.

With A = [A.;: Ajjeq] wWe can express the equivalent condition to (23) with

R AE T B

We factorize the left hand side of the above expression and use the resulting matrices to
find x by back substitution at each iteration of the algorithm. For single-block RACQP,
LDL approach described above replaces lines 3—16 in Algorithm 1.

Furthermore, if H is diagonal, one can rewrite the system as

R [P

@ Springer

Managing randomization in the multi-block alternating... 365

Then we can factorize matrix (I+8AM+BI)~' AT) to solve the system, which
would be extremely effective when the number of constraints is very small and/or
sparse, since (H+81)~! is diagonal and it does not change sparsity of A.

Partial Lagrangian approach to solving x blocks, described in Sect. 2.3.3, uses the
same implementation as Cholesky approach described above, with additional steps
that build local constraints which reflect free and fixed components of X, X,,, and X_,
respectively. The optimization problem of partial Lagrangian is formulated as

1 L AL\ T
X:)i = arg min i Xgi Q!U[,(D,‘ X(l)[+(q£‘)[+(q))X(D[

L —plL L
s.t. AeLq, w; Xoj = beqL_ AeqL —w; X-oi (26)
Ameq, w; Xop = beq o Aineq’ —o; X-oi

lwi = X = Uy,

with QL, qL, QL Aé‘q, beLq and AiLn eq’ biLn eq describing local objective, equality and
inequality constraints, respectively. Note that partial Lagrangian procedure is used by
both continuous and mixed integer problems. In the case of the former we set X = R”",
while when we solve the latter we let X; € R and implicitly enforce the bounds. The
blocks are solved by either an external solver (e.g. Gurobi) or by using Cholesky to

solve KKT conditions when X, is unbounded.

Step 2 Update auxiliary variables X With all variables but X fixed, from augmented
Lagrangian (19) we find that the optimal vector 1 < X < u can be found by solving
the optimization problem

arg min éﬁTﬁ +@z—-BxDxk.
1<x<u

The problem is separable and X has a closed form solution given by
5 : 1
X = min { max{l, x _E z},u }

Step 3 Update slack variables s Similarly to the previous step, with all variables but s
fixed, the optimal vector s is found by solving

. B
arg min = sT s+(— Yineg tBAineqg X — bineg)' s.

s>0

The problem is separable and s has a closed form solution given by

1
S = max {O, E Yineq +bineq - Aineq X }

3.1.1 Termination criteria for continuous problems

Termination criteria for continuous problems include maximum run-time limit set-
tings, maximum number of iterations and primal-dual solution (found up to some

@ Springer

366 K. Mihi¢ et al.

tolerance). RACQP terminates when at least one criterion is met. For primal-dual
solution criterion RACQP uses the optimality conditions of problem (18) to define
primal and dual relative residuals at iteration k,

k o k k k
Torim *= max(rAeq, "Aineg’ rbzuna’s)’ . ; .)
K . | Hx +C_Aeq Yeq _Aineq yineq =7 |l
dual ‘= T T ok T ok 3
S T max(|HX oo, [l € oo 11 Agq Yeg lloo: 1| Ajueq Yineq lloos 112" lloo)
(27)
where x
ok N I Aeqx _beq ll oo
A - k
eq 1 + max (]| Agq xk ”0012 | beg lloo)
rk _ | Aineq X +s — bineq ll oo
Aine = k k
tneq 1 + max(]| Aineq X 48" oo, |l bineq lloo)
k ok
PO 7
bounds —

1+ max (]| X* [|oo, [1%¥]]00)

and set RACQP to terminate when the residuals become smaller than some tolerance
level € > 0.
max(rk, r(]j‘) <E€. (28)

Note that the aforementioned residuals are similar to those used in [10,65] with relative
and absolute residual tolerance (€,ps, €r¢1) set to be equal.

3.2 Mixed integer problems

For mixed integer problems we tackle (17) without introducing X, where augmented
Lagrangian, Lg(X; s; Yeq: ymeq), is given by

Lp(-) = % x"Hx+cx— YZq (Aeg X —bey) — yT (Aineg X+5—Dbineq)

ineq

+ B Ay X —beg I + 1| Aineg X +5 = bineg 1)

where slack variabless > 0,and x; € X;, X; CRor X; CZ,i =1,...,n. Mixed
integer problems (MIP) are addressed by using the partial Lagrangian to solve for
primal variables and a simple procedure that helps to escape local optima, as shown in
Algorithm 2. Note that MIP and continuous problems share the same main algorithm
(Algorithm 1), but the former ignores the update to X as the bounds on x are explicitly
set through X, and thus X = x always.

RACQP-MIP Solver, outlined in Algorithm 2, consists of a sequence of steps that
work on improving the current (or initial) solution which is then “destroyed* to be pos-
sibly improved again. This solve-perturb-solve sequence (lines 2—13) is repeated until
termination criteria is met. The criteria for RACQP-MIP is usually set to be maximum
run-time, maximum number of attempts to find a better solution, or a solution quality
(assuming primal feasibility is met within some € > 0). The algorithm can be seen as
a variant of a neighborhood search technique usually associated with meta-heuristic
algorithms for combinatorial optimization.

@ Springer

Managing randomization in the multi-block alternating... 367

Algorithm 2 RACQP-MIP

Block Optimization with Integer Variables

Require: Problem model (Eq. 18), run-time paramelfers+ , termination criteria’
Perturbation parameters «, number of trials before perturbing n P

Ensure: The optimal solution x* or the best solution found before termination criteria met

1t Xpest < —00, k <0

2: while termination criteria not met do

3: x* < RACQP(model, run-time parameters)

4 if f(x*) < f(Xpesr) then
5: Xpest < X*

6: else

7: k< k-+1

8: endif

9: if k = nP then

10: k<0

11: X(< perturb (Xpesss £)
12: endif

13: end while
14: return Xp.g;

¥ RACQP run-time parameters (number of groups p, penalty parameter $, initial point X(, pre-grouped
vars set V), termination criteria).

1 RACQP-MIP termination criteria (e.g. maximum run-time, number of attempts to find a better solution,
solution quality and so on).

After being stuck at some local optimum solution, the algorithm finds a new initial
point xq by perturbing the best known solution Xj.,; and continues from there. The new
initial point does not need to be feasible, but in some cases it may be beneficial to be
constructed that way. To detect a local optimum we use a simple approach that counts
number of times a “feasible” solution is found without improvement in objective value.
A solution is considered to be feasible if

max (|| Aeq X —beg lloos |l Aineq X = Dbineq l00) < €,

€ > 0. Perturbation (line 11) can done, for example by choosing a random number
(chosen from a truncated exponential distribution) of components of Xp.,, and assign-
ing them new values, or a more sophisticated approach can be used (see Sect. 4.2
for some implementation details). Parameters of permutation are encapsulated in a
generic term k.

4 Computational studies

The Alternating Direction Method of Multipliers (ADMM) has nowadays gained a
lot of attention for solving many problems of practical importance (e.g. large-scale
machine learning and signal processing, image processing, portfolio-management,
to name a few). Unfortunately, the two most popular approaches, namely the two-
block classical ADMM and the variable-splitting multi-block [10], both characterized
by convergence speed and scaling issues somehow hindered a wide acceptance of

@ Springer

368 K. Mihi¢ et al.

ADMM as the solution method of choice for ML problems. RAC-ADMM offers the
multi-block solution that may help to overcome the problem of ADMM acceptance.

The goal of this section is twofold: (1) to show that RAC-ADMM is a versatile
algorithm that can be directly applied to a wide range of LCQP problems and compete
with commercial solvers and (2) get an insight on specific ML problems and devise
a RAC-ADMM based solution that outperforms or matches the performance of the
best tailored solution method(s) in both solution time and quality. To address the
former, in Sects. 4.1 and 4.2 we compare RACQP with the state of the art commercial
solvers, Gurobi [34] and Mosek [55], and the academic OSQP which is a ADMM-
based solver developed by [65]. To address the latter, we focus on Linear Regression
(Elastic-Net) and Support Vector Machine (SVM), machine learning algorithm used
for classification and regression analysis, and in Sect. 4.1.7 compare RACQP with
glmnet [30,64] and LIBSVM [14].

We conduct multiple numerical tests, solving randomly constructed problems and
problems from benchmark test sets. Data we collect include run-time, number of iter-
ations until termination criteria is met and quality of a solution, defined differently for
continuous, mixed-integer and machine learning problems (described in correspond-
ing subsections). Note that in some sections, due to space concerns we report on a
subset of instances. Experiments using larger sets are available together with RACQP
solver code online [61] in “demo” directory.

The experiments were done on MacBook Pro with 2.8 GHZ Intel Core i7 and 16Gb
memory running macOS High Sierra, v 10.13.2 (Sect. 4.1.7) and 16-core Intel Xeon
CPU E5-2650 machine with 96Gb memory running Debian linux 3.16.0-4-amd64 (all
other sections).

4.1 Continuous problems

The section starts with the analysis of the [, regularized regularized Markowitz mean—
variance model applied to 2018 CSRP Quarterly Stock data [78] followed by randomly
generated convex quadratic problems (QP) with coupled blocks. Next three sets of
benchmark problems are addressed: relaxed QAPLIB [60] (binary constraint on vari-
ables removed), Maros and Meszaros Convex QP [72], and the Mittelmann LP test set
[73] expanded to QP by adding a diagonal Hessian to the problem model.

The goal of the section is to show that the multi-block ADMM approach adapted by
RACQP can significantly reduce solution time compared to commercial solvers and
two-block ADMM (used by OSQP) for most of the problems we addressed. Results
obtained in this section are all done with a single RACQP run, using fixed random
number generator seed. Performance of the solver when subjected to different seeds
is described in Sect. 4.1.8. The run-time settings applied to solvers to produce results
reported in this section, unless noted otherwise, are shown in Table 3.

Authors are aware that either commercial solver can be tuned for maximum perfor-
mance by adjusting run-time parameters to fit a specific problem structure, which is
the same with RACQP and OSQP but to the much smaller extent. In addition, the latter
do not have the access to a large number of real-world instances used by the former
to fine-tune algorithms to exploit “known” problem structures nor manpower to build

@ Springer

Managing randomization in the multi-block alternating... 369

Table 3 Termination criteria used in this section by all solvers

Termination criteria Parameter value
Max time 3h

Max. num. iterations (OSQP, RACQP) 4000

Primal residual (feasibility) tolerance €prim = € =107
Dual residual (optimality) tolerance €dual = € =107
Relative residual tolerance (OSQP) €rol =€ =107
Barrier convergence tolerance (Gurobi, Mosek) €comp = € =103

heuristics and/or preconditioners that boost solver performance. However, in order
to create a more “fair” working conditions, we decided to let Mosek and Gurobi use
their default settings, except for disabling multi-threading support and aforementioned
optimality termination criteria (Table 3). Although allowing the solvers to execute pre-
solve routines seems to be unfair to RACQP (which does not implement any presolving
technique except for a very simple row scaling), disabling it would be even more unfair
to the opposing solvers as their performance heavily depends on finesses of the pre-
solve algorithm(s). Multi-threading is disabled for Mosek and Gurobi because both
RACQP and OSQP are single-threaded, and leaving it on would be unfair. Finally, to
make RACQP and OSQP comparison more fair, and because our target is to compare
two ADMM variants, RAC-ADMM and operator splitting two-block ADMM, rather
than solvers’ implementations, the advanced option that OSQP uses to post-process
results, “Polish results”, was turned off. Note that such an option is relatively easy to
implement and a variant of thereof will be added to a future RACQP version.

For continuous problems described in this section, performance is measured in
terms of run-time, number of iterations and quality of solution, expressed via primal
and dual residuals. Terminating a run after residual(s) have been met (Table 3, rows
2-4) is one way of ensuring quality of a solution. However, this criteria could be
misleading. To start with, some solvers use absolute residuals as termination criteria
(e.g. Gurobi), some depend on relative residuals (e.g. Mosek, RACQP), and some are
adjustable like QSQP.

Next, solvers usually scale problems (e.g. row and column scaling of a constraint
matrix) to avoid numerical problems and make matrices with favorable condition
numbers. Residuals are then calculated and checked against these scaled models,
meaning that a solver may prematurely terminate unless the results are periodically
re-scaled and residuals recalculated on the actual model—a “good” scaled solution can
actually have a very bad “actual” residual. As each solver performs different scaling
(and algorithms are not usually known as it is case with Gurobi and Mosek), direct
comparison of residuals reported by the solvers is not possible.

To circumvent the issue, we re-calculate primal and dual residuals using the solu-
tions (primal and dual variables), returned by the solvers as follows:

Fprim ‘= max(rqu > TAineq Tbounds) ’
. ||HX*+C_A y* _yZ()unds ”OO
Fdual -= * T % *
1 + max(|| HX" [loo, [€llcos AT Y™ loos | Yoounas loo)

@ Springer

370 K. Mihi¢ et al.

where A = [Acy; Ainegl, " is a vector of dual variables related to equality and
inequality constraints, y; . is a vector of dual variables related to primal variable
bounds, and x* is a vector of primal variables. Residuals due to equality and inequality
constraints and bounds are defined with

| Aeq X" — beg oo
1+ max([| Aeg X" loos [beg [loo)
max (0, || Aineq X — bineq lloo)
1 + max (|| Ajneq X oo, |l bineq lloo)
[max (0,1 —x")|oo [max (0, x* —w)||)
+ max([[X [loo, [1/lec)” 1+ max([[X[loo, |0 [loc)”

Ay =

rAi neq =

Fbounds = max(I

Note that Gurobi does not provide dual variables for bounds (1 < x < u) directly. To
get around we convert the bounds into inequality constraints, what makes Gurobi to
produce the dual variables. This introduces negligible run-time cost as the additional
constraints are discovered as bounds during presolve phase and consequently removed.
The initial point x for all instances addressed by RACQP is max(0, I).

