
ar
X

iv
:1

90
9.

09
58

2v
1

 [
m

at
h.

O
C

]
 2

0
Se

p
20

19

An inexact proximal augmented Lagrangian framework with arbitrary

linearly convergent inner solver for composite convex optimization

Fei Li∗ and Zheng Qu†

Department of Mathematics

The University of Hong Kong

September 23, 2019

Abstract

We propose an inexact proximal augmented Lagrangian framework with explicit inner problem termination
rule for composite convex optimization problems. We consider arbitrary linearly convergent inner solver
including in particular stochastic algorithms, making the resulting framework more scalable facing the ever-
increasing problem dimension. Each subproblem is solved inexactly with an explicit and self-adaptive stopping
criterion, without requiring to set an a priori target accuracy. When the primal and dual domain are bounded,
our method achieves O(1/

√
ǫ) and O(1/ǫ) complexity bound in terms of number of inner solver iterations,

respectively for the strongly convex and non-strongly convex case. Without the boundedness assumption, only
logarithm terms need to be added and the above two complexity bounds increase respectively to Õ(1/

√
ǫ)

and Õ(1/ǫ), which hold both for obtaining ǫ-optimal and ǫ-KKT solution. Within the general framework that
we propose, we also obtain Õ(1/ǫ) and Õ(1/ǫ2) complexity bounds under relative smoothness assumption
on the differentiable component of the objective function. We show through theoretical analysis as well as
numerical experiments the computational speedup possibly achieved by the use of randomized inner solvers
for large-scale problems.

1 Introduction

We consider the following optimization problem:

min
x∈Rn

f(x) + g(x) + h1(p1(x)) + h2(p2(x)). (1)

Here g : Rn → R ∪ {+∞}, h1 : Rd1 → R are proper, convex and closed functions. The function h2 : Rd2 →
R ∪ {+∞} is the indicator function of a convex and closed set K ⊂ Rd2 :

h2(u2) =

{
0 if u2 ∈ K
+∞ otherwise

(2)

The function f : Rn → R∪{+∞} is convex and differentiable on an open set containing dom(g). The functions
p1 : R

n → Rd1 and p2 : R
n → Rd2 are differentiable. In addition, we assume that g, h1, h2 are simple functions,

in the sense that their proximal operator are easily computable. With some other standard assumptions stated

∗
Email: lifei16@connect.hku.hk. The author was supported by Hong Kong PhD Fellowship Scheme No. PF15-16399.

†
Email: zhengqu@maths.hku.hk. The author was supported by Early Career Scheme from Hong Kong Research Grants Council

No. 27302016. The computations were performed using research computing facilities offered by Information Technology Services,
the University of Hong Kong.

1

http://arxiv.org/abs/1909.09582v1
mailto:lifei16@connect.hku.hk
mailto:zhengqu@maths.hku.hk

in the later discussion, the model that we consider covers a wide range of optimization problems. As an example,
the following linearly constrained convex optimization problem

min
x∈Rn

f(x) + g(x) (3)

s.t. Ax = b

is a special case of (1) by letting h1 ≡ 0, K = {b} and p2(x) ≡ Ax. Important applications of (3) include model
predictive control [38] and basis pursuit problem [12]. When h1 ≡ 0, K is a closed convex cone in Rd2 and
p2(·) is convex with respect to K, problem (1) reduces to the convex conic programming model [27, 25] and in
particular contains the constrained convex programming problem [36]:

min
x∈Rn

f(x) + g(x) (4)

s.t. f1(x) ≤ 0, · · · , fm(x) ≤ 0.

Apart from constrained programs, problem (1) also covers many popular models in machine learning, including
the sparse-group LASSO [39], the fused LASSO [40], the square root LASSO [6], and the support vector machine
problem [49].

In [36], Rockafellar built an inexact augmented Lagrangian method (ALM) framework for solving (4). At
each iteration of the inexact ALM, one needs to solve a convex optimization problem (referred to as inner
problem) presumed easier than the original constrained problem (4), up to a certain accuracy. Rockafellar [36]
gave some stopping criteria for the test of the inner problem solution accuracy, as well as some sufficient
conditions guaranteeing the convergence of the inexact ALM method. In [30], Nesterov proposed a smoothing
technique to deal with the unconstrained case (h2 ≡ 0). The idea is again to replace the original problem by
an easier subproblem and solve it up to a desired accuracy. Although existing work usually consider either
h1 ≡ 0 or h2 ≡ 0 [7, 10], we can treat them in a unified way because the augmented Lagrangian function
corresponds to a smooth approximation of the function h2. In fact, both Rockafellar’s inexact ALM framework
and Nesterov’s smoothing technique are applications of the inexact proximal point method [37, 5]. There is no
essential difficulty in extending existing results from the case h1 ≡ 0 or h2 ≡ 0 to the general model (1). For
this reason, in the following discussion, we do not make particular difference between the papers dealing with
the two different cases (either h1 ≡ 0 or h2 ≡ 0).

