

Edinburgh Research Explorer

Design and implementation of a modular interior-point solver for
linear optimization

Citation for published version:
Anjos, MF, Lodi, A & Tanneau, M 2021, 'Design and implementation of a modular interior-point solver for
linear optimization', Mathematical Programming Computation, vol. 13, pp. 509-551.
https://doi.org/10.1007/s12532-020-00200-8

Digital Object Identifier (DOI):
10.1007/s12532-020-00200-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematical Programming Computation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1007/s12532-020-00200-8
https://doi.org/10.1007/s12532-020-00200-8
https://www.research.ed.ac.uk/en/publications/66d1f3da-69ac-447c-a6ae-3597221a46e4

Noname manuscript No.
(will be inserted by the editor)

Design and implementation of a modular
interior-point solver for linear optimization

Mathieu Tanneau · Miguel F. Anjos ·
Andrea Lodi

the date of receipt and acceptance should be inserted later

Abstract This paper introduces the algorithmic design and implementation
of Tulip, an open-source interior-point solver for linear optimization. It im-
plements a regularized homogeneous interior-point algorithm with multiple
centrality corrections, and therefore handles unbounded and infeasible prob-
lems. The solver is written in Julia, thus allowing for a flexible and efficient
implementation: Tulip’s algorithmic framework is fully disentangled from lin-
ear algebra implementations and from a model’s arithmetic. In particular, this
allows to seamlessly integrate specialized routines for structured problems. Ex-
tensive computational results are reported. We find that Tulip is competitive
with open-source interior-point solvers on the H. Mittelmann’s benchmark of
barrier linear programming solvers. Furthermore, we design specialized linear
algebra routines for structured master problems in the context of Dantzig-
Wolfe decomposition. These routines yield a tenfold speedup on large and
dense instances that arise in power systems operation and two-stage stochas-
tic programming, thereby outperforming state-of-the-art commercial interior
point method solvers. Finally, we illustrate Tulip’s ability to use different levels
of arithmetic precision by solving problems in extended precision.

Keywords Linear programming · Interior-point methods

Mathematics Subject Classification (2010)

Mathieu Tanneau was supported by an excellence doctoral scholarship from FQRNT.

Miguel F. Anjos
E-mail: anjos@stanfordalumni.org

Andrea Lodi
E-mail: andrea.lodi@polymtl.ca

Mathieu Tanneau
E-mail: mathieu.tanneau@polymtl.ca

2 Mathieu Tanneau et al.

1 Introduction

Linear programming (LP) algorithms have been around for over 70 years, and
LP remains a fundamental paradigm in optimization. Indeed, although nowa-
days most real-life applications involve discrete decisions or non-linearities,
the methods employed to solve them often rely on LP as their workhorse. Be-
sides algorithms for mixed-integer linear programming (MILP), these include
cutting-plane and outer-approximation algorithms that substitute a non-linear
problem with a sequence of iteratively refined LPs [41,47,56]. Furthermore, LP
is at the heart of classical decomposition methods such as Dantzig-Wolfe and
Benders decompositions [8, 15]. Therefore, efficient and robust LP technology
is instrumental to our ability to solve more involved optimization problems.

Over the past few decades, interior-point methods (IPMs) have become
a standard and efficient tool for solving LPs [27, 57]. While IPMs tend to
overcome Dantzig’s simplex algorithm on large-scale problems, the latter is
well-suited for solving sequences of closely related LPs, by taking advantage
of an advanced basis. Nevertheless, beyond sheer performance, it is now well
recognized that a number of LP-based algorithms can further benefit from
IPMs, despite their limited ability to warm start. In cutting plane algorithms,
stronger cuts are often obtained by cutting off an interior point rather than an
extreme vertex [11,47,48]. Similarly, IPMs have been successfully employed in
the context of decomposition methods [7, 21, 29, 50, 51], wherein well-centered
interior solutions typically provide a stabilization effect [28,32,52], thus reduc-
ing tailing-off and improving convergence.

1.1 Exploiting structure in IPMs

The remarkable performance of IPMs stems from both strong algorithmic
foundations and efficient linear algebra. Indeed, the main computational ef-
fort of IPMs resides in the resolution, at each iteration, of a system of lin-
ear equations. Therefore, the efficiency of the underlying linear algebra has a
direct impact of the method’s overall performance. Remarkably, while most
IPM solvers employ general-purpose sparse linear algebra routines, substantial
speedups can be obtained by exploiting a problem’s specific structure. Nev-
ertheless, successfully doing so requires (i) identifying a problem’s structure
and associated specialized linear algebra, (ii) integrating these custom routines
within an IPM solver, and (iii) having a convenient and flexible way for the
user to convey structural information to the solver. The main contribution of
our work is to simplify the latter two points.

Numerous works have studied structure-exploiting IPMs, e.g., [10, 13, 14,
30, 33, 34, 38, 40, 53]. For instance, block-angular matrices typically arise in
stochastic programming when using scenario decomposition. In [10] and later
in [40], the authors thus design specialized factorization techniques that out-
perform generic implementations. Schultz et al. [53] design a specialized IPM
for block-angular problems; therein, linking constraints are handled separately,

Title Suppressed Due to Excessive Length 3

thus allowing to decompose the rest of the problem. Gondzio [34] observed
that the master problem in Dantzig-Wolfe decomposition possesses a block-
angular structure. Similar approaches have been explored for network flow
problems [14], multi-commodity flow problems [33], asset management prob-
lems [30], and for solving facility location problems [13,38].

The aforementioned works focus on devising specialized linear algebra for
a particular structure or application. On the other hand, a handful of IPM
codes that accommodate various linear algebra implementations have been
developed. The OOQP software, developed by Gertz and Wright [23], uses
object-oriented design so that data structures and linear algebra routines can
be tailored to specific applications. Motivated by large-scale stochastic pro-
gramming, PIPS [44] incorporates a large share of OOQP’s codebase, along-
side specialized linear solvers for block-angular matrices. Nevertheless, to the
best of the authors’ knowledge, OOQP is no longer actively maintained, while
current development on PIPS focuses on non-linear programming.1 In a similar
fashion, OOPS [30, 31, 33] implements custom linear algebra that can exploit
arbitrary block matrix structures. We also note that both PIPS and OOPS
are primarily intended for massive parallelism on high-performance computing
infrastructure. Furthermore, the BlockIP software [12] is designed for block-
angular convex optimization problems, and solves linear systems with a combi-
nation of Cholesky factorization and preconditioned conjugate gradient. Both
OOPS and BlockIP can be accessed through SML [35] –which requires AMPL,
and are distributed under a closed-source proprietary license.

Finally, while nowadays most optimization solvers are written in C or
C++, users are increasingly turning to higher-level programming languages
such as Python, Matlab or Julia, alongside a variety of modeling tools, e.g,
Pyomo [37], CVXPY [18], YALMIP [43], JuMP [20], to mention a few. Thus,
users of high-level languages often have to switch to a low-level language in
order to implement performance-critical tasks such as linear algebra. This sit-
uation, commonly referred to as the “two-language problem”, hinders code
development, maintenance, and usability.

1.2 Contributions and outline

In this paper, we describe the design and implementation of a modular interior-
point solver, Tulip. The solver is written in Julia [9], which offers several advan-
tages. First, Julia combines both high-level syntax and fast performance, thus
addressing the two-language problem. In particular, it offers built-in support
for linear algebra, with direct access to dense and sparse linear algebra libraries
such as BLAS, LAPACK and SuiteSparse [16]. Second, the Julia ecosystem
for optimization comprises a broad range of tools, from solvers’ wrappers to
modeling languages, alongside a growing and dynamic community of users.
Finally, Julia’s multiple dispatch feature renders Tulip’s design fully flexible,

1 Personal communication with PIPS developers.

4 Mathieu Tanneau et al.

thus allowing to disentangle the IPM algorithmic framework from linear alge-
bra implementations, and to solve problems in arbitrary precision arithmetic.

The remainder of the paper is structured as follows. In Section 2, we in-
troduce some notations and relevant definitions.

In Section 3, we describe the homogeneous self-dual embedding, and Tulip’s
regularized homogeneous interior-point algorithm. This feature contrasts with
most IPM LP codes, namely, those that implement the almost-ubiquitous in-
feasible primal-dual interior-point algorithm [46]. The main advantage of the
homogeneous algorithm is its ability to return certificates of primal or dual
infeasibility. It is therefore better suited for use within cutting-plane algo-
rithms or decomposition methods, wherein one may encounter infeasible or
unbounded LPs.

In Section 4, we highlight the resolution of linear systems within Tulip,
which builds on black-box linear solvers. This modular design leverages Julia’s
multiple dispatch, thereby facilitating the integration of custom linear algebra
with no performance loss due to using external routines.

The presolve procedure is described in Section 5 and, in Section 6, we
provide further implementation details of Tulip, such as the treatment of vari-
able bounds, default values of parameters, and default linear solvers. Tulip
is publicly available [54] under an open-source license. It can be used as a
stand-alone package in Julia, and through the solver-independent interface
MathOptInterface [42].

In Section 7, we report on three sets of computational experiments. First,
we compare Tulip to several open-source and commercial IPM solvers on a
benchmark set of unstructured LP instances. We observe that, using generic
sparse linear algebra, Tulip is competitive with open-source IPM solvers. Sec-
ond, we demonstrate Tulip’s flexible design. We consider block-angular prob-
lems with dense linking constraints from two column-generation applications,
for which we design specialized linear algebra routines. This implementation
yields a tenfold speedup, thereby outperforming commercial solvers on large-
scale instances. Third, we show how extended precision can alleviate numerical
difficulties, thus illustrating Tulip’s ability to work in arbitrary precision arith-
metic.

Finally, Section 8 concludes the paper and highlights future research direc-
tions.

2 Notations

We consider LPs in primal-dual standard form

(P) min
x

cTx

s.t. Ax = b,
x ≥ 0,

(D) max
y,s

bT y

s.t. AT y + s = c,
s ≥ 0,

(1)

where c, x, s ∈ Rn, b, y ∈ Rm, and A ∈ Rm×n is assumed to have full row
rank. We follow the usual notations from interior-point literature, and write

Title Suppressed Due to Excessive Length 5

X (resp. S) the diagonal matrix whose diagonal is given by x (resp. s), i.e.,
X := Diag(x) and S := Diag(s).

We denote I the identity matrix and e the vector with all coordinates equal
to one; their respective dimensions are always obvious from context. The norm
of a vector is written ‖·‖ and, unless specified otherwise, it denotes the `2 norm.

A primal solution x is feasible if Ax = b and x ≥ 0. A strictly feasible (or
interior) solution is a primal feasible solution with x > 0. Similarly, a dual
solution (y, s) is feasible if AT y + s = c and s ≥ 0, and strictly feasible if,
additionally, s > 0. Finally, a primal-dual solution (x, y, s) is optimal for (1) if
x is primal-feasible, (y, s) is dual-feasible, and their objective values are equal,
i.e., cTx = bT y.

A solution (x, y, s) with x, s ≥ 0 is strictly complementary if

∀i ∈ {1, . . . , n},
(
xisi = 0 and xi + si > 0

)
. (2)

The complementarity gap is defined as xT s. When (x, y, s) is primal-dual feasi-
ble, the complementarity gap equals the classical optimality gap, i.e., we have
xT s = cTx− bT y.

For ease of reading, we assume, without loss of generality, that all primal
variables are required to be non-negative. The handling of free variables and
of variables with finite upper bound will be detailed in Section 6.

3 Regularized homogeneous interior-point algorithm

In this section, we describe the homogeneous self-dual formulation and algo-
rithm. Our implementation largely follows the algorithmic framework of [58]
and [4], combined with the primal-dual regularization scheme of [22]. Conse-
quently, we focus on the algorithm’s main components, and refer to [4, 22, 58]
for convergence proofs and theoretical results. Specific implementation details
will be further discussed in Section 6.

3.1 Homogeneous self-dual embedding

The simplified homogeneous self-dual form was introduced in [58]. It consists
in reformulating the primal-dual pair (1) as a single, self-dual linear program,
which writes

(HSD) min
x,y,τ

0 (3)

s.t. −AT y + cτ ≥ 0, (4)
Ax− bτ = 0, (5)
− cTx+ bT y ≥ 0, (6)
x, τ ≥ 0, (7)

6 Mathieu Tanneau et al.

where τ is a scalar variable. Let s, κ be the non-negative slacks associated to
(4) and (6), respectively. A solution (x, y, s, τ, κ) is strictly complementary if

xisi = 0, xi + si > 0, and τκ = 0, τ + κ > 0.

Problem (HSD) is always feasible, has empty interior and, under mild as-
sumptions, possesses a strictly complementary feasible solution [58].

Let (x∗, y∗, s∗, τ∗, κ∗) be a strictly complementary feasible solution for
(HSD). If τ∗ > 0, then (x

∗

τ∗ ,
y∗

τ∗ ,
s∗

τ∗) is an optimal solution for the original
problem (1). Otherwise, we have κ∗ > 0 and thus cTx∗ − bT y∗ < 0. In that
case, the original problem (P) is infeasible or unbounded. If cTx∗ < 0, then (P)
is unbounded and x∗ is an unbounded ray. If −bT y∗ < 0, then (P) is infeasible
and y∗ is an unbounded dual ray. The latter is also referred to as a Farkas
proof of infeasibility. Finally, if both cTx∗ < 0 and −bT y∗ < 0, then both (P)
and (D) are infeasible.

3.2 Regularized formulation

Friedlander and Orban [22] introduce an exact primal-dual regularization
scheme for convex quadratic programs, which we extend to the HSD form. The
benefits of regularizations will be further detailed in Section 4. Importantly,
rather than viewing (HSD) as a generic LP to which the regularization proce-
dure of [22] is applied, we exploit the fact that (HSD) is a self-dual embedding
of (P)−(D), and formulate the regularization in the original primal-dual space.