4.1.1 Choosing RACQP solver working mode

To address differences in problem structure, the following simple rules are used to
decide on the RACQP solver mode:

1. If His non-diagonal and A is non-structural or the problem is large, use multi-block
mode (Eq. 21).

2. If H is non-diagonal and A is structural, which implies that A has non-zero entries
that follow some pattern and problem structure is easy to detect, use multi-block
mode with smart-grouping as described in Sect. 2.3.2.

3. If H is diagonal, m << n or H and A are very sparse, and the problem is of
moderate size, use single-block mode (group all primal variables x together in one
block) with localized equality constraints for the sub-problem and apply (Eq. 25).

4. If H is non-diagonal, both H and A are very sparse, and the problem is of moderate
size, use single-block ADMM. If only a subset of primal variables is bounded, solve
the block using an external solver (e.g. Gurobi or Mosek) with localized bounds.
Otherwise, solve the block using (Eq. 24).

4.1.2 Regularized Markowitz mean-variance model

The Markowitz mean—variance model describes N assets characterized by a random

vector of returns R = (Ry, ..., Ry) with known expected value m; of each random
variable R; and covariance o;; for all pairs of random variables R; and R ;. Given some
portfolio assetx = (xy, ..., xy), where x; is the fraction of resources invested in asset

i, an investor chooses a portfolio x, satisfying two objectives: expected value of the
portfolio return my = E(Ry) = (m, x) is maximized and portfolio risk, measured
by variance o,% = Var(Ry) = (x, Vx), V = (0;;) is minimized [25]. The problem of

@ Springer

Managing randomization in the multi-block alternating... 371

finding the optimal portfolio can be formulated as a quadratic optimization problem,

min XTVX—‘L'IIITX—HC”XH%
X
st. el x=1 (29)
n
x € R

where t > 0 is risk tolerance parameter, and e is a vector of all ones. The above
problem formulation includes the regularization term with parameter «.

The raw data was collected by the Center for Research in Security Price (CRSP),
and provided through Wharton Research Data Services [78] covering daily prices of
4628 assets from Jan 01 to Dec 31, 2018, and monthly prices for 7958 stocks from
Jan 31 to Dec 31, 2018. Missing data was filled using the yearly average price. The
model uses risk tolerance parameter 7 = 1, and is regularized with x = 107>, For
the formulation (29), because Hessian (V) is dense and non-diagonal, the multi-block
ADMM is used, following the rules on choosing the RACQP solver mode (rule 1,
Sect. 4.1.1). The number of groups p is 50, and the augmented Lagrangian penalty
parameter 8 = 1. Default run settings (Table 3) are used by all solvers, except for
OSQP that had max iteration number set to 20,000.

The performance comparison between the solvers, given in Table 4, shows that
multi-block RAC finds the solution of high quality in a fraction of time needed by the
commercial solvers. In addition, the results show that OSQP requires many iterations
to converge to a solution meeting primal/dual tolerance criteria (¢ = 107), confirming
the slow convergence issue of a 2-block ADMM approach.

Low-rank re-formulation Noting that the number of observations & is not large and
that the covariance matrix V is of low rank and thus can be expressed as V = BT B,

where
B ! (R Lol R) (30)
= —R-——ee
V=1 k

and R € RF*V | with rows corresponding to time series observations, and columns
corresponding to different assets, we reformulate the problem as

: 2 T 2
min ||y |; —tm’ x+i| x|

S.t. eTX= 1 (31)
Bx—y=0
x e R}

Since the Hessian of (31) is diagonal, and number of constraints is relatively small,
the problem is solved using the single-block ADMM (rule 3, Sect. 4.1.1). Run-time
settings are identical to those used for the regular model described previously, with the
exception of the augmented Lagrangian penalty parameter whichis setto 8 = 0.1. The
performance comparison between the solvers, given in Table 5, shows that RACQP is
also competitive in low-rank formulation of the problem. Run-time is given in seconds.

@ Springer

K. Mihic et al.

372

Spu023s uf wmn-uni ‘[3.] e1ep 8107 dSUD

011 1—01-C 9LS 8¢ 011 (—01-L 1611 1413 9-01-6 9-0I-L 9¢¢ L6 dOOvyd
g—0I-1 ¢ OL-1 SLY'IL 6¢9 1016 ¢-0I-9 000°0C 65¢Y 1—-00¥ ¢-01-T 000°0C 665¢ d0So
9-0I-S ¢-0I-¢ 0l 89 g—01C ¢-0I-¢ ¢ 881 g—0I-1 ¢-0rc v w1 oSO
101§ ¢1-01-9 ¢l I€L 1-01-8 ¢1-0I-6 Tl gese g—0I-1 p1=00-9 11 S0ee 1qomgo
renpsoy qewmd 'soy I wnN owpuny [enpsoy [ewd 'soy IorwnN ewmpumy [enpsoy [ewd s9y I winN owmn) umy

(829t = u) vreq ATreq

(8S6L = u) vye A[YIUON

(8S6L = u) ere(Apronend) IOA[OS

(67) [9pOW dDUBLIBA—UIW Z)IMONIRIA { d]qel

pringer

As

373

Managing randomization in the multi-block alternating...

[8L]®1ep 810T dSHUD

¢—01"1 c-01-T 19§ 8¢ 9—01"6 21=01" T 1oL 80 9—01"6 21-01°T 08¢ 90 dOOVyY

g—01"1 ¢ 01T 0061 STl ¢-01°6 9-016 SLII ol 9-01°€ 6-01°€ 009C S1 dOSO

g-01-€ 4—01'9 € €1 ¢—01"9 4019 ¢ 0 6—0L"¥ -0t ¢ 90 RERA

9-01"1 c-0L"T LI Tt ,-01°€ c=0L'v 0l 1'0 6-01°€ p1=01°9 11 1'0 1qomo
enpsoy rewid soy 1o wnN owpuny [enpsoy [ewud soy IyrwnN owpuny [enpsoy [ewd 'Soy I WINN QW Uny

(829 = u) eie(AT (856L = u) eI ApUoN (856L = u) ere(Aprareng) IoAfoS

(1€) [opOW SOUBLIBA—UTW ZJIMONIRJA] UOIIR[NULIOJAI YURI-MO § d|qe]

pringer

As

374 K. Mihic et al.

4.1.3 Randomly generated linearly constrained quadratic problems (LCQP)

In this section we analyze RACQP performance for different problem structures and
run-time settings (number of blocks p, penalty parameter 8, tolerance €). In order
to have more control over problem structure we generate synthetic problem instances
starting with a simple one row Markowitz-like problem to multi-row problems of large
sizes. Note that although we compare RACQP with Gurobi and Mosek on randomly
generated instances, which may be considered to be unfair to the latter, our goal is
not to diminish the importance of barrier type solution methods those solvers utilize,
but to show that multi-block ADMM can be an approach to argument these methods
when instances are large and/or dense. In this section we solve linearly constrained
quadratic problems LCQP, described by (17), with x € R".

Similarly to [80] we construct a positive definite Hessian matrix H from a random
(~ U(0, 1)) matrix U € R™ " and a normalized diagonal matrix V € R/, whose
elements were chosen from a log-uniform distribution to have a specific condition
number:

Uy =nU+(1-nl

H =U,VU] +¢ee’ (32)

where parameters 7 € (0, 1) and ¢ > 0 induce different types of orientation bias.
For convenience we normalize matrix H and construct vector ¢ as a random vector
(~ U(0, 1)). Jacobian matrices A, and A;,., are constructed in a way that the desired
sparsity ismetand a; ; ~ N (0, 1) for both matrices. Our analysis of LCQP is based on
extensive experimentation using different problem structure embedded in the matrix
H, by varying its orientation, condition number and the random seed used to construct
H (and vector c¢).

Markowitz-like Problem Instances RACQP implementation allows solving optimiza-
tion problems by multi-block ADMM. A question that arises is the optimal number
of blocks p (i.e. sub-problems) to use. The optimal number, it turns out, is related to
structure and density of both Hessian and Jacobian matrices. For any H that is not a
block matrix, and a dense A, as is the case with the Markowitz model, the number of
blocks is related to the problem size—having more blocks leads to having more itera-
tions before the process meets the tolerance on residual error € and more sub-problems
to construct and solve. However, a sub-problem of a smaller size can be constructed
and solved in less time than a larger sub-problem. Total time (¢7) is thus a function of
opposing arguments. To show this interdependence, we solve simple Markowitz-like
problem instances, with randomly generated Q and ¢, and with A, = e b=1,and
x € R} (inequity constraints are not used). Following (29), we add a regularization
term to the objective function with x = 1075,

Table 6 presents the aggregate results collected over a set of experiments (10 for each
group size) using random problems constructed using (32). The reason for constructing
problems in such a way is to emulate a real-world situation when a problem model
(Hessian, Jacobian, x upper and lower bounds) do not change, but coefficients do.
The results confirm that there exist a “right” number of blocks which minimizes
overall run-time. For now, choosing that number is based on experience, but we are
working on formalizing the procedure. In addition to run-time cost per iteration, Table 6

@ Springer

Managing randomization in the multi-block alternating... 375

Table6 RACQP performance with respect to number of blocks p for randomly generated problems of type
(29)

Num blocks Block size Number of iterations (k) Cost per iteration [s]

”w o2 min max " min max
50 180 43.2 1.87 40 46 0.147 0.133 0.152
100 90 46.6 1.51 44 49 0.095 0.094 0.095
150 60 49.0 1.25 47 51 0.091 0.090 0.092
200 45 50.6 0.97 49 52 0.108 0.107 0.109

Problem size n = 9000, densityQ =0.05,¢ = 1075

Table 7 A typical RACQP performance with respect to primal/dual residual tolerance € for a randomly
generated problems of type (29)

€ Number of iterations (k) Residuals (mean values)

0 o2 Min Max Primal Dual
10~4 30.4 1.43 28 33 47-1077 93.107
1075 46.6 1.51 44 49 4.7-1078 9.5.10°
1076 63.4 1.65 60 65 3.6-107° 9.2.1077
1077 79.9 2.02 76 83 3.5.1010 9.5.1078

Problem size n = 9000, densityQ = 0.05. Number of blocks p = 100

reports number of iterations until convergence (k) for different number of blocks. It is
interesting to observe is that k is very mildly affected by the choice of p, if tolerance
€ is kept the same. This leads to another interesting question on how much a change
in € affect run-time. Table 7 gives an answer to this question. The table lists RACQP
performance over the same problem set, but with different residual tolerances. As
expected, results show that the number of iterations increases as the tolerance gets
tighter.

General LCQP Building on the results from the previous section, we expand the QP
model to include general equality and inequality constraints with unbounded variables
x. We analyze RACQP when solving sparse problems (dense problems are covered
in the next section where we address relaxed QAP) for problems of size n = 6000
and n = 9000. The number of rows in both constraint matrices is equal (m = m.; =
Mineq), and set to be a function of a problem size, m = r - n, withr = {0.1, 0.5}. The
number of blocks used by RACQP is related to size of a block, p, = n/bsjze, with
the optimal block size b, empirically determined to be 60. The penalty parameter
B = 1 was found to produce the best results.

Tables 8 and 9 give comparative analysis of performance of the solvers with respect
to run-time and primal/dual residuals. Although both OSQP and RACQP did well in
terms of primal and dual residuals, the results show that multi-block RACQP converges
to solutions much faster (4—10x) then OSQP. Both solvers outperform Gurobi and
Mosek in run-time, even though the tolerance on residual error is set to the same value

@ Springer

376 K. Mihi¢ et al.

Table 8 Run-time comparison between the solvers for LCQP

Problem size Num rows Run-time [s]
Gurobi Mosek 0osSQpP RACQP
6000 600 1082 208 84 9
3000 1861 143 98 26
900 4222 365 293 22
9000 4500 6308 408 304 65

Density=0.05, p,—e000 =100, p,—9000 =150

(e = 1073). Another observation is that Mosek produces solutions of inferior quality
to all aforementioned solvers—dual residuals are of 1073 and 10~* levels, far below
the requested € threshold. Investigation of the log files produced by Mosek reveled
two problems: (1) Mosek terminates as soon as primal or dual or complementary gap
residual criteria is met (unlike the other solvers which terminate when all the residual
criteria are met); (2) residuals are not periodically checked on a re-scaled model,
resulting in a large discrepancy between internally evaluated residuals (scaled data)
and the actual one.

4.1.4 Relaxed QAP

As of this section we continue the study of RACQP but, instead of randomly gener-
ating problems, we use benchmark test sets compiled by other authors which reflect
real-world problems. We start by addressing large scale instances from the QAPLIB
benchmark library [60] compiled by [11] and hard problems of large size, described
in [21]. The quadratic assignment problem (QAP) problem is a binary problem, but
for the purpose of more realistic comparison between the solvers, we relax it to a
continuous problem. The numerical tests solving the binary problem formulation will
be given later in Sect. 4.2.3.

The quadratic assignment problem belongs to a class of combinatorial optimization
problems that arise from problems of practical interest. The QAP objective is to assign
n facilities to n locations in such a way that the assignment cost is minimized. The
assignment cost is the sum, over all pairs, of a weight or flow between a pair of facilities
multiplied by the distance between their assigned locations. Mathematically, the QAP
can be presented as follows:

Il%én vec(X)T Hvec(X)

S.t. Z?:l .X[j = l, V] = 1, - (a) (33)
Z;’=1xij:1’ Vi:l,...r (b)
0<xij. Yi.j=1...r ()

where x; is the entry of the permutation matrix X € R”*". To make the problem convex
and be admitted by Cholesky factorization, we make H € R™™ strict dlagonally
dominant, H = H+d- I, where H= (A®B) and d = max(zl i) hij) + 34,

@ Springer

377

Managing randomization in the multi-block alternating...