We mainly consider two optimality criteria for the complexity analysis of inexact ALM. One is based on
the primal feasibility and the primal value optimality gap and the other on the KKT-residual. A solution
x ∈ dom(g) is said to be ǫ-optimal if [36, 30, 5, 28, 33, 27, 46]

|F (x)− F ⋆| ≤ ǫ, dist(p2(x),K) ≤ ǫ. (5)

Here,

F (x) := f(x) + g(x) + h1(p1(x)), ∀x ∈ R
n, (6)

and F ⋆ denotes the optimal value of (1). A solution x ∈ dom(g) is said to be ǫ-KKT optimal if there is
λ1 ∈ dom(h∗1) and λ2 ∈ dom(h∗2) such that [21, 25]

dist(0, ∂xL(x, λ1, λ2)) ≤ ǫ, dist(0, ∂λ1
L(x, λ1, λ2)) ≤ ǫ, dist(0, ∂λ2

L(x, λ1, λ2)) ≤ ǫ. (7)

Here,

L(x, λ1, λ2) := f(x) + g(x) + 〈λ1, p1(x)〉 − h∗1(λ1) + 〈λ2, p2(x)〉 − h∗2(λ2), ∀x ∈ R
n, λ1 ∈ R

d1 , λ2 ∈ R
d2 ,

denotes the Lagrangian function. A different criterion which can be derived from (7) under the boundedness of
dom(g) was used in [23]. Most of the previously cited papers studied the complexity bound of the inexact ALM,
which is the number of inner iterations needed for computing an ǫ-optimal solution or an ǫ-KKT solution. The

2

lowest known complexity bound is O(ǫ) for obtaining an ǫ-optimal solution [30, 5, 33, 27, 46, 41], and Õ(ǫ) for
obtaining an ǫ-KKT solution [25].

There are some variants of inexact ALM which avoid the solution of inner problems, including the linearized
ALM [46] and linearized ADMM [32] as well as their stochastic extensions [45, 47, 9]. These inner problem free
methods are widely used in practice thanks to their simple implementation form and good practical convergence
behavior. However, O(ǫ) complexity bound of these methods are established only in an ergodic sense, not in the
last iterate. In [42], an accelerated smooth gap reduction method (ASGARD) was developed with a non-ergodic
O(ǫ) complexity bound and showed superior numerical performance than linearized ADMM. The method has
been extended to a stochastic block coordinate update version in [1], called SMART-CD. In practice, it was
observed that appropriately restarting ASGARD or SMART-CD can further speed up the convergence. In [41],
the authors analyzed a double-loop ASGARD (ASGARD-DL) which achieves the non-ergodic complexity bound
O(ǫ) and has similar practical convergence behavior as ASGARD with restart. ASGARD-DL [41] can be seen
as an inexact ALM. However, in contrast to a series of work on inexact ALM [30, 5, 33, 27, 46], ASGARD-DL
has an explicit inner termination rule and does not require the boundedness of dom(g).

The boundedness assumption of dom(g) seems to be crucial in the existing analysis for inexact ALM since
it allows to directly control the number of iterations needed for the solution of each inner problem, using
deterministic first-order solvers such as the accelerated proximal gradient (APG) [4]. It was argued that such
boundedness assumption is mild because in some cases it is possible to find a bounded set including the optimal
solution [23]. Nevertheless, removing this assumption from the complexity analysis of inexact ALM seems to
be challenging and requires different approaches from existing ones. ASGARD-DL [41] is among the first which
achieve the best complexity bound O(ǫ) without making the compactness assumption. However, their analysis
builds on a very special property of APG and thus excludes the possibility of other inner solvers.

Allowing more flexible choice of inner solver is a very important feature in the large-scale setting. It is recog-
nized that some randomized first-order methods can be more efficient than APG when the problem dimension
is high. This includes for example the randomized coordinate descent variant of APG (a.k.a. APPROX) [16]
and the stochastic variance reduced variant of APG (a.k.a. Katyusha) [2]. Compared with their deterministic
origin APG, APPROX can reduce the computation load when the number of coordinates n is large, while
Katyusha is more efficient when the number of constraints m (in (4)) is large. With the ever-increasing scale
of the problems to be solved, it is necessary to employ randomized methods for solving the inner problems.
However, the complexity analysis of inexact ALM with randomized inner solvers seems not to have been fully
investigated.