Thus, we consider a single, regularized, self-dual problem

(rHSD) min
x,y,τ

ρp(x− x̄)Tx+ ρd(y − ȳ)T y + ρg(τ − τ̄)τ (8)

s.t. −AT y + cτ + ρp(x− x̄) ≥ 0, (9)
Ax− bτ + ρd(y − ȳ) = 0, (10)
− cTx+ bT y + ρg(τ − τ̄) ≥ 0, (11)
x, τ,≥ 0, (12)

where ρp, ρd, ρg are positive scalars, and x̄ ∈ Rn, ȳ ∈ Rm, τ̄ ∈ R are given
estimates of an optimal solution of (HSD). We denote by s, κ the non-negative
slack variables of constraints (9) and (11), respectively. The first-order Karush-
Kuhn-Tucker (KKT) conditions for (rHSD) can then be expressed in the
following form:

ρpx−AT y − s+ cτ = ρpx̄, (13)
Ax+ ρdy − bτ = ρdȳ, (14)

−cTx+ bT y + ρgτ − κ = ρg τ̄ , (15)
xjsj = 0, j = 1, ..., n (16)
τκ = 0, (17)

x, s, τ, κ ≥ 0. (18)

Title Suppressed Due to Excessive Length 7

The correspondence between (rHSD) and [22] follows from the fact that,
up to a constant term, the objective function (8) equals

1

2

(
ρp ‖x− x̄‖2 + ρd ‖y − ȳ‖2 + ρg ‖τ − τ̄‖2 + ρp ‖x‖2 + ρd ‖y‖2 + ρg ‖τ‖2

)
.

Note that, for ρp = ρd = ρg = 0, the regularized problem (rHSD) reduces
to (HSD). Furthermore, Theorem 1 shows that, for positive ρp, ρd, ρg, the
regularization is exact.

Theorem 1 Assume ρp, ρd, ρg > 0. Let (x∗, y∗, τ∗) be a complementary op-
timal solution of (HSD), and let (x̄, ȳ, τ̄) = (x∗, y∗, τ∗) in the definition of
(rHSD). Then, (x∗, y∗, τ∗) is the unique optimal solution of (rHSD).

Proof The uniqueness of the optimum is a direct consequence of (rHSD) being
a convex problem with strictly convex objective.

Next, we show that any feasible solution of (rHSD) has non-negative ob-
jective. Let (x, y, s, τ, κ) be a feasible solution of (rHSD). Substituting Eq.
(9)-(11) into the objective (8), one obtains

Z = ρp(x− x̄)Tx+ ρd(y − ȳ)T y + ρg(τ − τ̄)τ

= (AT y + s− cτ)Tx+ (bτ −Ax)T y + (cTx− bT y + κ)τ

= xT s+ τκ ≥ 0.

Then, (x∗, y∗, τ∗) is trivially feasible for (rHSD), and its objective value is
(x∗)T s∗ + τ∗κ∗ = 0. Thus, it is optimal for (rHSD), which concludes the
proof. ut

3.3 Regularized homogeneous algorithm

We now describe the regularized homogeneous interior-point algorithm. Sim-
ilar to [22], we apply a single Newton iteration to a sequence of problems of
the form (rHSD) where, at each iteration, x̄, ȳ, τ̄ are chosen to be the current
primal-dual iterate.

Let (x, y, s, τ, κ) denote the current primal-dual iterate, with (x, s, τ, κ) >
0, and define the residuals

rp = bτ −Ax, (19)
rd = cτ −AT y − s, (20)
rg = cTx− bT y + κ, (21)

and the barrier parameter

µ =
xT s+ τκ

n+ 1
.

8 Mathieu Tanneau et al.

For given x̄, ȳ, τ̄ , a search direction (δx, δy, δs, δτ , δκ) is computed by solving
a Newton system of the form

−ρpδx +AT δy + δs − cδτ = η
(
cτ −AT y − s+ ρp(x̄− x)

)
, (22)

Aδx + ρdδy − bδτ = η (bτ −Ax− ρd(y − ȳ)) , (23)
−cT δx + bT δy + ρgδτ − δκ = η

(
cTx− bT y + κ− ρg(τ − τ̄)

)
, (24)

Sδx +Xδs = −XSe+ γµe, (25)
κδτ + τδκ = −τκ+ γµ, (26)

where γ and η are non-negative scalars whose values will be specified in Section
3.3.2. We evaluate the Newton system at (x̄, ȳ, τ̄) = (x, y, τ), which yields

−ρpI AT I −c 0
A ρdI 0 −b 0

−cT bT 0 ρg −1
S 0 X 0 0
0 0 0 κ τ

δx
δy
δs
δτ
δκ

 =

ηrd
ηrp
ηrg

−XSe+ γµe
−τκ+ γµ

 . (27)

System (27) is identical to the Newton system obtained when solving (HSD)
(see, e.g., [4]), except for the regularization terms that appear in the left-hand
side. In particular, the right-hand side remains unchanged.

3.3.1 Starting point

We choose the following default starting point

(x0, y0, s0, τ0, κ0) = (e, 0, e, 1, 1).

This initial point was proposed in [58]. Besides its simplicity, it has well-
balanced complementarity products, which are all equal to one.

3.3.2 Search direction

At each iteration, a search direction is computed using Mehrotra’s predictor-
corrector technique [46], combined with Gondzio’s multiple centrality correc-
tions [25]. Following [4], we adapt the original formulas of [25, 46] to account
for the homogeneous embedding.

First, the affine-scaling direction (δaff
x , δaff

y , δaff
s , δaff

τ , δaff
κ) is obtained by solv-

ing the Newton system

−ρpδ
aff
x +AT δaff

y + δaff
s − cδaff

τ = rd, (28)
Aδaff

x + ρdδ
aff
y − bδaff

τ = rp, (29)
−cT δaff

x + bT δaff
y + ρgδ

aff
τ − δaff

κ = rg, (30)
Sδaff

x +Xδaff
s = −XSe, (31)

κδaff
τ + τδaff

κ = −τκ, (32)

Title Suppressed Due to Excessive Length 9

which corresponds to (27) with η = 1 and γ = 0. Taking a full step (α = 1)
would thus reduce both infeasibility and complementarity gap to zero. How-
ever, doing so is generally not possible, due to the non-negativity requirement
on (x, s, τ, κ).

Consequently, a corrected search direction is computed, as proposed in
[46]. The corrected direction hopefully enables one to make longer steps, thus
reducing the total number of IPM iterations. Let η = 1− γ, where

γ = (1− αaff)2 min
(
γmin, (1− αaff)

)
(33)

for some γmin > 0, and

αaff = max
{
0 ≤ α ≤ 1 | (x, s, τ, κ) + α(δaff

x , δaff
s , δaff

τ , δaff
κ) ≥ 0

}
. (34)

The corrected search direction is then given by

−ρpδx +AT δy + δs − cδτ = ηrd, (35)
Aδx + ρdδy − bδτ = ηrp, (36)

−cT δx + bT δy + ρgδτ − δκ = ηrg, (37)
Sδx +Xδs = −XSe+ γµe−∆aff

x ∆aff
s e, (38)

κδτ + τδκ = −τκ+ γµ− δaff
τ δaff

κ , (39)

where ∆aff
x = Diag(δaff

x) and ∆aff
s = Diag(δaff

s).

3.3.3 Additional centrality corrections

Additional centrality corrections aim at improving the centrality of the new
iterate, i.e., to keep the complementary products well balanced. Doing so gen-
erally allows to make longer steps, thus reducing the total number of IPM
iterations. We implement Gondzio’s original technique [25], with some modi-
fications introduced in [4].

Let δ = (δx, δy, δs, δτ , δκ) be the current search direction, αmax the corre-
sponding maximum step size, and define

(x̄, ȳ, s̄, τ̄ , κ̄) := (x, y, s, τ, κ) + ᾱ(δx, δy, δs, δτ , δκ), (40)

where ᾱ := min(1, 2αmax) is a tentative step size.
First, a soft target in the space of complementarity products is computed

as

tj =

 µl − x̄j s̄j if x̄j s̄j < µl

0 if x̄j s̄j ∈ [µl, µu]
µu − x̄j s̄j if x̄j s̄j > µu

, j = 1, . . . , n, (41)

t0 =

 µl − τ̄ κ̄ if τ̄ κ̄ < µl

0 if τ̄ κ̄ ∈ [µl, µu]
µu − τ̄ κ̄ if τ̄ κ̄ > µu

, (42)

10 Mathieu Tanneau et al.

where µl = γµβ and µu = γµβ−1, for a fixed 0 < β ≤ 1. Then, define

v = t− eT t+ t0
n+ 1

e, (43)

v0 = t0 −
eT t+ t0
n+ 1

. (44)

A correction is obtained by solving the linear system

−ρpδ
c
x +AT δcy + δcs − cδcτ = 0, (45)

Aδcx + ρdδ
c
y − bδcτ = 0, (46)

−cT δcx + bT δcy + ρgδ
c
τ − δcκ = 0, (47)

Sδcx +Xδcs = v, (48)
κδcτ + τδcκ = v0, (49)

which yields a corrected search direction

(δx, δy, δs, δτ , δκ) + (δcx, δ
c
y, δ

c
s, δ

c
τ , δ

c
κ).

The corrected direction is accepted if it results in an increased step size.
Finally, additional centrality corrections are computed only if a sufficient

increase in the step size is observed. Specifically, as suggested in [4], an addi-
tional correction is computed only if the new step size α satisfies

α ≥ 1.10× αmax. (50)

3.3.4 Regularizations

Following [22], the regularizations are updated as follows. Let ρkp, ρkd, ρkg denote
the regularization terms at iteration k. We set ρ0p = ρ0d = ρ0g = 1, and use the
update rule

ρk+1
p = max

(
√
ε,
ρkp
10

)
, (51)

ρk+1
d = max

(√
ε,
ρkd
10

)
, (52)

ρk+1
g = max

(
√
ε,
ρkg
10

)
, (53)

where ε denotes the machine precision, e.g., ε ' 10−16 for double-precision
floating point arithmetic.

Further details on the role of regularizations in the resolution of the New-
ton system are given in Section 4. Let us only mention here that ρp, ρd, ρg may
become too small to ensure that the Newton system is properly regularized,
e.g., for badly scaled problems. When this is the case, we increase the regular-
izations by a factor of 100, and terminate the algorithm if three consecutive
increases fail to resolve the numerical issues.

Title Suppressed Due to Excessive Length 11

3.3.5 Step size

Once the final search direction has been computed, the step size α is given by

α = 0.9995× αmax, (54)

where

αmax = max {0 ≤ α ≤ 1 | (x, s, τ, κ) + α(δx, δs, δτ , δκ) ≥ 0} .

3.3.6 Stopping criteria

The algorithm stops when, up to numerical tolerances, one of the following
three cases holds: the current iterate is optimal, the primal problem is proven
infeasible, the dual problem is proven infeasible (unbounded primal).

The problem is declared solved to optimality if

‖rp‖∞
τ(1 + ‖b‖∞)

< εp, (55)

‖rd‖∞
τ(1 + ‖c‖∞)

< εd, (56)

|cTx− bT y|
τ + |bT y|

< εg, (57)

where εp, εd, εg are positive parameters. The above criteria are independent of
the magnitude of τ , and correspond to primal feasibility, dual feasibility and
optimality, respectively.

Primal or dual infeasibility is detected if

µ < εi, (58)
τ

κ
< εi, (59)

where εi is a positive parameter. When this is the case, a complementary
solution with small τ has been found. If cTx < −εi, the problem is declared
dual infeasible (primal unbounded), and x is an unbounded ray. If −bT y < −εi,
the problem is declared primal infeasible (dual unbounded), and y is a Farkas
dual ray.

Finally, premature termination criteria such as numerical instability, time
limit or iteration limit are discussed in Section 6.

4 Solving linear systems

Search directions and centrality corrections are obtained by solving several
Newton systems such as (28)-(32), all with identical left-hand side matrix but

12 Mathieu Tanneau et al.

different right-hand side. Specifically, each Newton system has the form
−ρpI AT I −c
A ρdI −b

−cT bT ρg −1
S X

κ τ

δx
δy
δs
δτ
δκ

 =

ξd
ξp
ξg
ξxs
ξτκ

 , (60)

where ξp, ξd, ξg, ξxs, ξτκ are appropriate right-hand side vectors. The purpose
of this section is to provide further details on the techniques used for the
resolution of (60), and their implementation in Tulip.

4.1 Augmented system

First, we eliminate δs and δκ as follows:

δs = X−1(ξxs − Sδx), (61)
δκ = τ−1(ξτκ − κδτ), (62)

which yields−(Θ−1 + ρpI) AT −c
A ρdI −b

−cT bT τ−1κ+ ρg

 δxδy
δτ

 =

 ξd −X−1ξxs
ξp
ξg + τ−1ξτκ

 , (63)

where Θ = XS−1.
As outlined in [4, 57], a solution to (63) is obtained by first solving[

−(Θ−1 + ρpI) AT

A ρdI

] [
p
q

]
=

[
c
b

]
, (64)

and [
−(Θ−1 + ρpI) AT

A ρdI

] [
u
v

]
=

[
ξd −X−1ξxs
ξp

]
. (65)

Linear systems of the form (64) and (65) are referred to as augmented systems.
Then, δx, δy, δτ are computed as follows:

δτ =
ξg + τ−1ξτκ + cTu+ bT v

τ−1κ+ ρg
− cT p+ bT q, (66)

δx = u+ δτp, (67)
δy = v + δτq. (68)

Note that (64) does not depend on the right-hand side ξ. Thus, it is only solved
once per IPM iteration, and its solution is reused when solving subsequent
Newton systems.