0ST= 0006=4d ‘o= 0009=4d -G()'()=Kisua(q

9-01°%'6 ;0166 g—01°6S 6-01°8C ¢-01-0€¢ 9-01-8'8 6-01"8'L 21-01-61 00St 0006
9-01-L8 1—01-9'1 ,—0L €F 6-01"6F 4—016'9 9-01-0'L 60161 c1=01-L'S 006
9-01"9°6 9011 g—01-0F 6—0L¥'1 c—01-T'8 9-01-€6 01=01"¥'1 21-01°T'1 000€
9—01"8°6 ,-01- '€ g—01"€T 6-01-S1 ¢-01-T°S 90111 01-01-§'1 c1-01-8¢ 009 0009
renq [ewrtg reng [ewtg renq [ewtg renq [ewtig
dOOVY dOso JPSON 1qomn
STenpIsay SMOI NN 9ZIS W[qoId

JODT 10J SIPAJOS A1) U2aM)2q UOsIIedwoD s[enpIsal [enp pue [ewld 6 d|qel

pringer

As

378 K. Mihi¢ et al.

with § being some small positive number and n = r2. The “flow” matrix A € R"*"
and the “distance” matrix B € R™*".

For QAP we apply a method for variance reduction as described in Sect. 2.3 since
the assignment constraints are highly structured and observable. We group variables
following a simple reasoning—given that the permutation matrix X is doubly stochas-
tic, each row (or column) can be seen as a single super-variable, an integer representing
a permutation order. Thus, it makes sense to make one super-variable, x; for each row
i of X, so that each super-variable is of size r. For each of the experiments shown
we set number of groups p = r (thus we solve for one super-variable per block),
and penalty parameter § to the best we found by running multiple experiments with
different parameter values. We found that 8 = r offered the best run-time.

The results showing performance of solvers on a selected set of large QAP instances
are summarized in Tables 10 and 11. The instances were chosen in such a way to cover a
variety of problem densities (Hessian) and sizes. Table 10 shows run-time and number
of iterations. Note that any comparison between barrier based solvers (Gurobi and
Mosek) and ADMM solvers (RACQP, OSQP) is not possible, as the solution methods
are completely different, but giving the number of iterations allow us to compare
performances within each class of the solvers.

Similarly to results presented previously, RACQP is the fastest solver. Solution
quality (primal and dual residual tolerance) is achieved in a fraction of time required
by the other solvers. The average speedup is 214x, 86x and 83x with respect to
Gurobi, Mosek and OSQP respectively. OSQP, although performing a similar number
of iterations as RACQP does, is much slower—splitting a large problem into two
parts (OSQP executes 2-block ADMM) still leaves two large matrices to solve. On
the positive side, OSQP finds better solutions (primal residual smaller by the order
of magnitude). Mosek is the worst performing solver—run-time-wise it is close to
OSQP, only one returned solution satisfies the dual residual (tail25e01). The other
instances report the dual to be as low as 10~!. Gurobi found the best solutions, except
for tail25e01 and tho150 instances, when max run-time limit (3h) was reached.

4.1.5 Maros and Meszaros convex QP

The Maros and Meszaros test set [72] is a collection of convex quadratic programming
examples from a variety of sources [49] of the following form

min %XTHX—I-CTX—FC()
X
st. Ax=Db
I<x<u

with H € R™*" symmetric positive definite, A € R™*", b € R” and l,u € R",
meaning that some of components of 1 and u may be —oo and +oo respectively.
Constant ¢ is assumed to be |co| < 00.

As in the previous section, only a subset of instances is used in experiments. The
instances were chosen in such a way to cover a variety of problem models (density, size)
but also to point to strengths and weaknesses of ADMM-based algorithms. Problem

@ Springer

379

Managing randomization in the multi-block alternating...

pringer

As

SIOAJOS 3] Uaamlaq EOwENQEOO Junod uoneId)l pue swn-unyf

61 0S 6 8 el 60 L6V 6CSY 88°0 00001 0011Im
9C 0S L 1 16 988 8801 Ny wo 00S°CT osrow
(44 0S 8 S 91 124! 0c81 g 620 STYSI 10°¢¢Itel
0c 0¢ L 8 4! 91y 611 14¥4% 960 000°01 BOOITe)
€C 0¢ L 6 14! SOv 96¢ Y691 L9°0 000°01 JooTo3s
(44 0¢ L 8 €l 10% 801 Socy 890 00001 BOOTO3S
974 0¢ 9 oI Cl 6SC1 L8S SLE €00 001°C1 011°1p
dOOVY dOSO AISON qomp dOovy dOso AIsON qomo
SUOTIBINI "WNN [s] owm-uny (H) Aisueq (u) az1s wAqoId Auwreu ddue)suy

sooueIsul [1Z°11] VO Paxe[oy 0l 3|qel

K. Mihic et al.

380

90118 9-01-8°6 L0191 01-01-98 1=01-¢T 9-01-€6 6-01°-SF c1-01-T€ 00111
901 ¥'L 9-01-T1 ,-01-§C 01-01-L8 -01-€C 9-01"€C VN VN os 1oy
9-01-16 90161 ,-01-1C 01-01-L8 c-01-+8 ,-01°1C VN VN 1095T11e)
9-01"LF 9-01"+9 L—01-9'1 01-01-9'8 ¢-01-0°€ ,-01-S'1 6-01-T1 c1-01-S'L 2001 1E)
9-01-68 9-01-91 L—01-9°1 01-01-9'8 -01°6% 9-01"t'S g-01"8F 201§ JOO10Ns
9-01-09 9-01-€1 L—01-9'1 01-01-98 0181 9-01°S'1 g-01"SF c1-01-L'1 £001 O3S
9-01-06 ,-01-0°L L-01°1°T 01-01-L8 0116 9-01-1C g-01-9¢ 11-01-0'6 01121p
fenq [ewitig fena [ewitig feng [ewitig fena [ewtg
dOOVY Elo1Ne) D EN N 1qoIno) QUIBU 0UL)SU]

SIOATOS 9} U9aM)2q UOoSLIedWOd S[ENpISaI [eNp Pue [BWL "SdueIsul [T T11] JVO PaXe[oy LL 3jqel

pringer

As

Managing randomization in the multi-block alternating... 381

sizes n range from 4 - 103 to almost 10° with the number of constraints m up to 10°.
The Hessian matrices are either diagonal, with number of non-zero diagonal elements
less or equal to n, or symmetric with no nonzero diagonal elements. The constraint
matrices A € R™*" are very sparse across the problems; for most of the instances
density is below 1073, In addition to being sparse, the Jacobian matrices are not block
separable.

RACQP mode was set to a single-block mode according to the rules 3 and 4 of
Sect. 4.1.1, with 8 = 1 for all instances except for CONT* and UBH1 which use
B = 350 and B = 12,000 respectively. Residual tolerance of € = 10™* was used in
producing the results, reported in Tables 12 and 13. The tolerance is lower than the
default one (1073) because ADMM methods had hard time converging on CONT*
and CVXQP#* instances for tighter residuals (max number of iterations limit is 4000).
Positive-definite instances (i.e. H = 0) are marked with .

Overall, for solving sparse and Hessian-diagonal problems, both Gurobi and Mosek
seem more robust than OSQP and RACQP, probably due to the linear programming
structure. The latter two are of the comparable performance. The results, in terms of the
gap are of similar quality, and run-time is approximately the same, except for a couple
of instances, where self-adjusting methodology used by OSQP for penalty parameter
estimation, gives OSQP speed advantage. Also, some of the run-time variation can also
be contributed to different languages used to implement solvers; OSQP is implemented
in c/c++ while RACQP uses Matlab.

RACQP solved more instances than OSQP, which in addition to not being able
to meet primal/dual residuals for 25% of instances, it also could not find a feasible
solution for HUES-MOD and HUETIS instances. Mosek residual issue reported in
the previous section continues to persists on these problem instances. For example
AUG2DQP instance solution has dual residual of 5.5 - 102, the value that does not
meet the requested tolerance.

4.1.6 Convex QP based on the Mittelmann LP test set

In this section we report on the performance of solvers when applied to very large
quadratic problems. Instances are taken from the Mittelmann LP test set [73] aug-
mented with a diagonal Hessian H to form a standard LCQP (17). The results are
shown in Tables 14 and 15. Residual tolerance was set to 10~% (OSQP could not solve
any instance but i_n13 when default tolerance of 10~ was used, and RACQP had hard
time with nug30). Other default termination criteria apply (Table 3). For all instances
the number of blocks was set to p = 200 and penalty parameter, to 8 = 5 except for
nug30 that used g = 50.

RACQP solved very large (n > 750,000) quadratic problems to the required
accuracy (¢ = 107°) very fast. The results were obtained using different solution
strategies: multi-block Cholesky factorization approach for widel5, squarel5 and
long15 instances, and the partial Lagrangian approach for nug30 (localized lower and
upper bound of sub-problem primal variables). The best set of parameters were found
by a brute-force approach, which implies that additional research work needs to be
done to identify algebraic methods to characterize instances so that run-time parame-
ters can be chosen automatically. RACQP was unable to find a solution satisfying both

@ Springer

K. Mihic et al.

382

(0 < H) sdoup)sur AIUYIP-IANISOJ |
SIOAJOS AU} U99M]9q UOSLIEAUIOD JUNOD UONBI) PUB SWIT)-UNy

I SL 14 S S0 10 10 10 »—01°C 000°CI 60081 [HAN

e SL 8 11 00 00 10 00 [~ 4 000°01 SLLSANH

e 002 9 o1 00 X0] 10 00 I~ T 000°0T JAOW-SANH

9 SLT 14 I 10 70 [0 00 +—01°C 8666 66671 £€001d

84T SLyT S1 6 (97 0°€T 49! 9 y—01°€ 00S2 000°0T T ¢dOXAD

yry g 3 0T 6'L9 9LL Y1 S€T y—01°€ 0008 000°01 T 1dOXAD

sove ry ¢l o1 8°LLS 0'8LT 0TI (39 y—01°1 862°06 L6506 00€-LNOD

6£8¢ nwury 1 6 0°0¥ 8°¢I 80 €0 4—01°S 860°0T L6T 0T 101-LNOD

758 g €1 01 S01 ¥'SI 01 0 4—01°S 1086 L6T°0T 1001-LNOD

850 001¢ 01 01 ¥'T Tl 0 10 ¢-01C 10v¢C L6ST 10S0<LNOD

978 gteg 61 1T €01 9'1¢g 0C 80 1-01°€ 81 197°¢6 J1axod

¥S1 001 01 €l 10 00 10 00 ¢-01C 0001 €L8¢ doasony

I 0S 14 I 00 00 10 00 ¢-01C 0001 €L8€ Jrele (331017

8€T 008 4! SI 8¢ 91 90 €0 4—01°C 000°01 002°0T doazony

I 0S 14 I 90 10 80 10 4—01°C 000°01 002°0T 10aTONY
dOOVY dOSO RERUA 1qoinn dOOVvY doso SO 1qomo

SUONRINT "WNN [s] owm-uny (V) A&nsuog SMOI “tunN (u) 9z1s wa[qoId Qureu ddue)suy

SQOURISUI [/] SOIRZSIA pue SOIR]A 2318 | d|qel

pringer

As

383

Managing randomization in the multi-block alternating...

punojy uonn[os J[qQIseaj ON
(0 < H) sdoup)sur IUYIP-IANISOJ |
SIOAJOS AU} U9IM]0q uosLIeEdwod s[enpisal [enp pue [ewLld

g—01-09 ¢-00-S1 9—01-8'L 0186 p—01-€'1 »—01-8C 60178 01-01-9°1 THdN
9-01-98 0168 «VN VN 0L T'1 9-01-6¢ 6—01-8% ¢1-01-8°6 JSILSHNH
9-01-9'8 ¢-01-68 «VN *VN 1—01-01 ¢-01-TL 1—01-¥'¢ ¢1-01-8¢C LAONW-SdNH
0166 c1-01-TL 9-01-97C ¢-01-T6 ¢1-01-¥¢C 01-01-L9 6—01-€9 11-01-T¢ £J0Ld
0166 9010 g—01-¢¢ 0179 ¢-0I-L9 6—01°L6 11-01-87C 21-01-T6 T ¢dOXAD
¢-01-67 ¢-01-9L 0L T'1 p—01-T'1 ¢—01-C1 -0l LY g—01-0¢ g—01-6% T IdOXAD
-0l T'6 ¢-01-6'6 Ol T'1 ¢-00-88 9-01-0¢ g-01-6F 1—-01-96 6—01- 76 00¢€-LNOD
0186 ¢-01-6'6 1—01-T9 ¢—01-8'1 1—01-9% 9—01-86 1—01-9°¢ 01-01-€¥ 101-LNOD
¢-01-€8 0186 g-01-0¢ »—01-9C 6—01-€7C 90171 (—0L-€¢ p1-01-9C 1001-LNOD
-0l T'T ¢-0I-66 9-01-CTC 901" T'% 11-01-9'6 9-01-0F 1-01-6C ¢1-01-T¢C 10S0-LNOD
0166 ¢-0I-L9 0166 g—01-L'T y—01-6'8 9-01-¥'1 11-01-6'1 ¢1-01-¥6 L1aAod
9-01-9C ¢-01-9'6 9-01-6°¢ 01Tt ¢-00-T6 p—00 1€ 1—01-0¢ 91-01-68 doasonv
11-01-8'8 p1=01-T'1 01-01-¥¥ 01-01-6'L 11-01-€8 01-01-8% 1-01-66 p1=01-¥'1 10aenny
0186 g—01-68 ¢-0I-T°¢ 9-01-€7C -01-¢'¢ ¢-01-6L g—01-6'1 p1=01-T'1 dOaonv
91—01-01 21-01-9°1 11-01-6¢ 01-01-9¢ g—01-89 g—01-¥'6 (—01-L'6 ¢1-01-078 10dToNv
feng [ewitid reng [ewitid reng [ewitd ren@ [ewid

d0Ovy dOSO YISO 1qoInon) Quwreu ddue)suf

[2L] soIezsoN pue soIejy 9518 €| d|qel

pringer

as

K. Mihic et al.

SIOATOS 9} UdaM]I2q UOSLIEdWIOd JUNOD UOTIRIAN PUE JWITI-UNY

mry g 01 8¢ L¥8T L9T €l ¥T y—01-CTC1 #8€°91 PP179C PIU9[

1L1T SLT 01 8T yry 961 ov 1L y—01-¥7'C 618 SSHIYL gruT

9¢T PEST €l 81 (433 nwry 8€TS 6568 ¢-01-01'9 097°TS 0SE°6LE G13uoy

Wi €LST 6 81 £9¢ g €ELE 8616 ¢—01-019 69L°CE 069°€SL Grorenbs

9¢1 LOVT €1 81 S g L9TS 616 ¢-01-01'9 T9LTE 9TS ESL SIopIm

LSOT 1011 L ¢l 9L6€ nwry 8€L9 6016 01" 16L 69L°CE L8Y'ESL 0g3nu
dOOVY dOso YOO 1qoIno dOOVY dOso YOSON 1qoImngo

SUONRIANT "WNN [s] oum-uny (V) Kisuag SMOI "UNN (u) 9z1s WA[qOId Qureu ddue)suy

384

[€1] 198 1891 4T UURW[NIIA] Y} UO paseq O XdAU0)) {1 d|qel

pringer

As

385

Managing randomization in the multi-block alternating...