In this paper, we develop an inexact proximal ALM which does not require the boundedness of dom(g) for
the inner termination rule, and analyze its total complexity bound for any linearly convergent inner solver. Since
randomized inner solvers are included, we will only require the optimality criteria (5) and (7) to be achieved in
expectation, see (31) and (90). In addition, the complexity bound that we provide is an upper bound on the
expectation of the number of total inner iterations. We summarize below our contributions.

1. We give a stochastic extension of Rockafellar’s inexact proximal ALM framework, see Algorithm 1. The
difference with the original framework lies in the inner problem stopping criteria, which only asks the
inner optimality gap to be smaller than a certain threshold in expectation.

2. For any linearly convergent inner solver A, we give an upper bound on the number of inner iterations
required to satisfy the stopping criteria, see (37). In contrast to related work [27, 21, 28, 33, 23, 46, 25],
the upper bound computed by (37) does not depend on the diameter of dom(g) and in particular does
not need to assume the boundedness of dom(g). Instead, our upper bound is adaptively computed based
on the previous and current primal and dual iterates, as well as the linear convergence rate of the inner
solver A.

3. Based on the explicit upper bound computed by (37), we propose an inexact proximal ALM with an
explicit inner termination rule, see Algorithm 2. Compared with the previously mentioned work, our
termination rule

3

• does not require the desired accuracy ǫ to be set a priori;

• does not need to assume the boundedness of dom(g).

4. We show that the complexity bound of Algorithm 2 is Õ(1/ǫℓ) to obtain an ǫ-optimal solution where ℓ > 0
is a constant determined by the convergence rate of the inner solver A, see Theorem 2. Our approach can
be easily extended to obtain Õ(1/ǫℓ) complexity bound for ǫ-KKT solution, see Section 6.2. When both
the primal and dual domains are bounded, the bound Õ(1/ǫℓ) can be improved to O(1/ǫℓ) for obtaining
an ǫ-optimal solution, see Section 6.3.

5. We show how to apply Theorem 2 under different problem structures and assumptions. When p1(·) and
p2(·) are linear, under the same assumptions as [27, 21, 28, 33, 23, 25] but without the boundedness of
dom(g), we obtain Õ(1/ǫ) and Õ(1/

√
ǫ) complexity bound respectively for the non-strongly convex and

strongly convex case, see Corollary 5 and 6. We also consider the case when f is only relatively smooth,
and establish Õ(1/ǫ) and Õ(1/ǫ2) complexity bound respectively for the non-strongly convex and strongly
convex case, see Corollary 7.

6. We provide theoretical justification to support the use of randomized solvers in large-scale setting, see
Table 1. We give numerical evidence to show that with appropriate choice of inner solver, our algorithm
outperforms ASGARD-DL and SMART-CD, see Figure 1, 2, 3, 4, 5. Moreover, compared with CVX, our
algorithm often obtains a solution with medium accuracy within less computational time, see Table 3, 4, 5.

Notations. For any two vectors λ1 ∈ Rd1 and λ2 ∈ Rd2 we denote by (λ1;λ2) the vector in Rd1+d2 obtained
by concatenating λ1 and λ2. Inversely, for any λ ∈ Rd1+d2 we denote by λ1 ∈ Rd1 the vector containing the first
d1 components of λ and λ2 ∈ Rd2 the vector containing the last d2 components of λ. We use ‖ · ‖ to denote the
standard Euclidean norm for vector and spectral norm for matrix. For any matrix A, Ai,i is the ith diagonal
element of A. We denote by ei ∈ Rn the ith standard basis vector in Rn. For proper, closed and convex function
h(·), h∗(·) denotes its Fenchel conjugate function. For any x ∈ Rd2 , dist(x,K) denotes the distance from x to
K. For any integer n we denote by [n] the set {1, 2, · · · , n}.

Organization. In Section 2, we study an inexact proximal ALM framework with expected inexactness
condition. In Section 3, we give an upper bound on the number of the inner iterations and obtain an instantiation
of the general inexact proximal ALM. In Section 4, we briefly recall several first order methods and their
respective convergence rate. In Section 5, we apply our main results to different structured problems. In
Section 6, we discuss some extension of our work. In Section 7, we present numerical experiments. In Section 8,
we make some concluding remarks. Background knowledge used and missing proofs can be found in the
Appendix.

2 Preliminaries

2.1 Problem and Assumptions

For ease of presentation we rewrite (1) as

min
x∈Rn

f(x) + g(x) + h(p(x)), (8)

where
h((u1;u2)) := h1(u1) + h2(u2), u1 ∈ R

d1 , u2 ∈ R
d2 ,

and
p(x) := (p1(x); p2(x)), x ∈ R

n.