Title Suppressed Due to Excessive Length 13

Finally, as pointed in [22], the augmented system’s structure motivates the
following observations. First, the use of primal-dual regularizations controls
the effective condition number of the augmented system, which, in turn, im-
proves the algorithm’s numerical behavior. Second, the augmented system’s
matrix is symmetric quasi-definite. This allows the use of efficient symmetric
indefinite factorization techniques, which only require one symbolic analysis
at the beginning of the optimization. In particular, dual regularizations ensure
that this quasi-definite property is retained even when A does not have full
rank. Third, directly solving the augmented system implicitly handles dense
columns in A, which make the system of normal equations dense [57]. We
have also found this approach to be more numerically stable than a normal
equations system-based approach.

4.2 Black-box linear solvers

The augmented system may be solved using a number of techniques, with di-
rect methods –namely, symmetric factorization techniques– being the most
popular choice. Importantly, the algorithm itself is unaffected by how the
augmented system is solved, provided that it is solved accurately. Our im-
plementation leverages Julia’s multiple dispatch feature and built-in support
for linear algebra, thus allowing to disentangle the algorithmic framework from
the linear algebra implementation.

First, the interior-point algorithm is defined over abstract linear algebra
structures. Namely, the constraint matrix A is treated as an AbstractMatrix,
whose concrete type is only known once the model is instantiated. Julia’s
standard library includes extensive support for linear algebra, thus removing
the need for a custom abstract linear algebra layer.

Second, while the reduction from the Newton system to the augmented
system is performed explicitly, the latter is solved by a black-box linear solver.
Specifically, we design an AbstractKKTSolver type, from which concrete linear
solver implementations inherit. The AbstractKKTSolver interface is deliber-
ately minimal, and consists of three functions:2 setup, update!, and solve!.

A linear solver is instantiated at the beginning of the optimization using the
setup function. Custom options can be passed to setup so that the user can
select a linear solver of their choice. At the beginning of each IPM iteration, the
linear solver’s state is updated by calling the update! function. For instance,
if a direct method is used, this step corresponds to updating the factorization.
Following the call to update!, augmented systems can be solved through the
solve! function. Default, generic, linear solvers are described in Section 6.3,
and an example of specialized linear solver is given in Section 7.2. Specific
details are provided in Tulip’s online documentation.3

Finally, specialized methods are automatically dispatched based on the
(dynamic) type of A. These include matrix-vector and matrix-matrix product,

2 In Julia, a ! is appended to functions that mutate their arguments.
3 https://ds4dm.github.io/Tulip.jl/dev/

14 Mathieu Tanneau et al.

as well as matrix factorization routines. We emphasize that the dispatch fea-
ture is a core component of the Julia programming language, and is therefore
entirely transparent to the user. Consequently, one can easily define custom
routines that exploit certain properties of A, so as to speed-up computation
or reduce memory overheads. Furthermore, this customization is entirely in-
dependent of the interior-point algorithm, thus allowing to properly assess the
impact of different linear algebra implementations.

5 Presolve

Tulip’s presolve module performs elementary reductions, all of which are de-
scribed in [3] and [26]. Therefore, in this section, we only outline the presolve
procedure; further implementation details are given in Section 6.

5.1 Presolve

We only perform reductions that do not introduce any additional non-zero
coefficients, i.e., fill-in, to the problem. The presolve procedure is outlined in
Algorithm 1, and proceeds as follows.

First, we ensure all bounds are consistent, remove all empty rows and
columns, and identify all row singletons, i.e., rows that contain a single non-
zero coefficient. Then, a series of passes is performed until no further reduc-
tion is possible. At each pass, the following reductions are applied: empty
rows and columns, fixed variables, row singletons, free and implied free col-
umn singletons, forcing and dominated rows, and dominated columns. The
presolve terminates if infeasibility or unboundedness is detected, in which case
an appropriate primal or dual ray is constructed. If all rows and columns are
eliminated, the problem is declared solved, and a primal-dual optimal solution
is constructed.

Finally, to improve the numerical properties of the problem, rows and
columns are re-scaled as follows:

Ã = D(r) ×A×D(c), (69)

where Ã is the scaled matrix, A is the constraint matrix of the reduced prob-
lem, and D(r), D(c) are diagonal matrices with coefficients

D
(r)
i =

1√
‖Ai,·‖

, ∀i, (70)

D
(c)
j =

1√
‖A·,j‖

, ∀j. (71)

Column and row bounds, as well as the objective, are scaled appropriately.

Title Suppressed Due to Excessive Length 15

Algorithm 1 Presolve procedure
Input: Initial LP

Remove empty rows
Remove empty columns

repeat

Check for bounds inconsistencies
Remove empty columns

Remove row singletons
Remove fixed variables

Remove row singletons
Remove forcing/dominated rows

Remove row singletons
Remove free columns singletons

Remove row singletons
Remove dominated columns

until No reduction is found

Scale rows and columns

5.2 Postsolve

A primal-dual solution to the presolved problem is computed using the interior-
point algorithm described in Section 3. A solution to the original problem is
then constructed in a postsolve phase, which is described in [3,26]. Note that,
in general, the postsolve solution is not an interior point with respect to the
original problem, e.g., some variables may be at their upper or lower bound.

6 Implementation details

Tulip is an officially registered Julia package, and is publicly available4 un-
der an open-source license. The entire source code comprises just over 4, 000
lines of Julia code, which makes it easy to read and to modify. The code is
single-threaded, however external linear algebra libraries may exploit multiple
threads.

We provide an interface to MathOptInterface [42], a solver-agnostic ab-
straction layer for optimization. Thus, Tulip is readily available through both
JuMP [20], an open-source algebraic modeling language embedded in Julia, and
the convex optimization modeling framework Convex [55].

Finally, Tulip supports arbitrary precision arithmetic, thus allowing, for
instance, to solve problems in quadruple (128 bits) precision. This functionality
is available from Tulip’s direct API and through the MathOptInterface API;
it is illustrated in Section 7.3.

4 Source code is available at https://github.com/ds4dm/Tulip.jl, and online documen-
tation at https://ds4dm.github.io/Tulip.jl/dev/

16 Mathieu Tanneau et al.

6.1 Bounds on variables

Tulip stores LP problems in the form

(LP) min
x

cTx + c0

s.t. lbi ≤
∑

j ai,jxj ≤ ub
i , ∀i = 1, ...,m,

lxj ≤ xj ≤ ux
j , ∀j = 1, ..., n,

(72)

where lb,xi,j , u
b,x
i,j ∈ R ∪ {−∞,+∞}, i.e., some bounds may be infinite. Before

being passed to the interior-point optimizer, the problem is transformed into
standard form. This transformation occurs after the presolve phase, and is
transparent to the user. In particular, primal-dual solutions are returned with
respect to formulation (72).

Free variables are an outstanding issue for interior-point methods, see,
e.g. [5,57], and are not supported explicitly in Tulip. Instead, free variables are
automatically split into the difference of two non-negative variables, with the
knowledge that this reformulation may introduce some numerical instability.

Although finite upper bounds may be treated as arbitrary constraints, it
is more efficient to handle them separately. Let I denote the set of indices of
upper-bounded variables. Upper-bound constraints then write

xi ≤ ui, ∀i ∈ I, (73)

which we write in compact form Ux ≤ u, where U ∈ R|I|×n and

Ui,j =

{
1 if i = j ∈ I
0 otherwise .

Therefore, internally, Tulip solves linear programs of the form

(P) min
x,w

cTx

s.t. Ax = b,
Ux+ w = u
x,w ≥ 0,

(D) max
y,s,z

bT y − uT z

s.t. AT y + s− UT z = c,
s, z ≥ 0.

(74)

Let us emphasize that handling upper bounds separately only affects the un-
derlying linear algebra operations, not the interior-point algorithm.

The Newton system (60) then writes

−ρpI AT I −UT −c
A ρdI −b
U I −u

−cT bT −uT ρg −1
S X

Z W
κ τ

δx
δw
δy
δs
δz
δτ
δκ

=

ξd
ξp
ξu
ξg
ξxs
ξwz

ξτκ

, (75)

Title Suppressed Due to Excessive Length 17

and it reduces, after performing diagonal substitutions, to solving two aug-
mented systems of the form[

−(Θ̃−1 + ρpI) AT

A ρdI

] [
p
q

]
=

[
ξ̃d
ξ̃p

]
, (76)

where Θ̃ =
(
X−1S + UT (W−1Z)U

)−1. Note that Θ̃ is a diagonal matrix with
positive diagonal. Therefore, system (76) has the same size and structure as
(64). Furthermore, Θ̃ can be computed efficiently using only vector operations,
i.e., without any matrix-matrix nor matrix-vector product.

6.2 Solver parameters

The default values for numerical tolerances of Section 3.3.6 are

εp =
√
ε,

εd =
√
ε,

εg =
√
ε,

εi =
√
ε,

where ε is the machine precision, which depends on the arithmetic. For in-
stance, double precision (64 bits) floating point arithmetic corresponds to
ε64 ' 10−16, while quadruple precision (128 bits) corresponds to ε128 ' 10−34.

When computing additional centrality corrections, we use the following
default values:

γmin = 10−1,

β = 10−1.

The default maximum number of centrality corrections is set to 5.
Finally, the maximum number of IPM iterations is set to a default of 100.

A time limit may be imposed by the user, in which case it is checked at the
beginning of each IPM iteration.

6.3 Default linear solvers

Several generic linear algebra implementations are readily available in Tulip,
and can be selected without requiring any additional implementation.

The default settings are as follows. First, A is stored in a SparseMatrixCSC
struct, i.e., in compressed sparse column format. Elementary linear algebra op-
erations, e.g., matrix-vector products, employ Julia’s standard library SparseArrays.
Augmented systems are then solved by a direct method, namely, an LDLT fac-
torization of the quasi-definite augmented system. Sparse factorizations use ei-
ther the CHOLMOD module of SuiteSparse [16], or the LDLFactorizations

18 Mathieu Tanneau et al.

package, a Julia translation of SuiteSparse’s LDLT factorization code that
supports arbitrary arithmetic. Tulip uses the former for double precision float-
ing point arithmetic, and the latter otherwise. Finally, the solver’s log indi-
cates: the model’s arithmetic, the linear solver’s backend, e.g., CHOLMOD,
and the linear system being solved, i.e., either the augmented system of the
normal equations system.

As mentioned in Section 4, custom options for linear algebra can be passed
to the solver. Specifically, the MatrixOptions parameter lets the user select a
matrix implementation of their choice, and the KKTOptions parameter is used
to specify a choice of linear solver. Their usage is depicted in Figure 1.

In Figure 1a, the default settings are used. The model is instantiated at
line 3; the Model{Float64} syntax indicates that Float64 arithmetic is used.
Then, the problem is read from the problem.mps file at line 4, and the model
is solved at line 6. Figures 1b, 1c, 1d are identical, but select different lin-
ear algebra implementations by setting the appropriate MatrixOptions and
KKTOptions parameters.

Figure 1b illustrates the use of dense linear algebra. Line 7 indicates that
A should be stored as a dense matrix. Then, at line 8, a dense linear solver is
selected through the SolverOptions(Dense_SymPosDef) setting. In this case,
the augmented system is reduced to the (dense) normal equations systems,
and a dense Cholesky factorization is applied; BLAS/LAPACK routines are
automatically called when using single and double precision floating point
arithmetic, otherwise Julia’s generic routines are called.

In the example of Figure 1c, linear systems are reduced to the normal
equations system, and CHOLMOD’s sparse Cholesky factorization is applied.
Note that a single dense column in A results in a fully dense normal equations
systems. Thus, in the absence of a mechanism for handling dense columns,
this approach may be impractical for some large problems. Finally, in Figure
1d, the augmented system is solved using an LDLT factorization, computed
by LDLFactorizations.

7 Computational results

In this section, we compare Tulip to several open-source and commercial
solvers, focusing on those that are available to Julia users. Let us emphasize
that our goal is not to perform a comprehensive benchmark of interior-point
LP solvers.

We evaluate Tulip’s performance and robustness in the following three
settings. First, in Section 7.1, we consider general LP instances from H. Mit-
telmann’s benchmark,5 which are solved using generic sparse linear algebra.
Then, in Section 7.2, we consider structured instances that arise in decom-
position methods, for which we develop specialized linear algebra. Finally, in
Section 7.3, we illustrate Tulip’s ability to use different levels of arithmetic
precision by solving problems in higher precision.

5 http://plato.asu.edu/ftp/lpbar.html

Title Suppressed Due to Excessive Length 19

1 import Tulip
2

3 model = Tulip.Model{Float64}() # Instantiate model
4 Tulip.load_problem!(model, "problem.mps") # Read problem
5

6 Tulip.optimize!(model) # Solve the problem

(a) Sample code using default linear algebra settings

1 import Tulip
2

3 model = Tulip.Model{Float64}() # Instantiate model
4 Tulip.load_problem!(model, "problem.mps") # Read problem
5

6 # Select dense linear algebra
7 model.params.MatrixOptions = MatrixOptions(Matrix)
8 model.params.KKTOptions = SolverOptions(Dense_SymPosDef)
9

10 Tulip.optimize!(model) # Solve the problem

(b) Sample code using dense linear algebra

1 import Tulip
2

3 model = Tulip.Model{Float64}() # Instantiate model
4 Tulip.load_problem!(model, "problem.mps") # Read problem
5

6 # Solve the normal equations with CHOLMOD
7 model.params.KKTOptions = SolverOptions(CholmodSolver, normal_equations=true)
8

9 Tulip.optimize!(model) # Solve the problem

(c) Sample code using CHOLMOD to solve the normal equations system

1 import Tulip
2

3 model = Tulip.Model{Float64}() # Instantiate model
4 Tulip.load_problem!(model, "problem.mps") # Read problem
5

6 # Solve the augmented system with LDLFactorizations
7 model.params.KKTOptions = SolverOptions(LDLFact_SymQuasDef)
8

9 Tulip.optimize!(model) # Solve the problem

(d) Sample code using LDLFactorizations

Fig. 1: Code examples for reading and solving a problem with various linear
algebra implementations.