SIOATOS Y} UdaM])2q uosLiedwod S[enpIsal [enp pue [BWL]

¢-0I-Cv c—0l-v'1 ¢-0lv'L y—01-0'1 1-01-T¢C y—01-0C -0l ¥'v p1=00- 1T PIu 91
¢-0I-¢8 ¢-01-€7 ¢-01-0'1 9—01-L9 1—01-¢'1 y—00-1T°¢ 21-01-1C c1-01-¢'1 L
¢-O0I-T'L 0161 0111 6001 0% ¢-01-7C ¢-0I-T'¢ c1-01-6°¢ c1-01-6'1 G18uop
¢-0I¥'6 0101 y—01-0°L 6—01°17C -0l v'1 0197 c1—01-¥9 9r-01-€8 G1orenbs
¢-O0I-T°L 0161 ¢-01-¥C 60l 1Y ¢-01-7C ¢-0I-T°¢ c1-01-6°¢ c1-01-6'1 SIopim
¢-0I-€6 9—01-S6 90196 y—0L-L'1 =00 L1 —01-T°¢ 6—01-6'¢ ¢1-01-€9 0gdnu
reng [ewtid reng [ewtid reng [ewitid reng [ewtid
dOOVY d0SO NISON 1qoInon Quwreu doue)suf

[€1] 195 159) J'T UUBWI[ONTIA o) UO paseq J{) XAUOD) G| 3|qel

pringer

As

386 K. Mihi¢ et al.

primal and dual residual tolerances for two instances (i_nl13 and 16_n14), no matter
of what run-time settings we used.

OSQP solved only one instance (i_n13) within given run-time and number of itera-
tions limitations, while Gurobi solved all the instances to a high precision, regardless of
having termination criteria, Table 3, setto e = 10~5. Mosek did not find a single solu-
tion meeting the residual criteria, due to the aforementioned scaling and termination
criteria issue.

4.1.7 Selected machine learning problems

In this section we apply RAC method and RP method to few selected machine learning
(ML) problems related to convex quadratic optimization, namely Linear Regression
(Elastic-Net) and Support Vector Machine (SVM). To solve the former we apply a
specialized implementation of RAC-ADMM (available for download at [61]), while
for the latter we use RACQP solver. RAC-ADMM is compared with the specialized
methods, Glmnet [30,64] for Elastic-Net and LIBSVM [14] for SVM problems. The
results show that our general-purpose solver matches and under certain circumstances
exceeds the performance of those tailored methods.

Linear Regression using Elastic Net For a classical linear regression model, with
observed features X € R"*” and labels y € R", where n is number of observations
and p is number of features, one solves the following unconstrained optimization
problem

1
min —(y—Xp)'(y—XB) + Pro(B) (34)
B 2n

with Py o(B) = A{FT“|| B ||% + «|| B 111} used for Elastic Net model. By adjusting «
and X, one could obtain different models: for ridge regression, « = 0, for lassoo = 1,
and for classic linear regression, A = 0. For the problem to be solved by ADMM, we
use variable splitting and reformulate the problem as follows

min 2 (v = XA =X B) + Pra(@
st. B—z =0

(35)

Note that in (35) we follow the standard machine learning Elastic Net notation in
which S is the decision variable in the optimization formulation, rather than x.

Letc = —% X'y A = %, and let y denote the augmented Lagrangian penalty
parameter with respect to constraint 8 — z, and & be the dual with respect to constraint
B —z = 0. The augmented Lagrangian could then be written as

Ly=5B8"ATA+y DB+ -8 B+E—y B 24527 24P o (2)

We apply RAC-ADMM algorithm by partitioning 8 into multi-blocks, but solve z as
one block. For any given B |, optimizer z; 1 has the closed form solution.

SEx() — ¥ Big1(), Ae)
1—-—a)r+y

2 (D Bry (D), §,() =

9

@ Springer

Managing randomization in the multi-block alternating... 387

where &; is the dual variable with respect to constraint 8; —z; = 0, and S(a, b) is
soft-threshold operation [29].

—(a—b), ifb<lal, a>0
S(a,b)={ —(a+b), ifb<lal, a<0
0, ith > |al

In order to solve classic linear regression directly, X X must be positive definite
which can not be satisfied for p > n. However, RAC-ADMM only requires each sub-
block XSTu » Xsub to be positive definite, so, as long as block size s < n, RAC-ADMM
can be used to solve the classic linear regression.

It is worth pointing out that although the objective function here is non-smooth, we
could still reformulate the problem as convex quadratic programming with bounded
constraints. To see this, consider the case where « = 1, and elastic net problem

becomes a classic lasso regression, with (35) becomes

min W= XA (y—XB) +1llzll;
st. B—z =10

(36)

Optimization problem 35 is equivalent as

Juin, 2y 0 —XB) (=X) + 1z +2)
st. B—72+72" =0
Z,7" >0

Let £ be the dual with respect to constraint § — z’ 4+ z” = 0. The optimal (z')* and (z)¥
at each iteration satisfies (z)* — (z/)* = %S(‘g’k(l’) — ¥ Biy1(i), 1), which equals to

zF when we solves problem (36). Essentially, the non-smooth objective here could
be reformulated as a smooth convex quadratic programming with non-negative con-
straints. Using the absolute value update is just a compact way to implement the
algorithm, so that the expected convergence is guaranteed from our theorem.

We compare our solver with Glmnet [30,64] and Matlab lasso implementation
on synthetic data (sparse and dense problems) and benchmark regression data from
LIBSVM [14].

Synthetic Data The data set for dense problems X is generated uniform randomly with
n = 10,000, p = 50, 000, with zero sparsity, while for the ground truth 8* we use
standard Gaussian and set sparsity of 8* to 0.1. Due to the nature of the problem,
estimation requires lower feasibility precision, so we fix number of iterations to 10
and 20. Glmnet solver benefits from having a diminishing sequence of A, but given
that many applications (e.g. see [3]) require a fixed A value , we decided to use fixed
A for all solvers. Note that the computation time of RAC-ADMM solver is invariant
regardless of whether A is decreasing or fixed.

@ Springer

388 K. Mihi¢ et al.

Table 16 Comparison on solver performance, dense elastic net model

A Num. iterations ~ Absolute /5 loss Total time [s]
RAC RP glmnet Matlab RAC RP glmnet Matlab
0.01 10 204.8 204.6 2139 249.1 396.5 227.6 24659 12152
20 208.1 230.2 2139 237.1 7352 3439 38579 22182
0.1 10 217.8 2156 2205 213.1 388.7 2125 44443 21259
20 2726 2024 2205 2124 739.7 3372 44524 24346
1 10 213.6 209.0 203.1 210.5 4153 213.6 3021.1 11389
20 213.8 2124 2105 203.1 686.3 392.1 52955 1495.6

Dense problem, n = 10, 000, p = 50, 000

Table 16 reports on the average cross-validation run-time and the average absolute
I> loss for all possible pairs («, 1) with parameters chosen from « = {0, 0.1, ..., 1}
and 2 = {1, 0.01}. Without specifying, RAC-ADMM solver run-time parameters
were identical across the experiments, with augmented Lagrangian penalty parameter
y = 0.1A for sparsity < 0.995, y = X for sparsity > 0.995, and block size s == 100.
Large scale sparse data set X is generated uniform randomly with {n = 40, 000, p =
4,000, 000}, using sparsity = 0.998. For ground truth 8*, the standard Gaussian with
sparsity * = 0.5 and fixed A. Noticing from the previous experiment that increasing
a step size from 10 to 20 didn’t significantly improve prediction error, we fix number
of iteration to 10.

Table 17, report on the average cross-validation run time and the average absolute
I> loss for all possible pairs («,) with parameters chosen from « = {0, 0.1, ..., 1}
and A = {1, 0.01}. The table also shows the best /> loss for each solver. Because it
took more than 10, 000 seconds for Matlab lasso to solve even one estimation, the
table reports only comparison between glmnet and RAC.

Experimental results on synthetic data show that RAC-ADMM solver outperforms
significantly all other solvers in total time while being competitive in absolute I»
loss. Further RAC-ADMM speedups could be accomplished by fixing block-structure
(RP-ADMM). In terms of run-time, for dense problem, RAC-ADMM is 3 times faster
compared with Matlab lasso and 7 times faster compared with glmnet. RP-ADMM is
6 times faster compared with Matlab lasso, and 14 times faster compared with glmnet.
For sparse problem, RAC-ADMM is more than 30 times faster compared with Matlab
lasso, and 3 times faster compared with glmnet. RP-ADMM is 4 times faster compared
with glmnet.

Following Corollary 2 RP-ADMM is slower that RAC-ADMM when convergence
is measured in number of iterations, and experimental evidence (Table 1) show that it
also suffers from slow convergence to a high precision level on L1-norm of equality
constraints. However, the benefit of RP-ADMM is that it could store pre-factorized
sub-block matrices, as block structure is fixed at each iteration,in contrast to RAC-
ADMM which requires reformulation of sub-blocks at each iteration, what it turn
makes each iteration more time-wise costly . In many machine learning problems,
including regression, due to the nature of problem, a less precision level is required.

@ Springer

389

Managing randomization in the multi-block alternating...

pringer

Qs

000°000‘v = d ‘000°0y = u ‘wajqoid osredg

$06C8 8°€00¢ 8°L69€ 6'8¢S1 6L719 L'S19 STl €TI1L9 L1'9L9 01 I
L€S6TI 1'686C €9SLE 9°6TI¢ 6L°119 6€19 ¥050% 6'LIL I€°LLL 01 10
TYIS'LI 8vP6T 19114 TO8LY TSE0L TSPL €0818 L9SET £e6Cl 01 100
jouw|3 dd ovd Jouw[3 dd ovd jouw|3 4y ovd

[s] owm ei0L,

SSO[C] 9IN[0sqy 1s9g

SSO[] AN[OSqy SAY SUOTIRI "WNN Y

[opouw Jou onse[s ‘douewrioyrad 1oA7os uo uostedwo) /| djqe]

390 K. Mihi¢ et al.

Table 18 E2006-tfidf

N Solver Training ME Total time [s]
performance summary for Lasso
Matlab 61.1 3946.6
Table 19 E2006-tfidf A Training ME Total time [s]
performance summary
RAC RP glmnet RAC RP glmnet
0.01 22.4 22.4 29.9 106.5 50.9 653.2
0.1 22.1 22.1 22.7 100.5 51.9 269.3
1 25.7 25.7 23.5 102.5 54.2 282.9

This makes RP-ADMM an attractive approach, as it could converge within fewer steps
and potentially be faster than RAC-ADMM. In addition, while performing simulations
we observed that increasing number of iteration does not significantly improve per-
formance of prediction. In fact, absolute /; loss remains similar even when number
of iteration is increased to 100. This further gives an advantage to RP-ADMM, as it
benefits the most when number of iteration is relatively small.

LIBSVM Benchmark instances Regression data E2006-tfidf feature size is 150,360
with number of training and testing data points of 16,087 and 3308 respectively.
The null training error of test set is 221.8758. Following the findings from the sec-
tion on synthetic problems and noticing that this dataset is sparse (density=0.991),
this setup uses fixed number of iterations to 10, and vary A = {1, 0.01} and
a = {0, 0.1, 0.2,...,1}. The training set is used to predict 8*, and the model
error (ME) of test set is compared across different solvers.

Table 18 shows the performance of OSQP and Matlab lasso forae = 1 and A = 0.01,
and Table 19 compares compare RAC-ADMM with glmnet. The reason for splitting
the results in two tables is related to inefficiency of factorizing a big matrix by OSQP
solver and Matlab lasso implementation. Each solver requires more than than 1000
seconds to solve the problem for even 10 iterations, making them impractical to use.
On the other hand, glmnet, which uses a cyclic coordinate descent algorithm on each
variable, performs significantly faster than OSQP and Matlab lasso. However, glmnet
can still be inefficient, as a complete cycle through all p variables requires O(pN)
operations [30]. Results given in Table 19 are the averages over run-time and training
error collected from experiments with « = {0,0.1, ..., 1}. The results show that
RAC-ADMM is faster than glmnet for all different parameters and that it achieves
the best training model error, 22.0954, among all the solvers. In terms of run-time,
RAC-ADMM is 14 times faster than OSQP, 38 times faster than Matlab lasso, and 4
times faster than glmnet. RP-ADMM is 28, 18 and 8 times faster than OSQP, Matlab
lasso and glmnet, respectively.

For log1pE2006 benchmark , feature size is 4,272,227, number of training data is
16,087 and number of testing data is 3308. The null training error of test setis 221.8758
and sparsity of data is 0.998. Similarly to the previous benchmark, the performance

@ Springer

Managing randomization in the multi-block alternating... 391

Table 20 logl1pE2006

N Solver Training ME Total time [s]
performance summary for Lasso
problem (@ = 1, 4 = 0.01) 0SQP 66.6 11437.4
Matlab - > 3 days
Table 21 log1pE2006 A Training ME Total time [s]
performance summary
RAC RP glmnet RAC RP glmnet
0.01 43.0 41.8 22.0 962.2 722.5 7639.6
0.1 30.8 31.8 22.5 978.7 721.4 4945.2
1 32.1 355 29.3 958.5 749.2 1889.5

results are split into two tables. Table 20 shows the performance of OSQP and Matlab
lasso, while Table 21 compares RAC-ADMM and glmnet.