Define the Lagrangian function

L(x;λ) := f(x) + g(x) + 〈λ, p(x)〉 − h∗(λ), (9)

4

and consider the Lagrange dual problem:

max
λ∈Rd

[

D(λ) ≡ inf
x
L(x;λ)

]

. (10)

We shall call problem (8) the primal problem and (10) the dual problem. Apart from the structures mentioned
in the very beginning of Section 1, we make the following additional assumptions throughout the paper.

Assumption 1

(a) h1 is Lh1
-Lipschitz continuous.

(b) for any x, y ∈ Rn, u1, v1 ∈ Rd1 and α ∈ (0, 1)

h1 (p1(αx+ (1− α)y)− αu1 − (1− α)v1) ≤ αh1(p1(x)− u1) + (1− α)h1(p1(y)− v1).

(c) for any x, y ∈ Rn, u2, v2 ∈ Rd2 and α ∈ (0, 1) such that p2(x)− u2 ∈ K and p2(y)− v2 ∈ K, it holds that

p2 (αx+ (1− α)y))− αu2 − (1− α)v2 ∈ K.

(d) both the primal and the dual problem have optimal solution and the strong duality holds, i.e., there is
x⋆ ∈ dom(g) and λ⋆ ∈ dom(h∗) such that g(x⋆) ∈ K and

F (x⋆) = L(x⋆;λ⋆) = D(λ⋆). (11)

If p1(·) : Rn → Rd1 is affine, then Assumption (b) holds. Otherwise, (b) holds if there is a partial order �C1 on
Rd1 induced by a closed convex cone C1 ⊂ Rd1 (i.e. x �C1 y if and only if y − x ∈ C1) such that the function
p1(·) is convex with respect to the order �C1 , i.e.,

p1(αx+ (1− α)y) �C1 αp1(x) + (1− α)p1(y), (12)

and the function h1(·) is order preserving with respect to �, i.e.,
u1 �C1 v1 =⇒ h1(u1) ≤ h1(v1). (13)

Similarly, if p2(·) : Rn → Rd2 is affine, then Assumption (c) holds. Otherwise, (c) holds if there is a partial
order �C2 on Rd2 induced by a closed convex cone C2 such that the function p2(·) is convex with respect to the
order �C2 , i.e.,

p2(αx+ (1− α)y) �C2 αp2(x) + (1− α)p2(y), (14)

and the set K is such that u2 + z2 ∈ K for any u2 ∈ K and z2 �C2 0.

Remark 1 For example, consider the partial order � induced by the nonnegative orthant R
d1
+ , then (12) is

satisfied if p1(x) = (q1(x), · · · , qd1(x))⊤ with each qi : R
n → R being convex. If the partial order � is induced

by the cone of positive semidefinite matrices Sm
+ , then (12) holds if p1(x) =

∑t
i=1Biqi(x) with B1, . . . , Bt ∈ Sm

+

and each qi : R
n → R being convex, see, e.g. [3]. The same class of examples apply to (14).

Remark 2 A special case when (13) holds is when h1 is the support function of some bounded set included in
the dual cone of C1, i.e.,

h1(x) ≡ sup{〈y, x〉 : y ∈ B ∩ C∗1},
where B is a bounded set and C∗1 := {y : 〈y, x〉 ≥ 0, ∀x ∈ C1} is the dual cone of C1. For example, when
B is the unit ball with respect to the standard Euclidean norm and C1 = R

d1
+ is the nonpositive orthant, then

h1(x) = ‖max(x, 0)‖, see e.g. [17].

Let d = d1 + d2. Condition (b) and (c) imply that for any x, y ∈ Rn, u, v ∈ Rd and α ∈ (0, 1)

h (z) ≤ αh(p(x) − u) + (1− α)h(p(y) − v), (15)

where z = p(αx + (1 − α)y) − αu − (1 − α)v. The latter condition guarantees the convexity of h(p(·)) : Rn →
R ∪ {+∞}.

5

2.2 Proximal ALM Revisited

Let any λ ∈ Rd and β > 0. Define

h(u;λ, β) := max
v∈Rd

{

〈v, u〉 − h∗(v)− β

2
‖v − λ‖2

}

, (16)

and

Λ(u;λ, β) := argmax
v∈Rd

{

〈v, u〉 − h∗(v)− β

2
‖v − λ‖2

}

. (17)

The function h(·;λ, β) is known as an approximate smooth function of the possibly nonsmooth function h(·)
with parameter λ and β. We next recall some results needed later about the smooth function h(·;λ, β).