20 Mathieu Tanneau et al.

7.1 Results on general LP instances

We select all instances from H. Mittelmann’s benchmark of barrier LP solvers,
except qap15 and L1_sixm1000obs. The former is identical to nug15, and
the latter could not be solved by any solvers in the prescribed time limit.
This yields a testset of 43 medium to large-scale instances. We compare the
following open-source and commercial solvers: Clp 1.17 [1], GLPK 4.64 [2],
ECOS 2.0 [19], Tulip 0.5.0, CPLEX 12.10 [39], Gurobi 9.0 [36] and Mosek
9.2 [49]. All are accessed through their respective Julia interface. We run the
interior-point algorithm of each solver with a single thread, no crossover, and
a 10, 000s time limit. For Tulip, the maximum number of IPM iterations is
increased from the default 100 to 500. All other parameters are left to their
default values.

Experiments are carried out on a cluster of machines equipped with dual
Intel Xeon 6148-2.4GHz CPUs, and varying amounts of RAM. Each job is run
with a single thread and 16GB of memory. Scripts for running these experi-
ments are available online,6 together with the logfiles of each solver.

Computational results are displayed in Table 1. For each solver, we report
the total number of instances solved, the mean runtime, and individual run-
times for each instance. Segmentation faults are indicated by seg, timeouts by
t, other failures by f, and reduced accuracy solutions by r. The time to read
in the data is not included. Mean runtimes are shifted geometric means

µδ(t1, ..., tN) =

(
N∏
i=1

(ti + δ)

) 1
N

− δ = exp

[
1

N

N∑
i=1

log(ti + δ)

]
− δ,

with δ = 10 seconds.
First, the three commercial solvers CPLEX, Gurobi and Mosek display

similar performance and robustness, and outperform open-source alternatives
by one to two orders of magnitude. While CPLEX and Gurobi encountered
numerical issues on a few instances, we found that these were resolved by
activating crossover.

Second, Clp displays a worse performance than expected, solving only 25
problems with an average runtime about two times larger than Tulip’s. In
fact, out of 43 instances, we recorded 5 segmentation faults, 8 unidentified
errors, with the 10, 000s time limit being reached on the remaining 10 un-
solved instances. A more detailed analysis of the log suggests that segmen-
tation faults and some unknown errors are caused by memory-related issues,
i.e., large Cholesky factors that do not fit in memory. We note that those er-
rors do not occur when running Clp through its command-line executable: the
executable performs additional checks to decide whether the model should be
dualized; this can yield smaller linear systems and thus avoid memory issues.
Nevertheless, given that the dualize option is not available in Clp’s C inter-

6 https://github.com/mtanneau/LPBenchmarks

Title Suppressed Due to Excessive Length 21

Table 1: Results on the Mittelmann test set

Problem Clp CPLEX ECOS GLPK Gurobi Mosek Tulip

Solved 25 39 26 6 41 43 33
Average 1607.5 52.4 2344.7 7092.8 42.5 32.0 604.6

L1_sixm250obs seg 23.7 f f f 148.8 f
Linf_520c seg 25.9 f seg 30.4 22.7 t
brazil3 2.3 0.2 f f 0.6 0.6 2.3
buildingenergy f 18.3 362.0 f 19.9 16.6 39.1
chrom1024-7 seg 0.3 96.8 f 1.5 3.2 3.6
cont1 2322.4 5.2 138.0 f 5.9 12.6 26.9
cont11 626.8 f 174.7 f 14.8 12.7 51.4
dbic1 118.5 9.6 332.9 f 9.2 9.4 30.2
degme t 235.5 f f 308.3 253.0 t
ds-big 237.1 29.6 331.6r f 31.1 16.5 95.2
ex10 t 6.3 f f 46.8 21.6 5427.5
fome13 413.3 19.0 1284.0 f 17.8 16.9 538.2
irish-e 363.6 21.1 f f 16.5 20.3 35.4
karted 6509.1 89.1 5801.8 9334.9 115.7 44.4 3786.9
neos 433.4 26.7 1201.0r seg 39.5 33.1 419.5
neos1 f 4.9 167.2 f 6.3 4.1 130.4
neos2 f 4.0 129.6 f 4.7 3.4 462.1
neos3 seg 26.5 1282.9 f 33.7 17.1 1358.2
neos5052403 2067.9 43.6 3489.4r f 28.1 13.1 475.4
ns1644855 t 334.2 f f 437.0 468.0 t
ns1687037 t f f f 19.6 12.3 330.4
ns1688926 t 25.7 f f f 2.0 f
nug08-3rd t 3.4 f f 2.8 55.0 f
nug15 352.2 12.7 1871.4 f 0.9 17.8 998.6
pds-100 t 168.2 f f 106.2 152.7 f
pds-40 1303.7 25.6 f f 22.1 32.9 5000.6
psched3-3 t 86.6 f f 147.5r 148.5 t
rail02 t 208.9 f f 134.3 195.8 t
rail4284 5407.8 72.2 8578.3r f 133.5 81.0 1049.5
s100 1587.5 29.7 f f 38.1 30.2 894.2
s250r10 263.5 17.8 f f 25.4 30.8 257.2
savsched1 183.9 27.1 2355.4 f 25.9 55.5 138.8
self 21.5 3.2 162.3 45.1 4.0 3.1 13.3
shs1023 286.2 f f f 48.2 74.6 371.6
square41 202.8 3.4 1703.3r f 4.9 32.7 134.0
stat96v1 164.9 f 163.6r f 32.2r 6.3 41.3
stat96v4 1.4 1.0 31.4 261.5 1.0 2.2 1.8
stormG2_1000 seg 64.2 9593.0 f 122.6 131.9 216.3
stp3d 1864.1 31.6 1363.3 f 31.9 39.2 529.7
support10 f 17.1 6210.2 f 19.3 27.2 3553.1
tp-6 7872.1 150.9 f f 203.8 312.3 5543.0
ts-palko 1757.1 35.9 1109.3 2315.7 50.7 31.7 841.1
watson_2 65.0 24.4 f 111.0 26.6 30.1 f

seg: segmentation fault; r: reduced accuracy solution; t: time limit; f: other failure
All times in seconds.

22 Mathieu Tanneau et al.

face7, on which Clp’s Julia wrapper is built, the present results best represent
the behavior that Julia users would encounter.

Third, among open-source solvers, Tulip is the top performer with 33 in-
stances solved and a mean runtime of 604.6s, while GLPK has the worst per-
formance with only 6 instances reportedly solved. Tulip’s 5 failures include 3
instances that ran out of memory; for the remaining 2, i.e., ns1688926 and
watson_2, Tulip fails to reach the prescribed accuracy due to numerical issues.
A possible remedy to the latter will be discussed in Section 7.3. Finally, out
of the 26 instances reported as solved by ECOS, 6 were solved to reduced
accuracy. This situation typically corresponds to ECOS encountering numeri-
cal issues close to optimality, but a feasible or close-to-feasible solution is still
available.

7.2 Results on structured LP instances

We now compare Tulip to state-of-the-art commercial solvers on a collection of
structured problems, for which we design specialized linear algebra routines.
Specifically, we consider the context of Dantzig-Wolfe (DW) decomposition [15]
in conjunction with a column-generation (CG) algorithm; we refer to [17] for a
thorough overview of DW decomposition and CG algorithms. Here, we focus
on the resolution of the master problem, i.e., we consider problems of the form

(MP) min
λ

R∑
r=1

nr∑
j=1

cr,jλr,j + cT0 λ0 (77)

s.t.

nr∑
j=1

λr,j = 1, r = 1, ..., R, (78)

R∑
r=1

nr∑
j=1

ar,jλr,j +A0λ0 = b0, (79)

λ ≥ 0, (80)

where R is the number of sub-problems, m0 is the number of linking con-
straints, nr is the number of columns from sub-problem r, A0 ∈ Rm0×n0 , and
∀(r, j), ar,j ∈ Rm0 . Let M = R + m0 and N = n0 + n1 + · · · + nR be the
number of constraints and variables in (MP), respectively. In what follows,
we focus on the case where (i) R is large, typically in the thousands or tens
of thousands, (ii) m0 is not too large, typically in the hundreds, and (iii) the
vectors ar,j ∈ Rm0 and A0 are dense.

7.2.1 Instance collection

We build a collection of master problems from two sources. First, we generate
instances of Distributed Energy Resources (DER) coordination from [6]. We

7 See discussion in https://github.com/coin-or/Clp/issues/151

Title Suppressed Due to Excessive Length 23

select a renewable penetration rate ξ = 0.33, a time horizon T = {24, 48, 96},
and a number of resources R = {1024, 2048, 4096, 8192, 16384, 32768}. Second,
we select all two-stage stochastic programming (TSSP) problems from [29]
that have at least 1, 000 scenarios. This yields 18 DER instances, and 27 TSSP
instances.

Then, each instance is solved by column generation; master problems are
solved with Gurobi’s barrier (with crossover) and sub-problems are solved
with Gurobi’s default settings. In the case of DER instances, which contain
mixed-integer variables, only the root node of a branch-and-price tree is solved.
Finally, at every tenth CG iteration and the last, the current master problem
is saved. Thus, we obtain a dataset of 153 master problems of varying sizes.

CG algorithms benefit from sub-optimal, well-centered interior solutions
from the master problem [32], which are typically obtained by simply relax-
ing an IPM solver’s optimality tolerance. These provide the double benefit of
stabilizing the CG procedure, thus reducing the number of CG iterations, and
speeding-up the resolution of the master problem by stopping the IPM early.
Importantly, this approach requires feasible, but sub-optimal, dual solutions
from the master problem. While in classical primal-dual IPMs, feasibility is
generally reached earlier than optimality, in the homogeneous algorithm, in-
feasibilities and complementarity are reduced at the same rate [4]. As a con-
sequence, for IPM solvers that implement the homogeneous algorithm, such
as Mosek, ECOS and Tulip, relaxing optimality tolerances yields no compu-
tational gain. Nevertheless, let us formally restate that our present goal is not
to implement a state-of-the-art column-generation solver, but to quantify the
benefits of specialized linear algebra in that context; in particular, specialized
linear algebra would equally benefit classical primal-dual IPMs, since the ap-
proach of [32] does not affect the master problem’s structure. Therefore, we
only implement a vanilla CG procedure, which is described in Appendix A. In
particular, we do not make use of any acceleration technique beyond the use
of partial pricing.

Table 2 and Table 3 display some statistics for DER and TSSP instances,
respectively. For each instance, we report: the number of sub-problems R, the
number of CG iterations (Iter), total time spent solving the master problem
(Master) and pricing sub-problems (Pricing) during the CG procedure and,
for the final (MP): the number of linking constraints (m0), the number of
variables (N), and the proportion of non-zero coefficients in the linking con-
straints (%nz). From the two tables, we see that DER, 4node and 4node-base
instances display relatively dense linking rows, with 35 to 90% coefficients be-
ing non-zeros, and a modest number of linking constraints. Other instances
are either sparser, e.g., the env and env-diss instances whose linking rows
are only 13% dense, or have few linking constraints, e..g, phone. Therefore,
we expect that our specialized implementation will yield larger gains for the
former instances.

24 Mathieu Tanneau et al.

Table 2: Column-generation statistics - DER instances

CG statistics MP statistics

Instance R Iter Master(s) Pricing(s) m0 N %nz

DER-24 1024 43 4.5 16.6 24 6493 89.7
2048 40 9.7 40.8 24 12152 89.0
4096 41 24.0 86.5 24 24559 89.4
8192 40 74.9 155.9 24 48668 89.7
16384 42 195.8 419.9 24 95845 90.1
32768 40 585.7 826.3 24 192039 89.6

DER-48 1024 49 10.8 25.7 48 7440 87.0
2048 49 24.6 50.7 48 14736 88.0
4096 49 60.8 103.2 48 29328 88.3
8192 50 148.1 212.3 48 59536 88.5
16384 48 355.4 418.3 48 114832 88.5
32768 47 853.8 870.2 48 225424 88.4

DER-96 1024 64 49.0 67.9 96 9504 86.7
2048 56 90.8 117.0 96 16672 87.8
4096 53 191.7 220.1 96 31520 88.2
8192 60 603.4 529.9 96 69920 88.5
16384 57 1248.7 993.0 96 133408 89.0
32768 54 3657.2 2163.7 96 254240 88.7

7.2.2 Specialized linear algebra

We now describe a specialized Cholesky factorization that exploits the block
structure of the master problem. First, the constraint matrix of (MP) is unit
block-angular, i.e., it has the form

A =

eT 0

. . .
...

eT 0
A1 · · · AR A0

 , (81)

where

Ar =

 | |
ar,1 . . . ar,nr

| |

 ∈ Rm0×nr . (82)

Let us recall that the normal equations system writes(
A(Θ−1 + ρpI)

−1AT + ρdI
)
δy = ξ, (83)

where δy ∈ RM , and Θ ∈ RN×N is a diagonal matrix with positive diagonal.
Let S denote the left-hand matrix of (83), and define

Θ̃ = (Θ−1 + ρpI)
−1 =

Θ̃1

. . .
Θ̃R

Θ̃0

 , (84)

Title Suppressed Due to Excessive Length 25

Table 3: Column-generation statistics - TSSP instances

CG statistics MP statistics

Instance R Iter Master(s) Pricing(s) m0 N %nz

4node 1024 24 3.4 2.9 60 5997 41.5
2048 24 7.9 7.2 60 11614 38.8
4096 22 14.4 14.0 60 22034 38.0
8192 23 43.8 28.1 60 44691 37.3
16384 23 114.8 58.0 60 87569 37.9
32768 21 248.7 95.8 60 158895 36.5

4node-base 1024 26 4.5 2.8 60 6197 59.4
2048 27 11.9 5.5 60 12968 60.2
4096 25 35.8 10.5 60 24153 60.3
8192 22 46.6 17.4 60 43399 59.4
16384 25 143.8 45.0 60 95792 60.4
32768 23 321.6 79.8 60 179472 60.2

assets 37500 6 2.1 6.2 13 77928 38.5
env 1200 6 0.1 0.5 85 2860 12.5

1875 6 0.1 0.7 85 4283 12.9
3780 6 0.2 1.5 85 8357 13.3
5292 6 0.2 2.1 85 11541 13.5
8232 6 0.4 3.3 85 17664 13.6
32928 6 2.5 13.2 85 69783 13.8

env-diss 1200 13 0.2 0.7 85 4439 12.3
1875 15 0.4 1.3 85 7435 12.7
3780 15 1.0 2.6 85 15168 12.9
5292 15 1.5 3.6 85 20745 13.0
8232 15 2.5 5.7 85 31752 13.0
32928 14 14.8 21.8 85 123892 13.3

phone 32768 5 1.4 7.6 9 65553 83.3
stormG2 1000 21 7.9 10.9 306 6075 23.9

and θ̃r = Θ̃re ∈ Rnr , for r = 0, ..., R. Consequently, the normal equations
system has the form

d1 (A1θ̃1)

T

. . .
...

dR (ARθ̃R)
T

A1θ̃1 · · · ARθ̃R Φ

(δy)1
...