The results show that RAC-ADMM and RP-ADMM are still competitive and are of
same level as glmnet with respect to model error, and all outperform OSQP and Matlab.
In terms of run-time, RAC-ADMM is 12 times faster than OSQP, and 5 times faster
than glmnet. RP-ADMM is 16 and 7 times faster than OSQP and glmnet, respectively.

Support Vector Machine A Support Vector Machine (SVM) is a machine learning
method for classification, regression, and other learning tasks. The method learns a
mapping between the features x; € R”,i = 1,...n and the target label y; € {—1, 1}
of a set of data points using a training set and constructs a hyperplane w’ ¢ (x) + b
that separates the data set. This hyperplane is then used to predict the class of further
data points. The objective uses Structural Risk Minimization principle which aims
to minimize the empirical risk (i.e. misclassification error) while maximizing the
confidence interval (by maximizing the separation margin) [74,75].

Training an SVM is a convex optimization problem, with multiple formulations,
such as C-support vector classification (C-SVC), v-support vector classification (v-
SVCO), e-support vector regression (e-SVR), and many more. As our goal is to compare
RACQP, a general QP solver, with specialized SVM software and not to compare
SVM methods themselves, we decided on using C-SVC [8,18], with the dual problem

formulated as

min%zTQz —elz
z

st.yl'z =0 (37)
z € [0, C]

with Q € R"", Q = 0, ¢;,; = yiy;j K (x;,X;), where K (x;,X;) := ¢(xi)T¢(xj) is
a kernel function, and regularization parameter C > 0. The optimal w satisfies
W= ", iz ¢(x;), and the bias term b is calculated using the support vectors
that lie on the margins (i.e. 0 < z; < C)as b; = wl ¢(x;) — yi. To avoid numerical
stability issues, b is then found by averaging over b;. The decision function is defined
with f(x) = Sign(w! ¢(x) + b).

@ Springer

392 K. Mihi¢ et al.

We compare RACQP with LIBSVM [14], due its popularity, and with
Matlab-SVM, due to its ease of use. These methods implement specialized approaches
to address the SVM problem (e.g. LIBSVM uses a Sequential Minimal Optimization,
SMO, type decomposition method [9,26]), while our approach solves the optimization
problem (37) directly.

The LIBSVM benchmark library provides a large set of instances for SVM, and we
selected a representative subset: training data sets with sizes ranging from 20,000 to
580,000; number of features from eight to 1.3 million. We use the test data sets when
provided, otherwise, we create test data by randomly choosing 30% of testing data
and report cross-validation accuracy results.

In Table 22 we report on model training run-time and accuracy, defined as (num.
correctly predicted data)/(total testing data size)x 100%. RAC-ADMM parameters
were as follows: max block size s = 100, 500, and 1000 for small, medium and
large instances, respectively and augmented Lagrangian penalty 8 = 0.1p, where
p is the number of blocks, which in this case is found to be p = [n/s] with
n being the size of training data set. In the experiments we use Gaussian kernel,
K(x;,xj) = exp(—ZUL2 | x;i —x; I1%). Kernel parameters o and C were estimated by
running a grid-check on cross-validation. We tried different pairs (C, o) and picked
those that returned the best cross-validation accuracy (done using randomly choose
30% of train data) when instances were solved using RAC-ADMM. Those pairs were
then used to solve the instances with LIBSVM and Matlab. The pairs were chosen
from a relatively coarse grid, o, C € {0.1, 1, 10} because the goal of this experiment
is to compare RAC-ADMM with heuristic implementations rather than to find the best
classifier. Termination criteria were either primal/dual residual tolerance (¢, = 107!
andeg = 10_0) or maximum number of iterations, k = 10, whichever occurs the first.
Dual residual was set to such a low value because empirical observations showed that
restricting the dual residual does not significantly increase accuracy of the classifi-
cation but effects run-time disproportionately. Maximum run-time was limited to 10
hours for mid-size problems, and unlimited for the large ones. Run-time is shown in
seconds, unless noted otherwise.

The results show that RACQP produces classification models of competitive quality
as models produced by specialized software implementations in a much shorter time.
RACQP is in general faster than LIBSVM (up to 27x) except for instances where
ratio of number of observations n with respect to number of features r is very large. It
is noticeable that while producing (almost) identical results as LIBSVM, the Matlab
implementation is significantly slower.

For small and mid-size instances (training test size < 100K) we tried, the difference
in accuracy prediction is less than 2%, except for problems where test data sets are
much larger than the training sets. In the case of “rcv1.binary” instance test data set is
5x larger than the training set, and for “cod_rna” instance is 4 x larger. In both cases
RACQP outperforms LIBSVM (and Matlab) in accuracy, by 20% and 9%, respectively.

All instances except for “news20.binary” have n >> r and the choice of the
Gaussian kernel is the correct one. For instances where the number of features is
larger than the number of observations, linear kernel is usually the better choice as
the separability of the model can be exploited [79] and problem solved to similar
accuracy in a fraction of time required to solve it with the non-linear kernel. The

@ Springer

393

Managing randomization in the multi-block alternating...

S)[nsal A9eINJOR UONEPI[RA-sSOID Suniodoy] 19s Sururen ay) Wolj ejep Uasoyd A[Wopuel Jo 90¢ Suisn ‘papraoid 19s 159) ON

VN e sy Yol - 6'66 €16 129 YOEYLL T10°18S Areurq-adfia00
VN Ug'rl Ug'el - 6'66 €19 124 000°S01 000°0S€ lun"wedsqom
VN 4yco uo9'e - 6'66 6'66 € LIS'EL LSOSYT Jupysuouunys
U+01 L6C6 9101 - §'69 $'69 856°0C W69°1C 60€°TL <WIs T [eal
8I¢C Iee I8¢ 0°¢L 0¢L reL 8 L19°1LT SES°6S BUITPOD
0 €y S0s €16 £'l6 916 (44 10L°16 066°67 Juuoft
TLEOT LI8 LOE $'66 §'66 L6 00¢€ 18611 6vL'6Y BgM
0SS S8y 11c £€8L €'8L L9L ol 18291 196°C€ eoe
VN 5543 a4} - 6'66 6'66 161°6S€°1 866S 966°61 wATeuIq Qzsmou
y+01 £9¢ 8L - 9¢Cs 9¢eL 9€T LY 08#°S€1 Tweoe Areurq-yaox
SSic eel €8 €'L6 €'L6 I'L6 00¢ LS0'ST 269'%C BLA
£69¢C 0S¢ 16 1'8L 1'8L €9L cl G986 969°CC ege
qepeN INASAI'T ovd qepeiN INASHI'T ovd

[s] swmn-un1 Sururely,

[95] AovIndoy

SaInjea "wnN

9715 195 Funsay,

9z1s 108 Jururer], QUIBU QoUB)SUJ

INAS Joj uostreduwos soueuriograd Sururen [9pojN Zz 3qel

pringer

As

394 K. Mihi¢ et al.

reason we used the Gaussian kernel on “news20.binary’ instance is that we wanted to
show that RACQP is only mildly affected by the feature set size. Instances of similar
sizes but different number of features are all solved by RACQP in approximately the
same time, which is in contrast with LIBSVM and Matlab that are both affected by
the feature space size. LIBSVM slows down significantly while Matlab, in addition
to slowing down could not solve “news.binary“—the implementation of fitcsvm()
function that invokes Matlab-SVM algorithm requires full matrices to be provided as
the input which in the case of “news.binary* requires 141.3GB of main memory.

“Skin_nonskin” benchmark instance “marks” a point where our direct approach
starts showing weaknesses—LIBSVM is 5x faster than RACQP because of the fine-
tuned heuristics which exploit very small feature space (with respect to number of
observations). The largest instance we addressed is “covtype.binary”, with more than
half of million observations and the (relatively) small feature size (p = 54). For this
instance, RACQP continued slowing down proportionately to the increase in problem
size, while LIBSVM experienced a large hit in run-time performance, requiring almost
two days to solve the full size problem. This indicates that the algorithms employed
by LIBSVM are put to the limit and specialized algorithms (and implementations)
are needed to handle large-scale SVM problems. RACQP accuracy is lower than that
of LIBSVM, but can be improved by tightining residual tolerances under the cost of
increased run-time.

For large-size problems RACQP performance degraded, but the success with the
mid-size problems suggests that a specialized “RAC-SVM” algorithm could be devel-
oped to address very large problems. Such a solution could merge RAC-ADMM
algorithm with heuristic techniques to (temporarily) reduce the size of the problem (e.g.
[42]), smart kernel approximation techniques, probabilistic approach(es) to shrinking
the support vector set (e.g. [62]), and similar.

4.1.8 Changing random seed for RACQP

When it comes to algorithms that are stochastic in nature, as RAC-ADMM is, the
question that always comes onto mind is about robustness of the algorithm. More
precisely, how much is RAC-ADMM sensitive to variations in problem data for a
given problem model, and to variations arising from differences in sub-problems due
to from randomness of block building procedure (Algorithm 1, line 3). The answer to
the former question has been provided in Sect. 4.1.3, and this section tackles the latter.

To answer the question on RACQP sensitivity to sub-problem structure we subject
RACAQP to different random seeds—each sub-problem is solving minimization prob-
lem defined by Lagrangian (Eq. 20), which is, in turn, a function of blocks of primal
variables constructed using a stochastic process, following the procedure outlined in
Sect. 3.1, Step 1. This stochastic process is guided by values drawn from a pseudo ran-
dom number generator, which is initialized using a random seed number. For different
seeds the generator produces different sequences of numbers, what in turn produces
different sub-problems addressed by RACQP.

Table 23 shows results over a selected set of instances chosen to represent each
problem type addressed so far. The table aggregates statistical data collected by solving
each instances using ten different seeds per primal/dual tolerance €. Note that CuteR

@ Springer

Managing randomization in the multi-block alternating... 395

instances (Sect. 4.1.5) are not included in the analysis as all the instances are solved
using a single-block approach. The results show that RACQP is a robust algorithm
and that using a single run was a correct choice to make, at least when it comes to
problem instances reported in this section. To generalize the claim about RACQP
robustness with respect to randomness of block building scheme would require much
more experiments and theoretical analysis, what we delegate to our future work.

4.2 Binary and mixed integer problems

The RAC-ADMM multi-block approach can be applied directly to binary (and mixed
integer) problems without any adaptation. However, when dealing with combinatorial
problems, a divide-and-conquer approach does not necessary lead to a good solution,
because solver may get stuck in some local optima. To mitigate this problem RACQP,
we introduce additional randomness into the implementation: a simple perturbation
scheme shown in Algorithm 2 that helps the solver to “escape” the local optimum and
to continue search for another one (and possibly find the global optimum). Thus, in
addition to the run-time parameters used for continuous problems, for MIP we need to
specify perturbation parameters such as probability distribution to use when choosing
how many variables are perturbed (N,) and the parameters thereof. As a default,
RACQP implements truncated exponential distribution, N, ~ Exp(A) with parameter
A = 0.4n, minimum number of variables N p.min = 2, and maximum number of
variables N, max = n, based on the observation that for most of the problems “good”
solutions tend to be grouped. Variables are chosen at random, and in the general
case, perturbation is done by assigning “new” values (within bounds) to the chosen
variables. Default number of trials before perturbation, N7 = min(2, 0.005n). For
all binary problems presented in this section the primal residual error was zero, i.e.
the problems were solved to feasibility.

As the default solver for sub-problems, RACQP uses Gurobi, but any other solver
that admits mixed integer quadratic problem would suffice. The results reported in this
section are based on Gurobi 7.5, and may be outdated. However, since we use Gurobi
as the sub-solver, we expect RACQP to implicitly gain by the improvements made to
Gurobi. Gurobi was ran using its default run-time settings (e.g. presolve option was
turned on).

In [66] the authors present a mixed integer quadratic solver, MIQPs, which uses
OSQP solver for solving sub-problems resulting from branch-and-bound strategy.
Since the solver is built for small and medium size problems that occur in embedded
applications, we do not include it in our current study. However, given that MIQPs
showed a promising numerical performance (3x faster than Gurobi) even though
being implemented in Python, it would be interesting to use it within RACQP as the
external solver for MIP (Algorithm 1, line 8) instead of our default solver (Gurobi)
and compare performance. We defer this comparison to future work.

To solve MIP problems RACQP uses the partial Lagrangian approach, described
in Sect. 2.3.3, to handle bounds on variables &’;, x; € X’;. Additionally, depending
on a problem structure, equality and inequality constraints can also be moved to the
local constraint set. Our experiments show that moving some (as it done for QAP), or

@ Springer

K. Mihic et al.

396

5 1od Qouejsut Jod sjuswnradxe uay,

LYC SIc ¥'6 € 1ve LOT 8LI el €561 LST orl 0°¢ 0 syl G1omenbs
¥C ¥C 00 0¥¢ 0¢ 61 ¢o yol Sl Sl 00 06l 001
[43 6¢ 80 9°0¢ Le Y4 L0 ¥'9¢ €C IC 80 8'1¢ osrow
w [U% 80 vy 9¢ 123 90 81¢ 6¢ Le 90 8'LT qos1rel
Le 9 S0 99¢ €C [« S0 gee 61 81 S0 981 10°sC11e
9 ¥C 90 (2 (44 IC S0 £1c 81 L1 S0 S'LI BOOTOYS
8vCl 0rCl Lc Level L8S 9LS 6'¢ 0°6LS 881 €81 91 981 Arep~rengar
£65C 68SC 'l 1'T65¢ coll 7601 6°0¢ 871811 LLS vLS 80 L'SLS Auowr—rengar
Xew urw 0 u Xew uw 0 ud Xew uru 0 7

901 =2 -01=>2 y—01 =2 Qoue)suf

SPa9s WOPULI JUAIAJJIP JOAO SUONLIA Jo Jaqunu—adueuniojrdd JOOVY €2 3qel

pringer

As

Managing randomization in the multi-block alternating... 397

all constraints (e.g. graph cut problems) to a local set is beneficial in terms of block
sizes, run-time, and overall solution quality. By using local constraints we help the
sub-solver (e.g. Gurobi) reduce the size of the problem and tighten its formulation
(using presolve and cutting plane algorithms).