Lemma 1 ([30, 18, 5]) 1. The function h(u;λ, β) is convex and differentiable with respect to u. Denote by
∇1h(u;λ, β) the gradient with respect to the variable u, then we have

∇1h(u;λ, β) = Λ(u;λ, β) (18)

‖∇1h(u;λ, β) −∇1h(v;λ, β)‖ ≤ β−1‖u− v‖ (19)

2. For any u, λ ∈ Rd and β > 0 we have

h(u;λ, β) = min
w

{

h(u− w) + 1

2β
‖w‖2 + 〈w, λ〉

}

≤ h(u) (20)

In addition, the optimal solution w⋆ for (20) is given by

w⋆ = β(Λ(u;λ, β) − λ), (21)

and

h(u;λ, β) = h(u− β(Λ(u;λ, β) − λ)) + β

2
‖Λ(u;λ, β)‖2 − β

2
‖λ‖2 (22)

3. For any u, λ ∈ Rd and β > 0, we have

u− β(Λ(u;λ, β) − λ) ∈ ∂h∗(Λ(u;λ, β)). (23)

Lemma 2 Let ψ(·) : Rn → R ∪ {+∞} be a convex function. Define:

ψ̃(x) := inf
w
{h(p(x) − w) + ψ(w)},

Then condition (15) ensures the convexity of ψ̃.

Lemma 3 Fix any λ ∈ Rd and β > 0. Define

ψ̃(x) := h(p(x);λ, β)

Then ψ̃ : Rn → R is a convex and differentiable function with ∇ψ̃(x) = ∇p(x)Λ(p(x);λ, β).

Define

L(x; y, λ, β) := f(x) + g(x) + h(p(x);λ, β) +
β

2
‖x− y‖2. (24)

6

It follows from Lemma 3 that for any β > 0 the function L(x; y, λ, β) is strongly convex with respect to the
variable x. Let {βs : s ≥ 0} and {ǫs : s ≥ 0} be two sequence of positive numbers. We recall the inexact
proximal augmented Lagrangian framework in Algorithm 1. The objective function at outer iteration s is
denoted by Hs(·) and H⋆

s := minxHs(x). A small difference with the classical inexact proximal ALM in [36]
is that we only require to control the expectation of the subproblem objective value gap. In particular, note
that the iterates {(xs, λs)} in Algorithm 1 are random variables. We denote by Fs the σ-algebra generated by
{xt : t ≤ s} ∪ {λt : t ≤ s}.

Algorithm 1 IPALM (compare with [36])

Parameters: {ǫs}, {βs};
Initialize: x−1 ∈ dom(g), λ0 ∈ dom(h∗);

for s = 0, 1, . . . do
Find xs ≃ argminHs(x) ≡ L(x;xs−1, λs, βs) satisfying E[Hs(x

s)−H⋆
s] ≤ ǫs

λs+1 ← Λ(p(xs);λs, βs)
end for

We now recall a few known results about inexact proximal ALM. Note that we are in a slightly more general
setting than [36] due to our problem formulation (1) and the expected inexactness condition in Algorithm 1.
A modification of the original proof is needed to obtain the desired results. For completeness proofs can be
found in Appendix B.1. Hereinafter, x⋆ is an arbitrary optimal solution of the primal problem (8) and λ⋆ is an
arbitrary optimal solution of the dual problem (10).

Lemma 4 (compare with [37]) Let {xs, λs} be the sequence generated by Algorithm 1. Then for any s ≥ 0,

E
[∥
∥(xs, λs+1)− (xs−1, λs)

∥
∥
]
≤
∥
∥(x−1, λ0)− (x⋆, λ⋆)

∥
∥+

s∑

i=0

√

2ǫi/βi (25)

E

[∥
∥(xs, λs+1)− (x⋆, λ⋆)

∥
∥
2
]

≤
(

∥
∥(x−1, λ0)− (x⋆, λ⋆)

∥
∥ +

s∑

i=0

√

2ǫi/βi

)2

(26)

Lemma 4 allows us to give a bound on the produced primal dual sequence {(xs, λs)}s.

Corollary 1 Consider Algorithm 1 with βs = β0ρ
s and ǫs = ǫ0η

s for some 0 < η < ρ < 1. Define

c0 := 2

(

∥
∥(x−1, λ0)− (x⋆, λ⋆)

∥
∥+

2
√

ǫ0/β0

1−
√

η/ρ

)2

+ 2‖λ⋆‖2 + 2‖x⋆‖2. (27)

Then we have

max
(

E
[
‖λs‖2

]
,E
[
‖xs‖2

]
,E
[

‖xs − x⋆‖2
])

≤ c0, E
[
‖λs+1 − λs‖

]
≤ √c0, ∀s ≥ 0.