(δy)R
(δy)0

 =

ξ1
...
ξR
ξ0

 , (85)

where

dr = eT θ̃r + ρd, r = 1, ..., R, (86)

Φ =

R∑
r=0

ArΘ̃rA
T
r + ρdI. (87)

26 Mathieu Tanneau et al.

Then, define

lr =
1

dr
Ar θ̃r ∈ Rm0 , r = 1, ..., R, (88)

C = Φ−
R∑

r=1

1

dr
(Ar θ̃r)(Ar θ̃r)

T ∈ Rm0×m0 . (89)

Given that both S and its upper-left block are positive definite, so is the Schur
complement C. Therefore, its Cholesky factorization exists, which we denote
C = LCDCL

T
C . It then follows that a Cholesky factorization of S is given by

S =

1
. . .

1
l1 · · · lR LC

︸ ︷︷ ︸

L

×

d1

. . .
dR

DC

︸ ︷︷ ︸

D

×

1
. . .

1
l1 · · · lR LC

T

︸ ︷︷ ︸
LT

. (90)

Finally, once the Cholesky factors L and D are computed, the normal
equations (85) are solved as follows:

(δy)0 = (LCDCL
T
C)

−1

(
ξ0 −

R∑
r=1

ξrlr

)
, (91)

(δy)r =
1

dr
ξr − lTr (δy)0, r = 1, ..., R. (92)

Exploiting the structure of A yields several computational advantages.
First, the factors L and D can be computed directly from A and Θ, i.e.,
the matrix S does not need to be explicitly formed nor stored, thus saving
both time and memory. Second, the sparsity structure of L is known before-
hand. Specifically, the lower blocks l1, . . . , lR are all dense column vectors,
and the Schur complement C is a dense m0 ×m0 matrix. Therefore, one does
not need a preprocessing phase wherein a sparsity-preserving ordering is com-
puted, thus saving time and making memory allocation fully known in advance.
Third, since most heavy operations are performed on dense matrices, efficient
cache-exploiting kernels for dense linear algebra can be used, further speeding-
up the computations. Finally, note that most operations such as forming the
Cholesky factors and performing the backward substitutions, are amenable to
parallelization.

7.2.3 Experimental setup

We implement the specialized routines described above in Julia.8 Specifically,
we define a UnitBlockAngularMatrix type, together with specialized matrix-
vector product methods, and a UnitBlockAngularFactor type for computing

8 https://github.com/mtanneau/UnitBlockAngular.jl

Title Suppressed Due to Excessive Length 27

factorizations and solving linear systems. The lower blocks in A and L are
stored as dense matrices, and dense linear algebra operations are performed
using BLAS/LAPACK routines directly. This approach is most efficient for
problems with few and dense linking constraints, like the ones we consider
here, but is not suited to problems that involve a large number of sparse
linking constraints. The entire implementation is less than 250 lines of code.

This specialized implementation is passed to the solver by setting the
MatrixOptions and KKTOptions parameters accordingly, as illustrated in Fig-
ure 2. A Model object is first created at line 4, and the problem data is im-
ported at line 5. At line 11, we set the MatrixOptions parameter to spec-
ify that the constraint matrix is of the UnitBlockAngularMatrix type with
m0 = 24 linking constraints, n0 = 72 linking variables, n = 6421 non-
linking variables, and R = 1024 unit blocks. Then, at line 16, we select the
UnitBlockAngularFactor type as a linear solver. Finally, the correct matrix
and linear solver are instantiated within the optimize! call at line 20. Impor-
tantly, let us emphasize that no modification was made to Tulip’s source code:
the correct methods are automatically selected by Julia’s multiple dispatch
feature, with no performance loss for calling an external function.

Experiments are carried out on an Intel Xeon E5-2637@3.50GHz CPU,
128GB RAMmachine running Linux; scripts and data for running these exper-
iments are available online.9 We compare the following IPM solvers: CPLEX
12.10 [39], Gurobi 9.0 [36], Mosek 9.2.5 [49], Tulip 0.5.0 with generic linear
algebra, and Tulip 0.5.0 with specialized linear algebra; the latter is denoted
Tulip*. According to each solver’s documentation,10 both CPLEX and Gurobi
implement Mehrotra’s predictor-corrector algorithm [46] with Gondzio’s mul-
tiple corrections [25], while Mosek uses a homogeneous algorithm.

We run each solver on a single thread, and no crossover. Presolve may al-
ter the structure of A in several ways by, e.g., reducing the number of linking
constraints, eliminating variables –possibly some entire blocks– or modifying
the unit blocks during scaling. Therefore, since we are interested in compar-
ing the per-iteration cost among solvers, we also deactivate presolve. Finally,
none of the selected IPM solvers have any warm-start capability, i.e., in a CG
algorithm, master problems would effectively be solved from scratch at each
CG iteration. Thus, solving master problems independently of one another, as
is done here, does not invalidate our analysis.

7.2.4 Results

Results are reported in Table 4; for conciseness, only the final master problem
of each CG instance is included here. Results for the entire collection can be
found in Table 6, Appendix B. For each instance and solver, we report total
CPU time (T), in seconds, and the number of IPM iterations (Iter). In Table

9 Code for generating DER instances is available at https://github.com/mtanneau/DER_
experiments and for TSPP instances at https://github.com/mtanneau/TSSP
10 Mosek always uses its homogeneous algorithm. With default settings, CPLEX and
Gurobi only do so when solving node relaxations of a MIP model.

28 Mathieu Tanneau et al.

1 import Tulip
2 using UnitBlockAngular
3

4 model = Tulip.Model{Float64}()
5 Tulip.load_problem!(model, "DER_24_1024_43.mps") # read file
6

7 # Deactivate presolve
8 model.params.Presolve = 0
9

10 # Select matrix options
11 model.params.MatrixOptions = Tulip.TLA.MatrixOptions(
12 UnitBlockAngularMatrix,
13 m0=24, n0=72, n=6421, R=1024
14)
15 # Select custom linear solver
16 model.params.KKTOptions = Tulip.KKT.SolverOptions(
17 UnitBlockAngularFactor
18)
19

20 Tulip.optimize!(model) # solve the problem

Fig. 2: Sample Julia code illustrating the use of a custom
UnitBlockAngularMatrix type and specialized factorization.

6, the number of CG iterations (at which the instance was obtained) is also
displayed.

We begin by comparing Tulip with and without specialized linear alge-
bra. First, the number of IPM iterations is almost identical between the two,
with differences never exceeding 6 IPM iterations. The differences are caused
by small numerical discrepancies between the linear algebra implementations,
which remain negligible until close to the optimum. Second, using specialized
linear algebra results in a significant speedup, especially on larger and denser
instances. Indeed, on large DER and 4node instances, we typically observe a
tenfold speedup. For smaller and sparser instances, e.g., the env instances,
or with very few linking constraints such as phone, using specialized linear
algebra still brings a moderate performance improvement.

Next, we compare Tulip with specialized linear algebra, Tulip*, against
state-of-the-art commercial solvers. Given CPLEX’s poorer relative perfor-
mance on this test set, in the following we mainly discuss the results of Tulip*
in comparison with Mosek and Gurobi. First, our specialized implementation
is able to outperform commercial codes on the larger and denser instances,
while remaining within a reasonable factor on smaller and sparse instances.
The largest performance improvement is observed on the DER-48 instance with
R = 32, 768, for which Tulip* achieves a 30% speedup over the fastest com-
mercial alternative. This demonstrates that, when exploiting structure, open-
source solvers can compete with state-of-the-art commercial codes. Second,
Tulip’s iteration count is typically 50 to 100% larger than that of Mosek and

Title Suppressed Due to Excessive Length 29

Table 4: Performance comparison of IPM solvers on structured instances

CPLEX Gurobi Mosek Tulip Tulip*

Problem R T(s) Iter T(s) Iter T(s) Iter T(s) Iter T(s) Iter

DER-24 1024 0.2 33 0.2 27 0.2 21 1.1 33 0.5 33
2048 0.4 48 0.4 36 0.4 27 2.5 47 0.6 47
4096 1.0 40 1.0 32 0.8 26 4.7 38 1.0 38
8192 4.3 79 2.7 46 2.4 38 19.0 67 2.6 68
16384 10.8 93 5.3 48 5.3 42 49.8 86 5.3 83
32768 33.9 148 19.4 85 12.3 43 103.6 91 11.4 86

DER-48 1024 0.5 37 0.4 19 0.3 21 1.8 28 0.4 28
2048 1.6 40 1.0 21 0.8 25 5.7 37 0.9 37
4096 4.1 44 2.0 25 2.0 27 14.1 39 1.7 39
8192 9.7 51 4.2 20 4.5 24 37.0 46 3.4 47
16384 22.3 64 9.9 29 9.3 28 89.7 60 7.4 57
32768 57.1 85 21.6 32 21.1 33 178.8 59 14.2 54

DER-96 1024 3.3 38 1.2 19 0.9 22 6.6 31 0.9 31
2048 7.9 45 2.4 20 1.7 21 18.2 38 1.7 37
4096 16.3 51 5.5 24 5.2 28 42.6 40 3.2 40
8192 51.7 75 15.5 29 11.1 31 137.6 60 8.8 57
16384 107.8 86 31.9 31 24.4 39 260.0 55 17.3 59
32768 291.9 119 102.9 54 55.5 47 753.7 89 65.4 86

4node 1024 15.7 21 0.4 43 0.2 25 1.3 30 0.5 32
2048 0.7 38 0.6 27 0.6 25 2.1 36 0.9 36
4096 1.1 27 1.7 37 0.7 17 4.5 28 1.2 28
8192 2.7 30 2.3 29 1.8 24 12.3 35 2.7 33
16384 5.8 29 10.7 53 4.0 22 26.4 33 4.6 33
32768 17.0 57 18.7 55 14.6 41 74.8 56 14.2 59

4node-base 1024 17.0 17 1.0 60 0.3 27 1.4 28 0.6 27
2048 1.0 35 2.6 72 0.8 33 3.7 32 0.9 33
4096 2.3 38 5.3 72 1.5 34 9.1 34 1.8 34
8192 3.8 29 3.7 27 2.6 25 19.7 36 2.8 36
16384 13.5 53 26.2 74 8.0 37 63.4 53 7.0 47
32768 20.3 37 29.0 43 14.9 30 107.7 48 12.9 50

assets 37500 1.6 21 0.6 12 1.1 20 2.0 13 1.0 13
env 1200 0.0 21 0.0 12 0.1 16 0.3 16 0.3 16

1875 0.1 22 0.0 12 0.1 13 0.4 16 0.4 16
3780 0.1 25 0.1 12 0.1 14 0.7 17 0.5 17
5292 0.2 27 0.1 13 0.1 13 0.7 17 0.7 17
8232 0.3 26 0.2 13 0.3 14 1.1 18 1.2 18
32928 1.7 26 0.9 13 1.3 17 5.1 21 4.4 21

env-diss 1200 0.1 15 0.0 15 0.1 17 0.4 23 0.4 23
1875 0.1 17 0.1 18 0.1 18 0.6 22 0.5 22
3780 0.2 20 0.1 18 0.2 18 1.0 22 1.0 22
5292 0.3 22 0.3 23 0.3 22 1.3 25 1.5 25
8232 1.0 31 0.6 29 0.5 23 3.2 35 2.6 35
32928 4.8 28 2.1 22 2.5 19 10.0 27 7.7 27

phone 32768 0.5 15 0.4 8 0.6 8 1.9 10 0.7 10
stormG2 1000 1.6 37 0.8 18 0.5 22 4.0 29 1.7 28

Results obtained without presolve.

30 Mathieu Tanneau et al.

Gurobi. When comparing average per-iteration times on the denser instances,
we observe that Tulip is generally 1.5 to 3 times faster than Gurobi and Mosek.