Rather than solving the binary QP problem exactly, our goal is to find a (randomized
or deterministic) algorithm that could find a better solution under a fixed solution time
constraint. Our preliminary tests show that solving a large-scale problem using RAC-
ADMM based approach can lead to a very good quality solution for an integer problem
in a very limited time.

The quality of solutions is given in a form of a gap between the objective value of
the optimal solution x;‘pt and the objective value of the solution found by a solver S,
xg:

F@) = Fdy)
1+ abs(f (x5p))

For the instances for which the optimal solution remains unknown (e.g. QAPLIB
and GSET instances), we use the best known results from the literature. Note that for
maximization problems (e.g. Max-Cut, Max-Bisection) gap is the negative of (38).
All binary problems are solved with primal residual equal to zero (i.e. the solutions
are feasible and integer).

gaps = (38)

4.2.1 Randomness helps

We start the analysis of RACQP for binary problems with a short example showing
that having blocks that are randomly constructed at each iteration, as done by RAC-
ADMM, is the main feature that makes RACQP work well for combinatorial problems,
without a need for any special adaptation of the algorithm for the discrete domain.

RAC-ADMM can be easily adapted to execute classical ADMM or RP-ADMM
algorithms, so here we compare these three ADMM variants when applied to combi-
natorial problems. We use a small size problem (n = 1000) and construct a problem
using (32) applied to problem of Markowitz type (39),

min XTVX+‘[mTX+K||X||%
X

st. elx=r (39)
x € {0, 1)"

with k = 107> and a positive integer number » € Zy, r € (1, n) that defines how
many stocks from a given portfolio must be chosen.

A typical evaluation of the algorithms is shown in Fig. 3. Results show that RAC-
ADMM is much better suited for binary optimization problems than either cyclic
ADMM or RP-ADMM or distributed-ADMM, which is not surprising since more
randomness is adapted into the algorithm making it more likely to escape local optima.
All the algorithms are quick to find a local optimum, but besides RAC-ADMM stay at
that first found point, while RAC-ADMM continues to find local optima, which could
be better or worse than previously found. Because of this behavior, one can keep track

@ Springer

398 K. Mihi¢ et al.

Fig.3 A typical evaluation of 1700 T T
the objective function valueof g seess RAC-ADMM
(39) for different ADMM ——RP-ADMM
algorithms. n = 1000, 1600 = ==Cyclic-ADMM 4
r=n/2,p=>50,8 =50 °
=}
S 1500 { 1
>
[0} AN
= .
8 1400 L 1
a b
© 3
1300
1200 : : : :
0 20 40 60 80 100
Iterations

the best solution found (Xpes;, Algorithm 2). The algorithms seem robust with respect
to the structure of the Hessian and choice of initial point. For completeness of the
comparison, we have implemented distributed-ADMM (Eq. 4) for binary problems
and ran the algorithm on the same data. The results are omitted from the Fig. 3 because
the algorithm was unable to find a single feasible solution in 500 iterations.

4.2.2 Markowitz portfolio selection

Similarly to the section on continuous problems, we compare RACQP performance
with that of Gurobi on Markowitz cardinality constrained portfolio selection problem
(39) using real data coming from CRSP 2018 [78]. In the experiments, we set r =
n/2 with all other settings identical to those used in Sect. 4.1.2, including V and
m, estimated from CRSP 2018 data. The default perturbation RACQP settings with
B = 0.05, p = 100 were used in the experiments. Gap is measured from the “Optimal”
objective values of the solutions found by Gurobi in about 1 hour run-time after relaxing
MIPGAP parameter to 0.1.

From the results (Table 24) it is noticeable that RACQP finds relatively good solu-
tions (gap 1072 —10~*) in a very short time, in some cases even before Gurobi had time
to finalize root relaxation step of its binary optimization procedure. Maximal allowed
run-time of 1 min was far too short for Gurobi to find any solution, so it returned
a heuristic ones. Note that those solutions (third column of the table) are extremely
weak, suggesting that a RAC-ADMM based solution could be implemented and used
instead.

Low-rank Markowitz portfolio selection model
Similarly to (31) we formulate the model for low-rank covariance matrix V as

: 2 2
min Iy 3 —tm” x+icl x I3
T

st.e x=r (40)
Bx—-y=0
x € {0, 1}"

@ Springer

399

Managing randomization in the multi-block alternating...

uonN|os S[qISLJ dNSLINAY B PAUINIAI IGOIND) "paysiuy jou doys uonexe[a1 100y,

[8L] ®1ep 810C dSUD

0 0 c-01-9% 0 +—01-8C 0¥ o1l 8T9¥ Aireq
¢-01°0C 9—0T-L8— ¢-01-0C ¢-01-0T =01 T'T 6°0¢ P10 8S6L Aipuoy
4—01-0'6 0 4—01-0'6 0 ¢-01-9C rey SS0°0 8S6L Azoreng

dOOVH 1qomn dOOVY 1qomn dOOVHd x1qomn
urw ()| = awi uny uru ¢ = our) ung uru | = ouwr uny
dep TeA [qo rewndo (u) az1s wopqoid ©1ep 810T dS¥UD

(6€) 1opour uonoa[as orjoyiiod ZJIMONIRIN T d]qel

pringer

As

400 K. Mihi¢ et al.

Table 25 Low-rank reformulation Markowitz portfolio selection model (39)

CRSP 2018 data Problem size (n) Optimal Obj. Val. Gap

Gurobi RACQP
Quarterly 7958 0.015 —22.1077 1.6-1073
Monthly 7958 0.104 —42.107° —13-107
Daily 4628 1.140 33 —1.0-1072

CRSP 2018 data [78]. Max run-time 1 min

and solve the model for CRSP 2018 data. We use 8 = 0.5, p = 50. RACQP gap was
measured from the optimal solution returned by Gurobi. In Table 25 we report on the
best solutions found by RACQP with max run-time limited to 60 seconds. Results are
hard to compare. When Hessian is diagonal and the number of constraints are small,
as the case for this data, Gurobi has a very easy time solving the problems (monthly
and daily data)—it finds good heuristic points to start with, and solves problems at a
root node after a couple of hundreds of simplex iterations. On the other hand, RACQP,
which does not directly benefit from diagonal Hessian, needs to execute multiple
iterations of ADMM. Even though the problems are small and solved very quickly, the
overhead of preparing the sub-problems and initializing Gurobi to solve sub-problems
accumulates to the point of overwhelming RACQP run-time. In that light, for the rest
of this section we consider problems where Hessian is a non-diagonal matrix, and
address the problems that are hard to solve directly by Gurobi (and possibly other
MIP QP solvers).

4.2.3 QAPLIB

The binary quadratic assignment problem (QAP) is known to be NP-hard and that
binary instances of larger sizes (dimension of the permutation matrix r > 40) are
considered to be intractable and cannot be solved exactly (though some instances of
a large size with special structure have been solved). Currently, the only practical
solutions for solving large QAP instances are heuristic methods.

For binary QAP we apply the same method for variance reduction as we did for
relaxed QAP (Sect. 4.1.4). We group variables following the structure of constraints,
which is dictated by the permutation matrix X € {0, 1}"*" (see Eq. 33 for QAP
problem formulation)—we construct one super-variable, x; for each row i of X. Next
we make the use of the partial Lagrangian, and split constraints into the local constraint
set consisting of (33) (a) and the global constraint set consisting of (33) (b), so that
the partial Lagrangian is

1
Ly) = 5 X" Hx =y Agiopar X~ 1) + gn Agtopar x— 112

At each iteration, we update the ith block by solving

Xf+l

= arg min{Lg()| Ajpcar Xi = 1, X; € {0, 1}"}.

@ Springer

Managing randomization in the multi-block alternating... 401

Table 26 Number of instances = 133

QAPLIB [11] benchmark results summary Gurobi RACQP
Num. instances opt/best found 3 18
Num. instances gap < 0.01 (excluding opt/best) 0 17

W
~
(=]

Num. instances gap < 0.1 (excluding opt/best and < 0.01)

Max run-time: 10 min

Next, continuing on the discussion on perturbation from the previous section, we turn
the feature on and set parameters as follows: number of super-variables to perturb is
drawn from truncated exponential distribution, N, ~ Exp(A) with parameter A =
0.4r, minimum number of variables N ».min = 2 and maximum number of variables
Npmax = r. The number of trials before perturbation Ny;q is set to its default
value. Note that we do not perturb single variables (x; ;), rather super-variables that
we choose at random. If a super-variable x; has value of ’1° at one location, and ’0’
on all other entries, then we randomly swap location of *1° within the super variable
(thus keeping the row-wise constraint on X for row i satisfied). If the super-variable
is not feasible (number of "1’# 1), we flip values of a random number of variables
that make x;. The initial point is a random feasible vector. The penalty parameter is
a function of the problem size, 8 = n, while the number of blocks depends on the
permutation matrix size and itis p = [r/2].

The summary of the QAPLIB benchmark [60] results is given in Table 26. Out of
133 total instances the benchmark includes, RACQP found the optimal solution (or
the best known from literature as not all instances have proven optimal solution) for
18 instances within 10 min of run-time. For the rest of the instances, RACQP returned
solutions with an average gap of © = 0.07. Gurobi solved only three instances to
optimality. The average gap of the unsolved instances is i = 12.15, which includes
heuristic solutions returned when root relaxation step was not finalized (20 instances).
Removing those outliers results in the average gap of u = 5.57.

Table 27 gives detailed information on 21 large instances from QAPLIB data set.
The most important takeaway from the table is that Gurobi can not even start solving
very large problems as it can not finalize the root relaxation step within given maximum
run time, while RACQP can.

4.2.4 Maximum cut problem

The maximum-cut (Max-Cut) problem consists of finding a partition of the nodes of
a graph G = (V, E), into two disjoint sets V] and Vo (ViNV, = @, ViUV, =
V) in such a way that the total weight of the edges that have one endpoint in V;
and the other in V; is maximized. The problem has numerous important practical
applications, and is one of Karp’s 21 NP-complete problems. A standard formulation
of the problem is y max " % Zi’j w;, j(1 — y;y;), which can be re-formulated into

@ Springer

402

K. Mihic et al.

Table 27 QAPLIB, large problems [11,52] and RACQP/Gurobi objective values

Instance name Problem size Density (H) Best known Gap
() Obj val
Gurobi* RACQP

10min 5Smin 10 min
lipa80a 6400 0.96 253,195 0.15 0.01 0.01
lipa80b 6400 0.96 7,763,962 —0.96 0.23 0.22
lipa90a 8100 0.97 360,630 0.22 0.01 0.01
lipa90b 8100 0.97 12,490,441 —0.96 0.24 0.23
sko81 6561 0.69 90,998 1.11 0.03 0.03
sko90 8100 0.68 115,534 1.17 0.04 0.03
sko100a 10,000 0.68 152,002 1.34 0.04 0.03
sko100b 10,000 0.68 153,890 1.38 0.04 0.03
sko100c 10,000 0.67 147,862 1.21 0.04 0.05
sko100d 10,000 0.67 149,576 1.21 0.04 0.03
sko100e 10,000 0.67 149,150 1.17 0.04 0.04
sko100f 10,000 0.67 149,036 1.18 0.04 0.03
tai80a 6400 0.96 13,499,184 —0.98 0.05 0.05
tai80b 6400 0.43 818,415,043 —1.00 0.24 0.23
tail00a 10,000 0.96 21,043,560 —0.97 0.06 0.05
tai100b 10,000 0.43 1,185,996,137 —1.00 0.23 0.23
tai150b 22,500 0.44 498,896,643 —1.00 0.19 0.18
tho40 1600 0.38 240,516 —0.92 0.06 0.05
tho150 22,500 0.42 8,133,398 —0.89 0.09 0.06
wil50 2500 0.86 48,816 0.53 0.02 0.01
will100 10,000 0.88 273,038 1.19 0.03 0.02
Gap between best known results
*Root relaxation step not finished. Gurobi returned heuristic feasible solutions
quadratic unconstrained binary problem

min x” Hx
X (4D
s.t. x € {0, 1}"

where hi,j = Wi,j and hi’,' =

We use the Gset benchmark from [33], and compare the results of our experiments
with the optimal solutions (found by Gurobi) and the best known solutions from the
literature [4,48]. For perturbation we use default parameters and perform perturbation
by choosing a random number of variables and negating their values, i.e. x; = 1 — x;.
The number of blocks is equal for all instances, p = 4, and the initial point is set to zero
(xo = 0) for all the experiments. Note that as the max-cut problem is unconstrained,

@ Springer

Managing randomization in the multi-block alternating... 403

the penalty parameter S is not used (and RACQP is doing a randomly assembled cyclic
BCD).

In contrast to continuous sparse problems (rule 4, Sect. 4.1.1), sparse binary prob-
lems benefit from using a randomized multi-block approach, as shown in Table 28.
The table compares RACQP and Gurobi results collected from experiments on Gset
instances for three different maximum run-time limit settings, 10, 30 and 60 minutes.
RACQP again outperforms Gurobi, overall, it finds better solutions when run-time
is limited. Although Gurobi does better on a few problems, on average RACQP is
better. Note that for large(r) problems (n > 5000) RACQP keeps improving, which
can be explained by the difference in number of perturbations—for smaller problems,
good points have already being visited and a chance to find a better one are small.
Adaptively changing perturbation parameters could help, but this topic is out of scope
of this work.

4.2.5 Maximum bisection problem

The maximum bisection problem is a variant of the Max-Cut problem that involves
partitioning the vertex set V of a graph G = (V, E) into two disjoint sets V; and
V, of equal cardinality (i.e. Vi NV, = @, Vi U Vo, = V, [Vi]| = |V»]) such that the
total weight of the edges whose endpoints belong to different subsets is maximized.
The problem formulation follows (41) with the addition of a constraint e’ x = [n/2],
where 7 is the graph size.