Theorem 1 (compare with [36]) Consider Algorithm 1. We have the following bounds:

F (xs)− F ⋆ ≤ Hs(x
s)−H⋆

s + Lh1
βs‖λs+1

1 − λs1‖+
βs
2
(‖λs‖2 − ‖λs+1‖2) + βs

2
‖x⋆ − xs−1‖2 (28)

F (xs)− F ⋆ ≥ −βs‖λ⋆2‖‖λs+1
2 − λs2‖, (29)

dist(p2(x
s),K) ≤ βs‖λs+1

2 − λs2‖. (30)

Corollary 2 Consider Algorithm 1 with βs = β0ρ
s and ǫs = ǫ0η

s for some 0 < η < ρ < 1. Then to obtain a
solution xs such that

|E[F (xs)− F ⋆]| ≤ ǫ, E[dist(p2(x
s),K)] ≤ ǫ, (31)

7

if suffices to run Algorithm 1 for

s ≥ ln(c1/ǫ)

ln 1/ρ
(32)

number of outer iterations where

c1 := max(ǫ0 + 2L2
h1
β0 + c0β0, β0‖λ⋆2‖

√
c0, β0

√
c0) (33)

with c0 defined in (27).

3 Recursive Relation of Inexactness

The main objective of this section is to show that the initial error Hs+1(x
s) − H⋆

s+1 of the inner problem at
iteration s+1 in Algorithm 1 can be upper bounded using the last step error Hs(x

s)−H⋆
s and some computable

quantities. The bound will yield a way to control the number of inner iterations. The key proposition of this
section is as follows.

Proposition 1 Consider Algorithm 1. If βs ≥ βs+1 > βs/2, then

Hs+1(x
s)−H⋆

s+1

≤ 2(Hs(x
s)−H⋆

s) + βs‖λs+1 − λs‖2 + βs−βs+1

2 ‖Λ(p(xs);λs+1, βs+1)− λs+1‖2 + β2
s

2βs+1−βs
‖xs−1 − xs‖2

+‖λs+1 − λs‖
√
(
(βs + βs+1)Lh1

+ ‖βsλs1 − βs+1λ
s+1
1 ‖

)2
+ ‖βsλs2 − βs+1λ

s+1
2 ‖2

.

(34)

We defer the proof of Proposition 1 in Section 3.3. In the next section we show how to make use of
Proposition 1 to get an implementable form of Algorithm 1. Hereinafter we assume that we have at our
disposal an algorithm A suitable for solving each inner problem in Algorithm 1:

min
x
Hs(x). (35)

Denote by A(x, k,Hs) the output obtained by running k iterations of Algorithm A on problem (35) starting
with initial solution x. We only consider those inner solvers A satisfying the following requirement.

Assumption 2 (Linearly Convergent Inner Solver) For any outer iteration s ∈ {0, 1, . . . } of Algorithm 1,
there is Ks ≥ 1 such that for any x ∈ dom(g),

E [Hs (A(x, k,Hs))−H⋆
s |Fs−1] ≤ 2−⌊k/Ks⌋ (Hs(x)−H⋆

s) . (36)

We will give in Section 4 some examples of algorithms satisfying these properties.

3.1 Inner Iteration Complexity Control for ALM

In this section we apply Proposition 1 to derive an implementable form of Algorithm 1.

Corollary 3 Consider Algorithm 1 with βs ≥ βs+1 > βs/2. Let ms+1 > 0 be an integer satisfying

2ǫs + βs‖λs+1 − λs‖2 + βs−βs+1

2 ‖Λ(p(xs);λs+1, βs+1)− λs+1‖2 + β2
s

2βs+1−βs
‖xs−1 − xs‖2

+‖λs+1 − λs‖
√
(
(βs + βs+1)Lh1

+ ‖βsλs1 − βs+1λ
s+1
1 ‖

)2
+ ‖βsλs2 − βs+1λ

s+1
2 ‖2 ≤ 2⌊ms+1/Ks+1⌋ǫs+1/2

.

(37)
If E [Hs(x

s)−H⋆
s] ≤ ǫs, then

E
[
Hs+1(x

s+1)−H⋆
s+1

]
≤ ǫs+1, (38)

is guaranteed by letting
xs+1 = A(xs,ms+1,Hs+1).

8

Proof Denote

Ms := βs‖λs+1 − λs‖2 + βs−βs+1

2 ‖Λ(p(xs);λs+1, βs+1)− λs+1‖2 + β2
s

2βs+1−βs
‖xs−1 − xs‖2

+‖λs+1 − λs‖
√
(
(βs + βs+1)Lh1

+ ‖βsλs1 − βs+1λ
s+1
1 ‖

)2
+ ‖βsλs2 − βs+1λ

s+1
2 ‖2

. (39)

By (36), we have
E
[
Hs+1

(
xs+1

)
−H⋆

s+1|Fs

]
≤ 2−⌊ms+1/Ks+1⌋ (Hs+1(x

s)−H⋆
s+1

)
.