Recall that the cost of an individual IPM iteration depends not only on
problem size and the efficiency of the underlying linear algebra, but also on
algorithmic features such as the number of corrections, which we cannot mea-
sure directly. Nevertheless, the performance difference is significant enough to
suggest that algorithmic improvements aimed at reducing the number of IPM
iterations would substantially improve Tulip’s performance.

7.3 Solving problems in extended precision

Almost all optimization solvers perform computations in double precision (64
bits) floating-point arithmetic, denoted by double and Float64 in C and Julia,
respectively. Julia’s parametric type system and multiple dispatch allow to
write generic code: in the present case, this results in Tulip’s code can be
used with arbitrary arithmetic. We now illustrate this functionality for solving
problems in higher precision.

The ability to use extended precision is useful is various contexts. First,
while typical numerical tolerances for most LP solvers range from 10−6 to 10−8,
one may require levels of precision that exceed what double-precision arith-
metic can achieve. For instance, in [45], the authors consider problems where
variations of order 10−6 to 10−10 are meaningful. One remedy to this issue
is to use, e.g., quadruple-precision arithmetic. Second, even with “standard”
tolerances, solvers may encounter numerical issues for badly scaled problems,
sometimes resulting in the optimization being aborted. These issues may be
alleviated by using higher precision, thereby allowing to solve a given challeng-
ing instance, albeit at a performance cost. Finally, in the course of developing
a new optimization software or algorithmic technique, identifying whether in-
consistencies are due to numerical issues, mathematical errors, or software
bugs, can be a daunting and time-consuming task. In that context, the ability
to easily switch between different arithmetics enables one to factor out round-
ing errors and related issues, thereby identifying –or ruling out– other sources
of errors.

Let us note that a handful of simplex-based solvers have the capability
to compute extended-precision or exact solutions to LP problems, either by
performing computations in exact arithmetic, solving a sequence of LPs with
increasing precision, or using iterative refinement techniques; the reader is re-
ferred to [24] for an overview of such approaches and available software. We are
not aware of any existing interior-point solver with this capability. As pointed
out in [24], performing all computations in the prescribed arithmetic, as is the
case in Tulip, is intractable for large problems. Consequently, Tulip should
not be viewed as a competitive tool for solving LPs in extended precision.
Rather, the main advantage of our implementation is its simplicity and flexi-
bility: it required no modification of the source code, runs the same algorithm
regardless of the arithmetic, and its use is straightforward. Indeed, as Figure

Title Suppressed Due to Excessive Length 31

1 import Tulip
2

3 model = Tulip.Model{Float64}() # Float64 arithmetic
4 Tulip.load_problem!(tlp, "neos2.mps") # read file
5

6 Tulip.optimize!(model) # solve the problem

(a) Using Float64 arithmetic.
1 import Tulip
2 using DoubleFloats
3

4 model = Tulip.Model{Double64}() # Double64 arithmetic
5 Tulip.load_problem!(tlp, "neos2.mps") # read file
6

7 Tulip.optimize!(model) # solve the problem

(b) Using Double64 arithmetic.

Fig. 3: Sample Julia code illustrating the use of different arithmetics.

3 illustrates, besides loading the appropriate packages, the user only needs to
specify the arithmetic when creating a model; the rest of the code is identical.
Therefore, using Tulip with higher-precision arithmetic is best envisioned as a
prototyping tool, or to occasionally solve a numerically challenging problem.

As an example of this use case, we consider the 6 instances from Sec-
tion 7.1 that required more than 100 IPM iterations; this generally indicates
numerical issues. Each instance is solved with Tulip in quadruple-precision
arithmetic. We use the Double64 type from the DoubleFloats Julia package,
which implements the so-called “double-double” arithmetic, wherein a pair
of double-precision numbers is used to approximate one quadruple-precision
number. This implementation allows to exploit fast, hardware-implemented,
double-precision arithmetic, while achieving similar precision as 128 bits float-
ing point arithmetic. Experiments were carried on the same cluster of machines
as in Section 7.1. Besides the different arithmetic, we increase the time limit
to 40, 000s and set tolerances to 10−8, that is, the problems are solved up to
usual double-precision tolerances. All other settings are left identical to those
of Section 7.1.

Results are displayed in Table 5. For each instance and arithmetic, we re-
port the total solution time (CPU) in seconds, the number of IPM iterations
(Iter), and the solver’s result status (Status). We first note that, when us-
ing Double64 arithmetic, all instances are solved to optimality. This validates
the earlier finding that instances ns1688926 and watson_2 did encounter nu-
merical issues. Second, we observe a drastic reduction in the number of IPM
iterations from Float64 to Double64, with decreases in iteration counts rang-
ing from 40% to over 90% in the case of neos2 and ns1688926. Third, while
the per-iteration cost of Double64 is typically 8x larger than that of Float64,
overall computing times do not increase as much due to the reduction in IPM

32 Mathieu Tanneau et al.

Table 5: Problematic instances from the Mittelmann benchmark

Float64 Double64

Instance CPU (s) Iter Status CPU(s) Iter Status

neos2 462.1 460 Optimal 265.1 37 Optimal
ns1688926 1007.7 500 Iterations 142.8 18 Optimal
s250r10 257.2 169 Optimal 1385.0 93 Optimal
shs1023 371.6 266 Optimal 968.8 105 Optimal
stat96v1 41.3 275 Optimal 30.4 42 Optimal
watson_2 295.7 500 Iterations 243.4 67 Optimal

iterations. In fact, in the extreme cases of ns1688926, solving the problem in
Double64 is significantly faster than solving it in Float64. Finally, the results
of Table 5 suggest that Tulip would most benefit from greater numerical sta-
bility on instances such as neos2, ns1688926, stat96v1 and watson_2. This
may include, for instance, the use of iterative refinement when solving Newton
systems. On the other hand, similar iterations counts for both arithmetics,
would have suggested algorithmic issues, e.g., short steps being taken due to
the iterates being far from the central path.

8 Conclusion

In this paper, we have described a regularized homogeneous interior-point al-
gorithm and its implementation in Tulip, an open-source linear optimization
solver. Our solver is written in Julia, and leverages some of the language’s
features to propose a flexible and easily-customized implementation. Most no-
tably, Tulip’s algorithmic framework is fully disentangled from linear algebra
implementations and the choice of arithmetic.

The performance of the code has been evaluated on generic instances from
H. Mittelmann’s benchmark testset, on two sets of structured instances for
which we developed specialized linear algebra routines, and on numerically
problematic instances using higher-precision arithmetic. The computational
evaluation has shown three main results. First, when solving generic LP in-
stances, Tulip is competitive with open-source IPM solvers that have a Ju-
lia interface. Second, when solving structured problems, the use of custom
linear algebra routines yields a tenfold speedup over generic ones, thereby
outperforming state-of-the-art commercial IPM solvers on larger and denser
instances. These results demonstrate the benefits of being able to seamlessly
integrate specialized linear algebra within an interior-point algorithm. Third,
in a development context, Tulip can be conveniently used in conjunction with
higher-precision arithmetic, so as to alleviate numerical issues.

Finally, future developments will consider the use of iterative methods for
solving linear systems, the development of more general structured linear al-
gebra routines and their multi-threaded implementation, and more efficient
algorithmic techniques for solving problems in extended precision. Because

Title Suppressed Due to Excessive Length 33

of the way in which Tulip has been designed, all those developments do not
require any significant rework of the code structure.

Acknowledgements We thank Dominique Orban for helpful discussions on the regular-
ization scheme and its implementation. We are also indebted to three anonymous referees
for their careful reading and constructive suggestions that helped us improving the quality
and readability of the paper.

References

1. CLP. URL https://projects.coin-or.org/Clp
2. GNU Linear Programming Kit. URL https://www.gnu.org/software/glpk/
3. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Mathematical Pro-

gramming 71(2), 221–245 (1995). DOI 10.1007/BF01586000
4. Andersen, E.D., Andersen, K.D.: The Mosek Interior Point Optimizer for Linear Pro-

gramming: An Implementation of the Homogeneous Algorithm, pp. 197–232. Springer
US, Boston, MA (2000). DOI 10.1007/978-1-4757-3216-0_8

5. Anjos, M.F., Burer, S.: On handling free variables in interior-point methods for conic
linear optimization. SIAM Journal on Optimization 18(4), 1310–1325 (2008). DOI
10.1137/06066847X

6. Anjos, M.F., Lodi, A., Tanneau, M.: A decentralized framework for the optimal coor-
dination of distributed energy resources. IEEE Transactions on Power Systems 34(1),
349–359 (2019). DOI 10.1109/TPWRS.2018.2867476

7. Babonneau, F., Vial, J.P.: Accpm with a nonlinear constraint and an active set strategy
to solve nonlinear multicommodity flow problems. Mathematical programming 120(1),
179–210 (2009)

8. Benders, J.F.: Partitioning procedures for solving mixed-variables programming prob-
lems. Numerische Mathematik 4(1), 238–252 (1962). DOI 10.1007/BF01386316

9. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to nu-
merical computing. SIAM Review 59(1), 65–98 (2017). DOI 10.1137/141000671

10. Birge, J.R., Qi, L.: Computing block-angular karmarkar projections with applications
to stochastic programming. Management Science 34(12), 1472–1479 (1988)

11. Bixby, R.E., Gregory, J.W., Lustig, I.J., Marsten, R.E., Shanno, D.F.: Very large-scale
linear programming: A case study in combining interior point and simplex methods.
Operations Research 40(5), 885–897 (1992). DOI 10.1287/opre.40.5.885

12. Castro, J.: Interior-point solver for convex separable block-angular problems. Optimiza-
tion Methods and Software 31(1), 88–109 (2016). DOI 10.1080/10556788.2015.1050014

13. Castro, J., Nasini, S., Saldanha-da Gama, F.: A cutting-plane approach for large-scale
capacitated multi-period facility location using a specialized interior-point method.
Mathematical Programming 163(1), 411–444 (2017). DOI 10.1007/s10107-016-1067-6

14. Choi, I.C., Goldfarb, D.: Exploiting special structure in a primal—dual path-following
algorithm. Mathematical Programming 58(1), 33–52 (1993). DOI 10.1007/BF01581258

15. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations Re-
search 8(1), 101–111 (1960). DOI 10.1287/opre.8.1.101

16. Davis, T.A.: SuiteSparse: A suite of sparse matrix software. URL http://faculty.cse.
tamu.edu/davis/suitesparse.html

17. Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column generation, GERAD 25th an-
niversary, vol. 5, 1 edn. Springer Science & Business Media (2006)

18. Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research 17(83), 1–5 (2016)

19. Domahidi, A., Chu, E., Boyd, S.: ECOS: An SOCP solver for embedded systems. In:
European Control Conference (ECC), pp. 3071–3076 (2013)

20. Dunning, I., Huchette, J., Lubin, M.: Jump: A modeling language for mathematical
optimization. SIAM Review 59(2), 295–320 (2017)

34 Mathieu Tanneau et al.

21. Elhedhli, S., Goffin, J.L.: The integration of an interior-point cutting plane method
within a branch-and-price algorithm. Mathematical programming 100(2), 267–294
(2004)

22. Friedlander, M.P., Orban, D.: A primal–dual regularized interior-point method for con-
vex quadratic programs. Mathematical Programming Computation 4(1), 71–107 (2012).
DOI 10.1007/s12532-012-0035-2

23. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM
Trans. Math. Softw. 29(1), 58–81 (2003). DOI 10.1145/641876.641880

24. Gleixner, A.M., Steffy, D.E., Wolter, K.: Iterative refinement for linear programming.
INFORMS Journal on Computing 28(3), 449–464 (2016). DOI 10.1287/ijoc.2016.0692

25. Gondzio, J.: Multiple centrality corrections in a primal-dual method for linear pro-
gramming. Computational Optimization and Applications 6(2), 137–156 (1996). DOI
10.1007/BF00249643

26. Gondzio, J.: Presolve analysis of linear programs prior to applying an interior point
method. INFORMS Journal on Computing 9(1), 73–91 (1997). DOI 10.1287/ijoc.9.1.73

27. Gondzio, J.: Interior point methods 25 years later. European Journal of Operational
Research 218(3), 587 – 601 (2012). DOI 10.1016/j.ejor.2011.09.017

28. Gondzio, J., Gonzalez-Brevis, P., Munari, P.: New developments in the primal-dual
column generation technique. European Journal of Operational Research 224(1), 41 –
51 (2013). DOI 10.1016/j.ejor.2012.07.024

29. Gondzio, J., González-Brevis, P., Munari, P.: Large-scale optimization with the primal-
dual column generation method. Mathematical Programming Computation 8(1), 47–82
(2016). DOI 10.1007/s12532-015-0090-6

30. Gondzio, J., Grothey, A.: Parallel interior-point solver for structured quadratic pro-
grams: Application to financial planning problems. Annals of Operations Research
152(1), 319–339 (2007). DOI 10.1007/s10479-006-0139-z

31. Gondzio, J., Grothey, A.: Exploiting structure in parallel implementation of interior
point methods for optimization. Computational Management Science 6(2), 135–160
(2009). DOI 10.1007/s10287-008-0090-3

32. Gondzio, J., Sarkissian, R.: Column generation with a primal-dual method. Tech. rep.,
Technical report 96.6, Logilab (1996). URL https://www.maths.ed.ac.uk/~gondzio/
reports/pdcgm.pdf

33. Gondzio, J., Sarkissian, R.: Parallel interior-point solver for structured linear programs.
Mathematical Programming 96(3), 561–584 (2003). DOI 10.1007/s10107-003-0379-5

34. Gondzio, J., Sarkissian, R., Vial, J.P.: Using an interior point method for the mas-
ter problem in a decomposition approach. European Journal of Operational Research
101(3), 577 – 587 (1997). DOI 10.1016/S0377-2217(96)00182-8