For Max-Bisection, at each iteration we update the it/ block by solving

. B
Xt = arg min {x], Hy, X0, —y(€" x4, —bo,) + oL el x,, — by, I}

Xo; €{0, 1}

where d; is the size of block i, x,,; is a sub-vector of x constructed of components of
x with indices w; € 2, and b,,, = [n/2] — el X_,,; with x_,, being the sub-vector
of x with indices not chosen by w;. Solving the sub-problems directly has shown to
be very time consuming. However, noticing that Gurobi, while solving the problem
as whole, makes a good use of cuts for this type of problems (matrix Q structure), we
decided to reformulate the sub-problems as follows

mxin xgi H,, X, —yr + grz
st. el x,, —r = by,
Xo € {0, 1}4, r € {0, 1}.
Note that r can be also defined as a bounded continuous or integer variable, but
because the optimal value is zero and because Gurobi makes good use of binary cuts,
we decided to define r as binary.

As in the previous section, we use Gset benchmark library and compare the results
of our experiments with the best known solutions for max-bisection problems found in
the literature [48]. The experimental setup is identical to that of Max-Cut experiments
except for the use of the penalty parameter § = 0.005 and the initial point x¢ which is

@ Springer

K. Mihic et al.

404

€100 — 100°0

S00°0— 00—
00— LIT0—
000 — 160°0 —
000 — 6£0'0 —
1100 — cIro—
S00°0— 8¢0°0 —
€000 — 1200 —
1000 — 000°0

2000 — Sv00 —
9000 — 10—
000 — 9200 —
€100 — 00070

v1ro— 6v1'0—
L00°0 — ¢s00—
1100 — 1800 —

1000 — 0200 —
000 — 000°0

L00°0 — c100—
000 — S00°0—

7100 — 1000
S00°0 — 00—
€100 — 8S1'0—

9000 — 960°0 —
S000— 6€0°0 —

1100 — cIro—
S000 — 8¢0°0—
€000 — 1200 —
1000 — 000°0

2000 — S¥0°0 —
L000— wro—
000 — 9200 —
Y100 — 000°0

IS1°0— sIro—
8000 — 00—
1100 — 1800 —
1000 — 1200 —

¥00°0 — 000°0
8000 — clo0—
2000 — S00°0 —

9100 — 2000 —
9000 — 90°0 —
100 — I81°0—
L00°0— 8600 —
L00°0— 0v0'0 —
9100 — cIro—
S00°0— 1700 —
000 — 1200 —
1000 — 000°0

2000 — 90°0 —
0100 — wro—
000 — 9200 —
Y100 — 000°0

sIro— SSI'0—
8000 — 2900 —
1100 — 1800 —
1000 — 1200 —
000 — 000°0

00070 7100 —
€000 — S00°0—

8100 — €000 —
8000 — 9%0°0 —
S100— T —
8000 — 0Ccro—
8000 — 8L0°0—
L100— cIro—
L000— 790°0 —
8000 — 1200 —
1000 — 000°0

2000 — 9%0°0 —
9100 — w1ro—
¥00°0 — 9200 —
9100 — 000°0

sro— 091°0—
6000 — 2900 —
1100 — 1800 —
1000 — 1200 —
1100 — 000°0

1100 — S10°0—

€000 — 9000 —

0¥69
L66°9C
96LS
L8T'¥V1
9LT 61
9101
66201
8¥8¢
088¢S
0999
80v¢
8L9L
olvI
8¥8¢
65S¢°€l
66
¥90¢€
98
8LIC
¥T9°11

V|O~ :

01"
¢-01"
201"
201"

S 000°01 L9D
4 000L £9D
-8 000L 199
8 000L 09D
€ 000S 86D
I 000S 9¢D
I 0008 989
1 000T 1sO
C 000€ 0sD
C 000T 329
9 000T 6D
9 000T 9D
(4 000¢ (439
1 000¢ LTO
1 000¢ (443
4 008 81D
[4 008 14159]
9 008 [R5
9 008 995
9 008 1D

dOOVyd qomo

dOOvd qomp

d0OVyd qomo

dOOvd qomp

urw ()9 = W) ung

U ()¢ = oUIT) uni

Ut ()] = oW unt

urw G = ouIr) uni

den

Tea “[qO umouy| 3sog

(H) Q1sudq 9zIs Wo[qoId OWEU 90UuB)SUJ

saoueIsul [ASO ‘MD-Xe 8T |qeL

pringer

as

405

Managing randomization in the multi-block alternating...

sanfea 2A1199[qo 1qoIND/JOIVY PUE SINSAI UMOUY 159q Udamiaq den

yCI000— 60Y0°0— $E€I00— TPPO0O— THIO0— 8LPOO— T9I00— 69S0°0 — afereAy
71070 — 2000 S10°0— €200 — L100— 1€0°0 — $20°0 — 611°0— 0€0°v1 01T 000°02 18D
00— 100°0 €100 — 100°0 L100— 0100 — 8100 — 0200 — 9766 p—01 "€ 000°¥1 LLD
000 — 000 — S00°0 — S00°0— 9000 — 9000 — 9000 — 9000 — 1856 y—01 "€ 000°01 0LO
dOOVd Iqgomp JOOVY Iqgomp JOOVY Iqomp JOOVY 1qoinD
Uil ()9 = dwin uni urw ()¢ = dun) unx Ui ()| = QWi uni Ui ¢ = dwr) unx
den [ea ‘[qO umouyiseg (M) KA)ISue 9ZIS WR[QOIJ QWERU dUBISU]

panunuod gz 3|qel

pringer

As

406 K. Mihi¢ et al.

a feasible random vector. Perturbation is done with a simple swap—an equal number
of variables with values “1”” and “0” is chosen and the new value set to be the negation
of the old value.

The results are shown in Table 29. Compared to the unconstrained max-cut problem,
RACQP seems to have less trouble solving max-bisection problem—adding a single
constraint boosted its performance by up to 2x. Gurobi performance on the other
worsened. Overall, RACQP outperforms Gurobi, finding better solutions when run-
time is limited. Both Gurobi and RACQP continue gaining on solution quality (gap
gets smaller) with longer time limits.

5 Summary

In this paper, we introduced a novel randomized algorithm, randomly assembled
multi-block and cyclic alternating direction method of multipliers (RAC-ADMM),
for solving continuous and binary convex quadratic problems. We provided a theoret-
ical proof of the performance of our algorithm for solving linear-equality constrained
continuous convex quadratic programming, including the expected convergence of the
algorithm and sufficient condition for almost surely convergence of the algorithm. We
further provided open source code of our solver, RACQP, and numerical results on
demonstrating the efficiency of our algorithm.

We conducted multiple numerical tests on solving synthetic, real-world, and bench-
mark quadratic optimization problems, which include continuous and binary problems.
We compare RACQP with Gurobi, Mosek and OSQP for cases that do not require high
accuracy, but a strictly improved solution in shortest possible run-time. Computational
results show that RACQP, except for a couple of instances with a special structure,
finds solutions of a very good quality in a much shorter time than the compared solvers.

In addition to general linearly constrained quadratic problems we applied RACQP
to few selected machine learning problems, Linear Regression, LASSO, Elastic-Net,
and SVM. Our solver matches the performance of the best tailored methods such as
Glmnet and LIBSVM, and often gives better results than that of tailored methods. In
addition, our solver uses much less computation memory space than other ADMM
based method do, so that it is suitable in real applications with big data.

The following is a quick summary of the pros and cons of RACQP, implementation
of RAC-ADMM, for solving quadratic problems, and suggests the future research:

— RACQP is remarkably effective for solving continuous and binary convex QP
problems when the Hessian is non-diagonal, the constraint matrix are unstructured,
or the number of constraints are small. These findings are demonstrated by solving
Markowitz portfolio problems with real or random data, and randomly generated
sparse convex QP problems.

— RACQP, coupled with smart-grouping and a partial augmented Lagrangian, is
equally effective when the structure of the constraints is known. This finding is
supported by solving continuous and binary bench-mark Quadratic Assignment,
Max-Cut, and Max-Bisection problems. However, efficiently deciding on group-

@ Springer

407

Managing randomization in the multi-block alternating...

¥0000— €000 —
01000— 100°0—
€000— LEO0O—
8100— I81'0—
¥0000— ¥80°0—

S00°0— 8¢€00—
L100— 10I'0—
9000— 9¢00—
¥0000— ¥I100—

0 9000 —
10000— €90°0—

010°0— 9L00—
000— 2200 —

6000 — 0
¥100— 00—
€0000— 990°0—
10000— S90°0—
000— 9100—
L00°0 — 0

0 S10°0—
S00°0— C00'0—

S00'0— 9000—
[10°0— ¥00°0—
S00'0— 091'0—
6100— 8IT0—
S000— I¥I'0—
S00°0— 8CI'0—
L100— <oI'0—
900'0— LE00—
¥0000— SI10°0—

0 9000 —
10000— ¥90°0—
010°0— 9L0°0—
¥0000— 2200 —

6000 — 0

9100— €v0°0—
¥0000— 9900 —
10000— €90°0—
2000— LIOO—
1100 — 0

€000— 8I00—
§000— ¥00°0—

L00'0— LOOO—
y1000— 891'0—
9000— 091'0—
6100— VLTO—
900'0— 10C°0—
LO00— Cel'0—
8100— SIT'0—
L000— 8€00—
g000— SI00—
0 00—
$0000— CTLOO—
010°0— 8L00—
$0000— CTC00—
0100 — 0
12000— 0S0°0—
S000— s0TO0—
¥0000— S90°0—
8000— LIOO—

1100 — 0
€000— CC00—
S000— ¥00'0—

8000— 600°0—
910'0— CTLTO—
L000— €9T0—
0c00— vLTO—
I10°0— 10C°0—
LO00— €€1'0—
0c0'0— 8ITO0—
8000— 8CI'0—
g000— LIOO—

0 €100 —
$0000— LLOO—
110°0— 080°0—
¥0000— LCO0—
0100 — 0
€00— 0S00—
6000— LOTO—

¥0000— S90°0—
8000— 8I00—

Y100 — 0
9000— €200—
S000— ¥00'0—

1856
8€69
886°9C
96LS
LST'p1
9LT 61
910%
66C°01
LY8¢€
088¢S
6599
80v¢
8L9L
(1841
Ivee
65¢°€l
66
290¢
98
LLIT
vT9°11

p—01-€ 000°01 0LD
p—01°S 000°01 L99
01T 000L €90
018 000L 190
p—01°8 000L 09D
¢-0I€ 000S 85D
01T 000S 96D
01T 000S $sD
2011 0001 15D
01T 000€ 0$D
01T 0001 £vD
¢-01°9 0002 6D
¢-01°9 0002 9¢D
¢-01C 000¢ [43)
2011 0002 LTO
011 0002 wo
01T 008 81D
01T 008 vID
¢-01°9 008 119
2019 008 90
2019 008 19

dOOVyd qomo

dOOvd qomp

dOOvd qomo

dOOvd fqomo

urw ()9 = SW uni

U ()¢ = ouir) uni

urw ()] = oW unt

uru ¢ = ouw uni

den

‘Tea “[qO umouy| 1sog

(H) Q1suaq 9zISs Wo[qold QWRU d0UB)SUJ

SQouRISUT JHSD ‘UOTOASIg-XeIN 6 d]qeL

pringer

as

K. Mihic et al.

408

sanfea 2A199[qo 1qoIND/JOIVY PUE SINSAI UMOUY 159q Udamiaq den

9000 — €1S0°0—
cl00— vITo—
01000— S60°0—

€L00°0— SE€LO0O—
Y1000— €ST0—
00— LYTO0—

88000 — 9¥01'0—
SI000— 08T0—
€100— 89Y'0—

1010°0— 8TCI'0—
L1I00O— 08T0—
SI000— 89Y'0—

0€0°v1
8166

oFeIoAY
000°0T 18D
000°v1 LLO

dOOVY 1qomnp

dOOVY 1qomo

dOOVY 1qomnH

dOOVvYd 1qomnH

UIl ()9 = QUIT} Uni

UIW ()¢ = QW) uni

urw ()] = Wi uni

U ¢ = oW uni

den

‘TeA "[qQO umouy)sog

971 We[qoId

QuieU due)suy

ponunuod 67 3|qel

pringer

as

Managing randomization in the multi-block alternating... 409

ing strategy is also challenging. We plan to build an “automatic-smart-grouping”
method as a pre-solver for unknown structured problem data.

— Computational studies done on binary problems show that RAC-ADMM approach
to solving problems offers an advantage over the traditional direct approach (solv-
ing the problem as whole) when finding a good quality solution for a large-scale
integer problem in a very limited time. However, exact binary QP solvers, such
as Gurobi, are needed, because our binary RACQP relies on solving many small
or medium sized binary sub-problems. Of course, we plan to explore more high
efficiency solvers for medium-sized binary problems for RACQP.

— The ADMM-based approach, either RACQP or OSQP, is less competitive when the
Hessian of the convex quadratic objective is diagonal and the constraints are sparse
but structured such as a network-flow type. We believe in this case both Gurobi and
Mosek can utilize more efficient Cholesky factorization that is commonly used by
interior-point algorithms for solving linear programs; see more details in Sect. 3.1.
In contrary, RACQP has considerable overhead cost of preparing block data and
initialization time of the sub-problem solver, and the time spent on solving diagonal
sub-problems was an order of magnitude shorter than time needed to prepare data.
This, together with the divergence problem of multi-block ADMM, hints that there
must be something connected to the problem structure that makes such instances
hard for the ADMM-based approach. We plan on conducting additional research
to identify problem instances that are well-suited and those that are unsuitable for
ADMM.

— There are still many other open questions regarding RAC-ADMM. For example,
there is little work on how to optimally choose run-time parameters to work with
RAC-ADMM, including penalty parameter 8, number of blocks, and so for.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Allman, A., Tang, W., Daoutidis, P.: Decode: a community-based algorithm for generating high-quality
decompositions of optimization problems. Optim. Eng. 20(4), 1067-1084 (2019)

2. Baingana, B., Traganitis, P., Giannakis, G., Mateos, G.: Big data analytics for social networks (2015)

3. Bastani, H., Bayati, M.: Online decision-making with high-dimensional covariates. SSRN 2661896
(2015)

4. Benlic, U., Hao, J.K.: Breakout local search for the max-cutproblem. Eng. Appl. Artif. Intell. 26(3),
1162-1173 (2013)

@ Springer

http://creativecommons.org/licenses/by/4.0/

410

K. Mihic et al.

10.