Then we apply Proposition 1 and obtain

E
[
Hs+1

(
xs+1

)
−H⋆

s+1|Fs

]
≤ 21−⌊ms+1/Ks+1⌋ (Hs(x

s)−H⋆
s) + 2−⌊ms+1/Ks+1⌋Ms. (40)

If (37) holds, then

2−⌊ms+1/Ks+1⌋ ≤ ǫs+1

4ǫs
, 2−⌊ms+1/Ks+1⌋Ms ≤

ǫs+1

2
.

It follows that

E
[
Hs+1

(
xs+1

)
−H⋆

s+1|Fs

]
≤ ǫs+1

2ǫs
(Hs(x

s)−H⋆
s) +

ǫs+1

2
.

Then (38) is guaranteed by taking expectation on both sides of the last inequality.

Remark 3 All the values involved in (37) are computable.

Then an instantiation of Algorithm 1 with inner solver A and explicit number of inner iterations is given in
Algorithm 2.

Algorithm 2 IPALM(A)
Parameters: β0 > 0, ρ ∈ (1/2, 1), η ∈ (0, 1), m0 ∈ N++

Initialize: x−1 ∈ dom(g), λ0 ∈ dom(h∗)
x0 ← A(x−1,m0,H0)
ǫ0 ≥ H0(x

0)−H⋆
0

for s = 0, 1, 2, . . . do
λs+1 ← Λ(p(xs);λs, βs)
βs+1 = ρβs
ǫs+1 = ηǫs
choose ms+1 to be the smallest integer satisfying (37)
xs+1 ← A(xs,ms+1,Hs+1)

end for

3.2 Overall Iteration Complexity Bound

To analyze the total complexity of Algorithm 2, we will evaluate E[ms]. The key step is to show that the
expectation of the quantity Ms defined in (39) can be bounded by some constant times βs, provided that the
primal and dual sequence {(xs, λs)} is bounded.

Lemma 5 Consider Algorithm 2. If there is a constant c > 0 such that

max(E[‖λs − λs+1‖2],E[‖xs−1 − xs‖2],E[‖λs‖2]) ≤ c, (41)

then
E[Ms] ≤ βs

(
(11 + 2ρ−2)(L2

h1
+ c) + (2ρ− 1)−1c

)
.

To ensure condition (41), we can rely on the result from Corollary 1.

9

Proposition 2 Consider Algorithm 2 with parameters satisfying η < ρ. Then,

s∑

t=1

E[mt] ≤ s+
s∑

t=1

Kt

(

t log2
ρ

η
+ c2

)

≤
(

1 + log2
ρ

η
+ c2

)

s
s∑

t=1

Kt (42)

where

c2 := log2

(

4

η
+

2β0
(
(11 + 2ρ−2)(L2

h1
+ 4c0) + 4(2ρ− 1)−1c0

)

ǫ0η

)

+ 1 (43)

with c0 is defined as in (27).

Theorem 2 Consider Algorithm 2 with parameters satisfying η < ρ. If there are three constants ς ≥ 0, ω > 0
and ℓ > 0 such that

Ks ≤
ω

βℓs
+ ς, ∀s ≥ 1. (44)

Let ǫ ≤ ǫ0. Then to obtain a solution xs such that

|E[F (xs)− F ⋆]| ≤ ǫ, E[dist(p2(x
s),K)] ≤ ǫ, (45)

the total expected number of calls of Algorithm A is bounded by

s∑

t=0

E[mt] ≤ m0 +
c3
ǫℓ

ln
c1
ǫρ

(46)

where c1 is defined in (33) and

c3 :=
1 + log2(ρ/η) + c2

ln(1/ρ)

(
ςcℓ1

ρℓℓ ln(1/ρ)
+

ωcℓ1
βℓ0(1− ρℓ)

)

, (47)

with c2 defined in (43).

Proof By Corollary 2, (45) holds if

s ≥ ln(c1/ǫ)

ln(1/ρ)
.