35. Grothey, A., Hogg, J., Colombo, M., Gondzio, J.: A Structure Conveying Parallelizable
Modeling Language for Mathematical Programming, pp. 145–156. Springer New York,
New York, NY (2009). DOI 10.1007/978-0-387-09707-7_13

36. Gurobi Optimization, L.: Gurobi optimizer reference manual (2018). URL https://
www.gurobi.com

37. Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical
programs in python. Mathematical Programming Computation 3(3), 219–260 (2011)

38. Hurd, J.K., Murphy, F.H.: Exploiting special structure in primal dual interior point
methods. ORSA Journal on Computing 4(1), 38–44 (1992). DOI 10.1287/ijoc.4.1.38

39. IBM: IBM ILOG CPLEX Optimization Studio. URL https://www.ibm.com/products/
ilog-cplex-optimization-studio

40. Jessup, E.R., Yang, D., Zenios, S.A.: Parallel factorization of structured matrices arising
in stochastic programming. SIAM Journal on Optimization 4(4), 833–846 (1994). DOI
10.1137/0804048

41. Kelley Jr., J.: The cutting-plane method for solving convex programs. Journal of the
Society for Industrial and Applied Mathematics 8(4), 703–712 (1960). DOI 10.1137/
0108053

42. Legat, B., Dowson, O., Garcia, J.D., Lubin, M.: MathOptInterface: a data structure
for mathematical optimization problems. arXiv:2002.03447 [math] (2020). URL http:
//arxiv.org/abs/2002.03447

43. Löfberg, J.: Yalmip : A toolbox for modeling and optimization in matlab. In: In Pro-
ceedings of the CACSD Conference. Taipei, Taiwan (2004)

Title Suppressed Due to Excessive Length 35

44. Lubin, M., Petra, C.G., Anitescu, M., Zavala, V.: Scalable stochastic optimization of
complex energy systems. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, pp. 64:1–64:64.
ACM, New York, NY, USA (2011). DOI 10.1145/2063384.2063470

45. Ma, D., Saunders, M.A.: Solving multiscale linear programs using the simplex method
in quadruple precision. In: M. Al-Baali, L. Grandinetti, A. Purnama (eds.) Numeri-
cal Analysis and Optimization, pp. 223–235. Springer International Publishing, Cham
(2015)

46. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization 2(4), 575–601 (1992). DOI 10.1137/0802028

47. Mitchell, J.E.: Cutting plane methods and subgradient methods. In: Decision Technolo-
gies and Applications, chap. 2, pp. 34–61. DOI 10.1287/educ.1090.0064

48. Mitchell, J.E., Borchers, B.: Solving Linear Ordering Problems with a Combined Interior
Point/Simplex Cutting Plane Algorithm, pp. 349–366. Springer US, Boston, MA (2000).
DOI 10.1007/978-1-4757-3216-0_14

49. MOSEK ApS: The MOSEK Optimization Suite. URL https://www.mosek.com/
50. Munari, P., Gondzio, J.: Using the primal-dual interior point algorithm within the

branch-price-and-cut method. Computers & Operations Research 40(8), 2026 – 2036
(2013). DOI 10.1016/j.cor.2013.02.028

51. Naoum-Sawaya, J., Elhedhli, S.: An interior-point benders based branch-and-cut algo-
rithm for mixed integer programs. Annals of Operations Research 210(1), 33–55 (2013)

52. Rousseau, L.M., Gendreau, M., Feillet, D.: Interior point stabilization for column gen-
eration. Operations Research Letters 35(5), 660 – 668 (2007). DOI https://doi.org/10.
1016/j.orl.2006.11.004

53. Schultz, G.L., Meyer, R.R.: An interior point method for block angular optimization.
SIAM Journal on Optimization 1(4), 583–602 (1991). DOI 10.1137/0801035

54. Tanneau, M.: Tulip.jl. URL https://github.com/ds4dm/Tulip.jl
55. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization

in Julia. In: Proceedings of the 1st First Workshop for High Performance Technical
Computing in Dynamic Languages, pp. 18–28. IEEE Press (2014)

56. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex
minlp problems. Computers & Chemical Engineering 19, 131 – 136 (1995). DOI
https://doi.org/10.1016/0098-1354(95)87027-X

57. Wright, S.: Primal-Dual Interior-Point Methods. Society for Industrial and Applied
Mathematics (1997). DOI 10.1137/1.9781611971453

58. Xu, X., Hung, P.F., Ye, Y.: A simplified homogeneous and self-dual linear program-
ming algorithm and its implementation. Annals of Operations Research 62(1), 151–171
(1996). DOI 10.1007/BF02206815

36 Mathieu Tanneau et al.

A Dantzig-Wolfe decomposition and column generation

In this section, we present the Dantzig-Wolfe decomposition principle [15] and the basic
column-generation framework. We refer to [17] for a thorough overview of column generation,
and the relation between Dantzig-Wolfe decomposition and Lagrangian decomposition.

A.1 Dantzig-Wolfe decomposition

Consider the problem

(P) min
x

R∑
r=0

cTr xr

s.t.

R∑
r=0

Arxr = b0,

x0 ≥ 0,

xr ∈ Xr, r = 1, ..., R,

where, for each r = 1, ..., R, Xr is defined by a finite number of linear inequalities, plus
integrality restrictions on some of the coordinates of xr. Therefore, the convex hull of Xr,
denoted by conv(Xr), is a polyhedron whose set of extreme points (resp. extreme rays)
is denoted by Ωr (resp. Γr). Any element of conv(Xr) can thus be written as a convex
combination of extreme points {ω}ω∈Ωr , plus a non-negative combination of extreme rays
{ρ}ρ∈Γr i.e.,

conv(Xr) =

 ∑
ω∈Ωr

λωω +
∑
ρ∈Γr

λρρ

∣∣∣∣∣∣ λ ≥ 0,
∑
ω

λω = 1

 . (93)

The Dantzig-Wolfe decomposition principle [15] then consists in substituting xr with
such a combination of extreme points and extreme rays. This change of variable yields the
so-called Master Problem

(MP) min
x,λ

cT0 x0 +
R∑

r=1

∑
ω∈Ωr

cr,ωλr,ω +
R∑

r=1

∑
ρ∈Γr

cr,ρλr,ρ (94)

s.t.
∑

ω∈Ωr

λr,ω = 1, r = 1, ..., R (95)

A0x0 +
R∑

r=1

∑
ω∈Ωr

ar,ωλr,ω +
R∑

r=1

∑
ρ∈Γr

ar,ρλr,ρ = b0, (96)

x0, λ ≥ 0, (97)∑
ω∈Ωrλr,ωω+

∑
ρ∈Γr

λr,ρρ∈Xr, r=1,...,R

(98)

where cr,ω = cTr ω, cr,ρ = cTr ρ, and ar,ω = Arω, ar,ρ = Arρ. Constraints (95) and (96) are
referred to as convexity and linking constraints, respectively.

The linear relaxation of (MP) is given by (94)-(97); its objective value is greater or
equal to that of the linear relaxation of (P) [17]. Note that if (P) in a linear program, i.e.,
all variables are continuous, then constraints (98) are redundant, and (94)-(97) is equivalent
to (P). In the mixed-integer case, problem (94)-(97) is the root node in a branch-and-price
tree. In this work, we focus on solving this linear relaxation. Thus, in what follows, we make
a slight abuse of notation and use the term “Master Problem” to refer to (94)-(97) instead.

Title Suppressed Due to Excessive Length 37

A.2 Column generation

The Master Problem has exponentially many variables. Therefore, it is typically solved by
column generation, wherein only a small subset of the variables are considered. Additional
variables are generated iteratively by solving an auxiliary sub-problem.

Let Ω̄r (resp. Γ̄r) be a small subset of Ωr (resp. of Γr), and define the Restricted Master
Problem (RMP)

(RMP) min
λ

cT0 x0 +

R∑
r=1

∑
ω∈Ω̄r

cr,ωλr,ω +

R∑
r=1

∑
ρ∈Γ̄r

cr,ρλr,ρ (99)

s.t.
∑

ω∈Ω̄r

λr,ω = 1, r = 1, ..., R (100)

R∑
r=1

∑
ω∈Ω̄r

ar,ωλr,ω +

R∑
r=1

∑
ρ∈Γ̄r

ar,ρλr,ρ = b0, (101)

x0, λ ≥ 0. (102)

In all that follows, we assume that (RMP) is feasible and bounded. Note that feasibility
can be obtained by adding artificial slacks and surplus variables with sufficiently large cost,
effectively implementing an l1 penalty. If the RMP is unbounded, then so is the MP.

Let σ ∈ RR and π ∈ Rm0 denote the vector of dual variables associated to convexity
constraints (100) and linking constraints constraints (101), respectively. Here, we assume
that (σ, π) is dual-optimal for (RMP); the use of interior, sub-optimal dual solutions is
explored in [32]. Then, for given r, ω ∈ Ωr and ρ ∈ Γr, the reduced cost of variable λr,ω is

c̄r,ω = cr,ω − πT ar,ω − σr = (cTr − πTAr)ω − σr,

while the reduced cost of variable λr,ρ is

c̄r,ρ = cr,ρ − πT ar,ρ = (cTr − πTAr)ρ.

If c̄r,ω ≥ 0 for all r, ω ∈ Ωr and c̄r,ρ ≥ 0 for all r, ρ ∈ Γr, then the current solution is
optimal for the MP. Otherwise, a variable with negative reduced cost is added to the RMP.
Finding such a variable, or proving that none exists, is called the pricing step.

Explicitly iterating through the exponentially large sets Ωr and Γr is prohibitively
expensive. Nevertheless, the pricing step can be written as the following MILP:

(SPr) min
xr

(cTr − πTA)xr − σr (103)

s.t. xr ∈ Xr, (104)

which we refer to as the rth sub-problem. If SPr is infeasible, then Xr is empty, and the
original problem P is infeasible. This case is ruled out in all that follows. Then, since the
objective of SPr is linear, any optimal solution is either an extreme point ω ∈ Ωr (bounded
case), or an extreme ray ρ ∈ Γr (unbounded case). The corresponding variable λr,ω or λr,ρ

is identified by retrieving an optimal point or unbounded ray. Finally, note that all R sub-
problems SP1, . . . , SPR can be solved independently from one another. Optimality in the
Master Problem is attained when no variable with negative reduced cost can be identified
from all R sub-problems.

We now describe a basic column-generation procedure, which is formally stated in Algo-
rithm 2. The algorithm starts with an initial RMP that contains a small subset of columns,
some of which may be artificial to ensure feasibility. At the beginning of each iteration, the
RMP is solved to optimality, and a dual solution (π, σ) is obtained which is used to per-
form the pricing step. Each sub-problem is solved to identify a variable with most negative
reduced cost. If a variable with negative reduced cost is found, it is added to the RMP; if
not, the column-generation procedure stops.

38 Mathieu Tanneau et al.

Algorithm 2 Column-generation procedure
Input: Initial RMP
1: while stopping criterion not met do
2: Solve RMP and obtain optimal dual variables (π, σ)

3: // Pricing step
4: for all r ∈ R do
5: Solve SPr with the query point (π, σr); obtain ω∗ or ρ∗

6: if c̄r,ω∗ < 0 or c̄r,ρ∗ < 0 then
7: Add corresponding column to the RMP
8: end if
9: end for

10: // Stopping criterion
11: if no column added to RMP then
12: STOP
13: end if
14: end while

For large instances with numerous subproblems, full pricing, wherein all subproblems are
solved at each iteration, is often not the most efficient approach. Therefore, we implemented
a partial pricing strategy, in which subproblems are solved in a random order until either all
subproblems have been solved, or a user-specified number of columns with negative reduced
cost have been generated.

B Detailed results on structured LP instances

Table 6: Structured instances: performance comparison of IPM solvers

CPLEX Gurobi Mosek Tulip Tulip*

Instance R CG T(s) Iter T(s) Iter T(s) Iter T(s) Iter T(s) Iter

DER-24 1024 10 0.0 19 0.0 15 0.1 19 0.4 19 0.3 19
DER-24 1024 20 0.1 27 0.1 23 0.1 21 0.5 23 0.3 23
DER-24 1024 30 0.1 28 0.1 22 0.1 24 0.8 26 0.3 26
DER-24 1024 40 0.2 44 0.2 27 0.2 28 1.2 37 0.4 39
DER-24 1024 43 0.2 33 0.2 27 0.2 21 1.1 33 0.5 33
DER-24 2048 10 0.2 31 0.1 21 0.1 20 0.8 23 0.3 23
DER-24 2048 20 0.3 30 0.1 19 0.2 18 1.0 22 0.3 22
DER-24 2048 30 0.3 29 0.3 28 0.3 20 1.4 30 0.5 30
DER-24 2048 40 0.4 48 0.4 36 0.4 27 2.5 47 0.6 47
DER-24 4096 10 0.4 35 0.2 20 0.3 19 1.3 28 0.5 28
DER-24 4096 20 0.8 39 0.4 23 0.4 22 2.1 29 0.5 29
DER-24 4096 30 1.3 65 1.0 42 0.7 29 5.4 58 0.9 56
DER-24 4096 40 1.1 38 1.1 32 0.9 26 5.0 38 0.9 38
DER-24 4096 41 1.0 40 1.0 32 0.8 26 4.7 38 1.0 38
DER-24 8192 10 0.9 32 0.5 18 0.6 21 2.6 25 0.7 25
DER-24 8192 20 2.0 39 1.1 26 1.1 21 5.9 34 1.1 34
DER-24 8192 30 2.9 62 1.8 36 2.1 40 12.5 55 1.9 55
DER-24 8192 40 4.3 79 2.7 46 2.4 38 19.0 67 2.6 68
DER-24 16384 10 2.5 47 1.3 26 1.7 26 9.0 39 1.2 36
DER-24 16384 20 4.1 42 2.1 29 2.5 22 13.8 37 2.0 37
DER-24 16384 30 5.4 55 3.4 36 3.6 26 23.1 48 3.0 48