11.

12.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. Bertsekas, D.P.: Incremental aggregated proximal and augmented Lagrangian algorithms. CoRR

arXiv:1509.09257 (2015)

. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, vol. 23.

Prentice Hall Englewood Cliffs, NJ (1989)

. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large

networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Pro-

ceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144—152. ACM (1992)

. Bottou, L., Lin, C.J.: Support vector machine solvers. Large Scale Kernel Machines 3(1), 301-320

(2007)

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122
(2011)

Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Global
Optim. 10(4), 391403 (1997). Revised 02.04.2003 (electronic update): http://www.seas.upenn.edu/
qaplib/

Byrd, R.H., Hansen, S.L., Nocedal, J., Singer, Y.: A stochastic quasi-newton method for large-scale
optimization. STAM J. Optim. 26(2), 1008-1031 (2016)

. Cai, X., Han, D., Yuan, X.: The direct extension of ADMM for three-block separable convex mini-

mization models is convergent when one function is strongly convex. Optim. Online 229, 230 (2014)
Chang, C.C,, Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 27:1-27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chen, C.,He,B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization
problems is not necessarily convergent. Math. Program. 155(1), 57-79 (2016). https://doi.org/10.1007/
s10107-014-0826-5

. Chen, C,, Li, M,, Liu, X., Ye, Y.: On the convergence of multi-block alternating direction method

of multipliers and block coordinate descent method (2015). http://www.optimization-online.org/DB_
HTML/2015/08/5046.html

Chen, C., Li, M., Liu, X., Ye, Y.: Extended ADMM and BCD for nonseparable convex minimization
models with quadratic coupling terms: convergence analysis and insights. Math. Program. (2017).
https://doi.org/10.1007/s10107-017-1205-9

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)

Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Springer,
Berlin (2006)

Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method
of multipliers. J. Sci. Comput. 66(3), 889-916 (2016)

Drezner, Z., Hahn, P., Taillard, E.D.: Recent advances for the quadratic assignment problem with
special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139(1),
65-94 (2005)

Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program. 55(1-3), 293-318 (1992)

Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers:
theoretical and computational perspectives. Pac. J. Optim. 11(4), 619-644 (2015)

Esser, E., Zhang, X., Chan, T.E.: A general framework for a class of first order primal-dual algorithms
for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015-1046 (2010)
Evstigneev, 1.V, Hens, T., Schenk-Hoppé, K.R.: Mean—variance portfolio analysis: the markowitz
model. In: Mathematical Financial Economics, pp. 11-18. Springer, Berlin (2015)

Fan, R.E., Chen, PH., Lin, C.J.: Working set selection using second order information for training
support vector machines. J. Mach. Learn. Res. 6, 1889-1918 (2005)

Ferris, M.C., Horn, J.D.: Partitioning mathematical programs for parallel solution. Math. Program.
80(1), 35-61 (1998)

Forero, P.A., Cano, A., Giannakis, G.B.: Distributed clustering using wireless sensor networks. IEEE
J. Sel. Top. Signal Process. 5(4), 707-724 (2011)

Friedman, J., Hastie, T., Hofling, H., Tibshirani, R., et al.: Pathwise coordinate optimization. Ann.
Appl. Stat. 1(2), 302-332 (2007)

Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordi-
nate descent. J. Stat. Softw. 33(1), 1 (2010)

@ Springer

http://arxiv.org/abs/1509.09257
http://www.seas.upenn.edu/qaplib/
http://www.seas.upenn.edu/qaplib/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1007/s10107-014-0826-5
https://doi.org/10.1007/s10107-014-0826-5
http://www.optimization-online.org/DB_HTML/2015/08/5046.html
http://www.optimization-online.org/DB_HTML/2015/08/5046.html
https://doi.org/10.1007/s10107-017-1205-9

Managing randomization in the multi-block alternating... 411

31.
32.
33.
34.

35.

36.
. Hong, M., Luo, Z.Q.: On the linear convergence of the alternating direction method of multipliers.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

50.
. Mihic, K., Ryan, K., Wood, A.: Randomized decomposition solver with the quadratic assignment

52.
53.
54.

55.
56.

57.

58.

59.

60.
61.

Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite
element approximation. Comput. Math. Appl. 2(1), 17-40 (1976)

Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Ditzgibbon,
W., Kuznetsov, Y., Neittaanmiki, P., Pironneau, O. (eds.) Modeling, Simulation and Optimization for
Science and Technology, pp. 59-82. Springer, Berlin (2014)

Gset http://web.stanford.edu/yyye/yyye/Gset/

Gurobi Optimizer 8.1.1 http://gurobi.com/ (2018)

He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable
convex programming. SIAM J. Optim. 22(2), 313-340 (2012)

Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303-320 (1969)

Math. Program. 162(1-2), 165-199 (2017)

Hong, M., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of mul-
tipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337-364 (2016)

Huang, K., Sidiropoulos, N.D.: Consensus-ADMM for general quadratically constrained quadratic
programming. IEEE Trans. Signal Process. 64(20), 5297-5310 (2016)

Jiang, B., Lin, T., Ma, S., Zhang, S.: Structured nonconvex and nonsmooth optimization: algorithms
and iteration complexity analysis. arXiv e-prints arXiv:1605.02408 (2018)

Jiang, B., Ma, S., Zhang, S.: Tensor principal component analysis via convex optimization. Math.
Program. 150(2), 423—457 (2015)

Joachims, T.: Making large-scale SVM learning practical. Technical report, SFB 475: Komplexititsre-
duktion in Multivariaten ... (1998)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput. 20(1), 359-392 (1998)

Lai, R., Osher, S.: A splitting method for orthogonality constrained problems. J. Sci. Comput. 58(2),
431-449 (2014)

Lin, T., Ma, S., Ye, Y., Zhang, S.: An ADMM-based interior-point method for large-scale linear
programming. arXiv e-prints arXiv:1805.12344 (2017)

Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multiblock variables.
SIAM J. Optim. 25(3), 1478-1497 (2015)

Lin, T., Ma, S., Zhang, S.: Iteration complexity analysis of multi-block ADMM for a family of convex
minimization without strong convexity. J. Sci. Comput. 69(1), 52-81 (2016)

Ma, F, Hao, J.K., Wang, Y.: An effective iterated tabu search for the maximum bisection problem.
Comput. Oper. Res. 81, 78-89 (2017)

Maros, 1., Mészdros, C.: A repository of convex quadratic programming problems. Optim. Methods
Softw. 11(1-4), 671-681 (1999)

Matlab R2018b https://www.mathworks.com/ (2018)

problem as a case study. INFORMS J. Comput. 30(2), 295-308 (2018)

Misevicius, A.: New best known solution for the most difficult qap instance “tail00a”. Memet. Comput.
11(3), 331-332 (2019)

Mohan, K., London, P., Fazel, M., Witten, D., Lee, S.I.: Node-based learning of multiple Gaussian
graphical models. J. Mach. Learn. Res. 15(1), 445-488 (2014)

Monteiro, R.D., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alter-
nating direction method of multipliers. SIAM J. Optim. 23(1), 475-507 (2013)

MOSEK version 8.1.0.49 https://www.mosek.com/ (2018)

Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23),
8577-8582 (2006)

Ohlsson, H., Yang, A., Dong, R., Sastry, S.: Cprl—an extension of compressive sensing to the phase
retrieval problem. In: Advances in Neural Information Processing Systems, pp. 1367-1375 (2012)
Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: robust alignment by sparse and low-rank
decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233—
2246 (2012)

Powell, M.J.D.: Algorithms for nonlinear constraints that use Lagrangian functions. Math. Program.
14, 224-248 (1978)

QAPLIB http://anjos.mgi.polymtl.ca/qaplib/

RACQP https://github.com/kmihic/RACQP. https://doi.org/10.5281/zenod0.4008720

@ Springer

http://web.stanford.edu/yyye/yyye/Gset/
http://gurobi.com/
http://arxiv.org/abs/1605.02408
http://arxiv.org/abs/1805.12344
https://www.mathworks.com/
https://www.mosek.com/
http://anjos.mgi.polymtl.ca/qaplib/
https://github.com/kmihic/RACQP
https://doi.org/10.5281/zenodo.4008720

412

K. Mihic et al.

62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

72.
73.
74.
75.
76.
71.

78.
79.

80.
81.

82.

Rudi, A., Carratino, L., Rosasco, L.: Falkon: an optimal large scale kernel method. In: Advances in
Neural Information Processing Systems, pp. 3888-3898 (2017)

SCIP Optimization Suite https://www.scipopt.org/

Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for Cox’s proportional hazards
model via coordinate descent. J Stat Softw 39(5), 1-13 (2011)

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: an operator splitting solver for
quadratic programs. In: 2018 UKACC 12th International Conference on Control (CONTROL), pp.
339-339. IEEE (2018)

Stellato, B., Naik, V.V., Bemporad, A., Goulart, P., Boyd, S.: Embedded mixed-integer quadratic
optimization using the OSQP solver. In: 2018 European Control Conference (ECC), pp. 1536-1541.
IEEE (2018)

Sun, D.L., Fevotte, C.: Alternating direction method of multipliers for non-negative matrix factorization
with the beta-divergence. In: 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6201-6205. IEEE (2014)

Sun, R., Luo, Z.Q., Ye, Y.: On the expected convergence of randomly permuted ADMM. Optimization
for Machine Learning, OPT2015 (2015)

Sun, R.,Luo,Z.Q., Ye, Y.: On the efficiency of random permutation for ADMM and coordinate descent.
Math. Oper. Res. 45(1), 233-271 (2020)

Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy
observations. STAM J. Optim. 21(1), 57-81 (2011)

Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., Goldstein, T.: Training neural networks without
gradients: a scalable ADMM approach. In: International Conference on Machine Learning, pp. 2722—
2731 (2016)

The Maros and Meszaros Convex QP Test Problem Set. http://www.cuter.rl.ac.uk/Problems/marmes.
html

The Mittelmann LP test set. http://plato.asu.edu/ftp/Iptestset/

Vapnik, V., Vapnik, V.: Statistical Learning Theory, pp. 156—-160. Wiley, New York (1998)

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

Wang, F., Cao, W., Xu, Z.: Convergence of multi-block Bregman ADMM for nonconvex composite
problems. arXiv preprint arXiv:1505.03063 (2015)

Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization.
arXiv e-prints arXiv:1511.06324 (2017)

Wharton Research Data Services https://wrds-web.wharton.upenn.edu/wrds/index.cfm (2018)
Woodsend, K., Gondzio, J.: Exploiting separability in large-scale linear support vector machine train-
ing. Comput. Optim. Appl. 49(2), 241-269 (2011)

Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3-34 (2015)

Zarepisheh, M., Xing, L., Ye, Y.: A computation study on an integrated alternating direction method
of multipliers for large scale optimization. Optim. Lett. 12(1), 3—15 (2018)

Zhang, J., Ma, S., Zhang, S.: Primal-dual optimization algorithms over Riemannian manifolds: an
iteration complexity analysis. arXiv e-prints arXiv:1710.02236 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Kresimir Mihi¢'2@® - Mingxi Zhu3@® - Yinyu Ye*

Mingxi Zhu
mingxiz@stanford.edu

Yinyu Ye
yyye@stanford.edu

School of Mathematics, The University of Edinburgh, Edinburgh, UK

@ Springer

https://www.scipopt.org/
http://www.cuter.rl.ac.uk/Problems/marmes.html
http://www.cuter.rl.ac.uk/Problems/marmes.html
http://plato.asu.edu/ftp/lptestset/
http://arxiv.org/abs/1505.03063
http://arxiv.org/abs/1511.06324
https://wrds-web.wharton.upenn.edu/wrds/index.cfm
http://arxiv.org/abs/1710.02236
https://arxiv.org/abs/1710.02236
http://orcid.org/0000-0001-7896-2427
http://orcid.org/0000-0001-5513-0038

Managing randomization in the multi-block alternating... 413

2 Oracle Labs, Redwood Shores, California, USA
3 Graduate School of Business, Stanford University, Stanford, California, USA

4 Department of Management Science and Engineering, School of Engineering, Stanford
University, Stanford, California, USA

@ Springer

	Managing randomization in the multi-block alternating direction method of multipliers for quadratic optimization
	Abstract
	1 Introduction
	2 RAC-ADMM
	2.1 The algorithm
	2.2 Convergence of RAC-ADMM
	2.2.1 Preliminaries
	2.2.2 Expected convergence of RAC-ADMM
	2.2.3 Convergence speed of RAC-ADMM versus RP-ADMM
	2.2.4 Variance of RAC-ADMM

	2.3 Variance reduction in RAC-ADMM
	2.3.1 Detecting and utilizing a structure in LCQP
	2.3.2 Smart grouping
	2.3.3 Partial Lagrangian

	3 RAC-ADMM quadratic programming solver
	3.1 Solving continuous problems
	3.1.1 Termination criteria for continuous problems

	3.2 Mixed integer problems

	4 Computational studies
	4.1 Continuous problems
	4.1.1 Choosing RACQP solver working mode
	4.1.2 Regularized Markowitz mean–variance model
	4.1.3 Randomly generated linearly constrained quadratic problems (LCQP)
	4.1.4 Relaxed QAP
	4.1.5 Maros and Meszaros convex QP
	4.1.6 Convex QP based on the Mittelmann LP test set
	4.1.7 Selected machine learning problems
	4.1.8 Changing random seed for RACQP

	4.2 Binary and mixed integer problems
	4.2.1 Randomness helps
	4.2.2 Markowitz portfolio selection
	4.2.3 QAPLIB
	4.2.4 Maximum cut problem
	4.2.5 Maximum bisection problem

	5 Summary
	References