Title Suppressed Due to Excessive Length 39

Table 6: (continued)

CPLEX Gurobi Mosek Tulip Tulip*

Instance R CG T(s) Iter T(s) Iter T(s) Iter T(s) Iter T(s) Iter

DER-24 16384 40 12.4 110 10.2 88 6.0 51 57.6 100 6.7 100
DER-24 16384 42 10.8 93 5.3 48 5.3 42 49.8 86 5.3 83
DER-24 32768 10 4.6 39 3.3 34 3.5 23 17.9 36 2.2 34
DER-24 32768 20 11.0 53 8.8 52 8.0 39 47.4 66 5.5 65
DER-24 32768 30 14.5 68 12.3 56 8.2 31 96.1 100 11.2 100
DER-24 32768 40 33.9 148 19.4 85 12.3 43 103.6 91 11.4 86
DER-48 1024 10 0.1 24 0.1 13 0.1 21 0.8 24 0.3 24
DER-48 1024 20 0.2 26 0.2 20 0.2 22 1.1 26 0.3 26
DER-48 1024 30 0.3 31 0.2 16 0.2 22 1.5 32 0.5 32
DER-48 1024 40 0.4 32 0.4 21 0.3 22 1.6 30 0.4 30
DER-48 1024 49 0.5 37 0.4 19 0.3 21 1.8 28 0.4 28
DER-48 2048 10 0.3 26 0.3 19 0.3 20 1.3 24 0.4 25
DER-48 2048 20 0.7 37 0.5 21 0.5 22 2.2 31 0.4 31
DER-48 2048 30 0.8 37 0.6 19 0.5 21 2.6 27 0.5 27
DER-48 2048 40 1.2 38 0.9 24 0.7 21 4.1 33 0.7 33
DER-48 2048 49 1.6 40 1.0 21 0.8 25 5.7 37 0.9 37
DER-48 4096 10 0.8 34 0.6 19 0.6 21 3.2 28 0.4 28
DER-48 4096 20 1.5 41 1.1 24 1.0 24 5.8 34 0.8 34
DER-48 4096 30 1.7 38 1.4 23 1.4 23 8.2 35 1.0 35
DER-48 4096 40 3.0 40 2.2 30 1.9 25 9.9 33 1.4 33
DER-48 4096 49 4.1 44 2.0 25 2.0 27 14.1 39 1.7 39
DER-48 8192 10 2.1 39 1.5 26 1.5 25 8.1 32 1.1 32
DER-48 8192 20 3.9 44 1.9 18 2.0 23 12.7 31 1.5 31
DER-48 8192 30 7.2 55 2.9 26 2.9 26 20.4 39 2.2 39
DER-48 8192 40 7.3 45 4.0 24 3.8 22 25.4 38 2.4 38
DER-48 8192 50 9.7 51 4.2 20 4.5 24 37.0 46 3.4 47
DER-48 16384 10 5.0 49 2.9 25 3.8 35 22.4 41 2.3 41
DER-48 16384 20 7.8 45 5.5 28 5.2 26 31.5 37 2.8 37
DER-48 16384 30 14.6 59 7.3 29 6.3 25 53.6 50 5.0 48
DER-48 16384 40 16.3 53 9.3 27 8.5 27 64.5 50 5.2 45
DER-48 16384 48 22.3 64 9.9 29 9.3 28 89.7 60 7.4 57
DER-48 32768 10 10.8 49 7.4 27 8.1 29 46.9 41 4.1 41
DER-48 32768 20 16.8 47 8.6 24 11.2 32 69.5 42 5.7 41
DER-48 32768 30 30.5 61 14.9 26 13.4 26 107.5 51 10.0 51
DER-48 32768 40 36.2 57 21.1 31 16.9 28 133.8 51 10.4 46
DER-48 32768 47 57.1 85 21.6 32 21.1 33 178.8 59 14.2 54
DER-96 1024 10 0.5 27 0.3 18 0.3 20 1.4 23 0.5 23
DER-96 1024 20 0.8 29 0.5 18 0.5 25 2.4 27 0.4 27
DER-96 1024 30 1.2 32 0.6 17 0.6 23 3.5 30 0.5 30
DER-96 1024 40 1.6 34 1.0 19 0.7 22 4.1 31 0.6 32
DER-96 1024 50 2.2 34 1.2 19 0.8 22 5.8 30 0.7 30
DER-96 1024 60 2.6 34 1.4 19 1.0 23 6.9 31 0.8 31
DER-96 1024 64 3.3 38 1.2 19 0.9 22 6.6 31 0.9 31
DER-96 2048 10 1.2 37 0.8 21 0.7 29 4.0 29 0.5 29
DER-96 2048 20 2.2 33 1.1 19 0.9 23 5.9 26 0.8 26
DER-96 2048 30 2.5 44 1.6 22 1.3 25 9.9 35 1.1 35
DER-96 2048 40 4.8 38 2.3 26 1.5 23 12.4 33 1.2 33
DER-96 2048 50 6.7 41 2.4 23 1.8 25 15.2 36 1.6 36
DER-96 2048 56 7.9 45 2.4 20 1.7 21 18.2 38 1.7 37
DER-96 4096 10 3.0 41 1.7 24 1.5 28 9.5 32 1.0 32
DER-96 4096 20 4.4 51 2.9 27 1.9 26 18.2 39 1.6 40
DER-96 4096 30 6.0 53 3.6 24 2.7 28 21.1 35 2.0 36

40 Mathieu Tanneau et al.

Table 6: (continued)

CPLEX Gurobi Mosek Tulip Tulip*

Instance R CG T(s) Iter T(s) Iter T(s) Iter T(s) Iter T(s) Iter

DER-96 4096 40 13.6 53 4.4 24 3.3 27 31.2 39 2.4 39
DER-96 4096 50 14.2 45 5.7 25 4.2 25 36.1 37 2.7 37
DER-96 4096 53 16.3 51 5.5 24 5.2 28 42.6 40 3.2 40
DER-96 8192 10 5.6 53 4.3 27 3.0 28 23.0 35 2.6 35
DER-96 8192 20 11.1 62 7.2 33 4.9 32 43.4 40 3.4 40
DER-96 8192 30 13.5 59 8.8 31 5.9 26 54.4 40 3.8 40
DER-96 8192 40 32.7 63 12.6 35 7.4 25 77.6 45 5.0 45
DER-96 8192 50 39.3 65 11.5 25 10.1 33 89.1 44 6.6 45
DER-96 8192 60 51.7 75 15.5 29 11.1 31 137.6 60 8.8 57
DER-96 16384 10 12.6 61 11.0 37 6.9 34 55.0 41 4.4 41
DER-96 16384 20 21.2 62 14.5 31 10.9 31 92.3 42 6.1 42
DER-96 16384 30 30.1 68 18.5 32 14.2 34 147.9 50 10.1 52
DER-96 16384 40 70.0 69 21.8 28 16.1 30 196.5 54 11.5 52
DER-96 16384 50 85.5 73 27.7 29 18.6 32 231.8 57 14.5 54
DER-96 16384 57 107.8 86 31.9 31 24.4 39 260.0 55 17.3 59
DER-96 32768 10 28.1 70 25.4 45 18.0 39 152.5 52 11.8 49
DER-96 32768 20 39.9 57 33.8 36 18.9 28 180.4 37 10.7 39
DER-96 32768 30 61.9 72 46.6 34 27.9 31 337.6 58 21.3 58
DER-96 32768 40 174.6 88 70.8 42 40.4 39 483.2 69 30.0 66
DER-96 32768 50 233.6 102 58.8 32 46.8 36 609.0 74 43.1 72
DER-96 32768 54 291.9 119 102.9 54 55.5 47 753.7 89 65.4 86
4node 1024 10 0.1 28 0.3 53 0.1 28 0.9 31 0.5 30
4node 1024 20 0.2 27 0.2 22 0.2 26 1.0 27 0.4 27
4node 1024 24 15.7 21 0.4 43 0.2 25 1.3 30 0.5 32
4node 2048 10 19.6 24 0.7 51 0.4 32 1.9 44 0.9 37
4node 2048 20 0.7 38 0.8 42 0.5 37 1.9 33 0.9 32
4node 2048 24 0.7 38 0.6 27 0.6 25 2.1 36 0.9 36
4node 4096 10 0.9 36 2.1 63 0.7 28 3.6 40 1.3 40
4node 4096 20 0.9 23 1.0 27 0.6 19 3.7 26 1.3 26
4node 4096 22 1.1 27 1.7 37 0.7 17 4.5 28 1.2 28
4node 8192 10 1.8 33 3.4 62 1.8 33 10.2 44 2.1 43
4node 8192 20 3.2 42 4.3 51 2.3 36 14.2 43 3.2 44
4node 8192 23 2.7 30 2.3 29 1.8 24 12.3 35 2.7 33
4node 16384 10 6.8 61 11.4 85 5.7 53 34.4 62 5.7 67
4node 16384 20 7.0 42 20.8 108 6.4 44 31.6 45 5.5 44
4node 16384 23 5.8 29 10.7 53 4.0 22 26.4 33 4.6 33
4node 32768 10 9.8 42 11.8 42 9.1 40 56.4 52 8.3 53
4node 32768 20 17.0 58 35.0 95 13.5 45 81.9 60 15.7 65
4node 32768 21 17.0 57 18.7 55 14.6 41 74.8 56 14.2 59
4node-base 1024 10 0.1 24 0.2 18 0.3 21 0.8 24 0.3 24
4node-base 1024 20 0.3 25 0.3 23 0.2 28 1.3 28 0.5 28
4node-base 1024 26 17.0 17 1.0 60 0.3 27 1.4 28 0.6 27
4node-base 2048 10 15.0 15 0.8 36 0.3 23 1.4 29 0.5 30
4node-base 2048 20 0.8 37 1.0 31 0.7 35 3.1 36 0.8 36
4node-base 2048 27 1.0 35 2.6 72 0.8 33 3.7 32 0.9 33
4node-base 4096 10 0.9 35 3.3 92 0.7 24 4.4 38 0.9 42
4node-base 4096 20 1.8 38 4.4 76 1.1 30 8.8 42 1.6 42
4node-base 4096 25 2.3 38 5.3 72 1.5 34 9.1 34 1.8 34
4node-base 8192 10 1.8 33 2.0 21 1.5 26 7.6 29 1.5 29
4node-base 8192 20 4.4 39 16.3 133 3.9 40 18.1 39 2.7 39
4node-base 8192 22 3.8 29 3.7 27 2.6 25 19.7 36 2.8 36
4node-base 16384 10 4.4 38 10.1 57 3.6 30 19.3 39 3.4 39

Title Suppressed Due to Excessive Length 41

Table 6: (continued)

CPLEX Gurobi Mosek Tulip Tulip*

Instance R CG T(s) Iter T(s) Iter T(s) Iter T(s) Iter T(s) Iter

4node-base 16384 20 10.6 49 17.1 51 6.9 36 46.2 46 5.6 45
4node-base 16384 25 13.5 53 26.2 74 8.0 37 63.4 53 7.0 47
4node-base 32768 10 10.9 45 76.1 214 10.3 40 44.3 36 6.0 36
4node-base 32768 20 27.8 68 80.1 125 25.9 72 119.3 59 15.6 63
4node-base 32768 23 20.3 37 29.0 43 14.9 30 107.7 48 12.9 50
assets 37500 6 1.6 21 0.6 12 1.1 20 2.0 13 1.0 13
env 1200 6 0.0 21 0.0 12 0.1 16 0.3 16 0.3 16
env 1875 6 0.1 22 0.0 12 0.1 13 0.4 16 0.4 16
env 3780 6 0.1 25 0.1 12 0.1 14 0.7 17 0.5 17
env 5292 6 0.2 27 0.1 13 0.1 13 0.7 17 0.7 17
env 8232 6 0.3 26 0.2 13 0.3 14 1.1 18 1.2 18
env 32928 6 1.7 26 0.9 13 1.3 17 5.1 21 4.4 21
env-diss 1200 10 0.0 17 0.0 19 0.0 16 0.4 22 0.4 22
env-diss 1200 13 0.1 15 0.0 15 0.1 17 0.4 23 0.4 23
env-diss 1875 10 0.1 27 0.1 17 0.1 20 0.6 22 0.5 22
env-diss 1875 15 0.1 17 0.1 18 0.1 18 0.6 22 0.5 22
env-diss 3780 10 0.2 23 0.1 16 0.1 17 0.8 21 0.7 21
env-diss 3780 15 0.2 20 0.1 18 0.2 18 1.0 22 1.0 22
env-diss 5292 10 0.4 31 0.2 25 0.2 21 1.0 25 1.3 26
env-diss 5292 15 0.3 22 0.3 23 0.3 22 1.3 25 1.5 25
env-diss 8232 10 0.6 26 0.4 22 0.4 18 1.7 22 1.8 22
env-diss 8232 15 1.0 31 0.6 29 0.5 23 3.2 35 2.6 35
env-diss 32928 10 4.6 37 2.8 36 1.9 17 8.0 27 7.2 27
env-diss 32928 14 4.8 28 2.1 22 2.5 19 10.0 27 7.7 27
phone 32768 5 0.5 15 0.4 8 0.6 8 1.9 10 0.7 10
stormG2 1000 10 0.7 35 0.5 21 0.3 21 2.0 32 1.5 31
stormG2 1000 20 1.4 33 0.8 18 0.5 19 4.5 29 1.7 29
stormG2 1000 21 1.6 37 0.8 18 0.5 22 4.0 29 1.7 28