Thus (45) is true for some integer s satisfying

s ≤ ln(c1/ǫ)

ln(1/ρ)
+ 1 =

ln(c1/(ǫρ))

ln(1/ρ)
. (48)

Since ǫ ≤ ǫ0, we know that ǫ ≤ c1 and

s ≤ ln(c1/(ǫρ))

ln(1/ρ)
=

ln(cℓ1/(ǫ
ℓρℓ))

ℓ ln(1/ρ)
≤ cℓ1
ǫℓρℓℓ ln(1/ρ)

, (49)

where in the last inequality we used ln a ≤ a for any a ≥ 1. In view of (44), we have

s∑

t=1

Kt ≤ ςs+
ω

βℓ0

s∑

t=1

ρ−ℓt ≤ ςs+ ωρ−ℓs

βℓ0(ρ
−ℓ − 1)

(48)

≤ ςs+
ωcℓ1

βℓ0(1− ρℓ)ǫℓ
(49)

≤
(

ςcℓ1
ρℓℓ ln(1/ρ)

+
ωcℓ1

βℓ0(1− ρℓ)

)
1

ǫℓ

Then we apply Proposition (2) to obtain

s∑

t=1

E[mt] ≤ s (1 + log2(ρ/η) + c2)

(
ςcℓ1

ρℓℓ ln(1/ρ)
+

ωcℓ1
βℓ0(1− ρℓ)

)
1

ǫℓ

(48)

≤ 1 + log2(ρ/η) + c2
ln(1/ρ)

(
ςcℓ1

ρℓℓ ln(1/ρ)
+

ωcℓ1
βℓ0(1− ρℓ)

)
1

ǫℓ
ln
c1
ǫρ
.

10

To facilitate the comparison of complexity of different inner solvers, hereinafter we hide the logarithm terms
and those constants independent with the inner solver into the Õ notation. We also hide the constant ℓ since
we only compare inner solvers with the same order ℓ.

Corollary 4 Under the premise of Theorem 2, to obtain an ǫ-optimal solution in the sense of (45), the number
of calls of the inner solver A is bounded by

Õ

(
ω + ς

ǫℓ

)

where the Õ hides logarithm terms, and constants related to the inner solver convergence order ℓ and other inner
solver independent constants c1, c2, ρ, η, β0, ǫ0 and m0.

3.3 Proof of Proposition 1

In the following we denote

L⋆(y, λ, β) := min
x
L(x; y, λ, β), x⋆(y, λ, β) := argmin

x
L(x; y, λ, β), p⋆(y, λ, β) := p(x⋆(y, λ, β)). (50)

We first state a few useful lemmas. Their proofs are mostly based on standard duality theory and can be found
in Appendix B.3.

Lemma 6 For any x ∈ Rn, λ, λ′ ∈ Rd and β, β′ ∈ R+ we have,

L(x; y, λ, β) − L(x; y′, λ′, β′) + β

2
‖Λ(p(x);λ, β) − λ‖2 − β′

2
‖Λ(p(x);λ′, β′)− λ′‖2

≤ 〈Λ(p(x);λ, β) − Λ(p(x);λ′, β′), β′(Λ(p(x);λ′, β′)− λ′)〉+ β

2
‖x− y‖2 − β′

2
‖x− y′‖2, (51)

and

L(x; y, λ, β) − L(x; y′, λ′, β′) + β

2
‖Λ(p(x);λ, β) − λ‖2 − β′

2
‖Λ(p(x);λ′, β′)− λ′‖2

≥ 〈Λ(p(x);λ, β) − Λ(p(x);λ′, β′), β(Λ(p(x);λ, β) − λ)〉+ β

2
‖x− y‖2 − β′

2
‖x− y′‖2 (52)

Lemma 7 For any x ∈ Rn we have,

L(x; y, λ, β) − L⋆(y, λ, β) ≥ β

2
‖x− x⋆(y, λ, β)‖2 + β

2
‖Λ(p(x);λ, β) − Λ(p⋆(y, λ, β);λ, β)‖2 . (53)

Lemma 8 Let any u, λ, λ′ ∈ Rd and β, β′ ∈ R+. Condition (a) in Assumption 1 ensures:

‖β(Λ(u;λ, β) − λ)− β′(Λ(u;λ′, β′)− λ′)‖ ≤
√

((β + β′)Lh1
+ ‖βλ1 − β′λ′1‖)2 + ‖βλ2 − β′λ′2‖2. (54)

Remark 4 If

h(u) =

{
0 if u = b
+∞ otherwise

for some constant vector b ∈ Rd, then by (23) we have

u− β(Λ(u;λ, β) − λ) = b,

for any u, λ ∈ Rd and β ≥ 0. In this special case a refinement of Lemma 8 can be stated as follows:

‖β(Λ(u;λ, β) − λ)− β′(Λ(u;λ′, β′)− λ′)‖ = 0.

11

Lemma 9 Let any 0 < β/2 < β′ and any w,w′, y, y′ ∈ Rn. We have

−β
2
‖w′ − w‖2 + β

2
‖w′ − y‖2 − β′

2
‖w′ − y′‖2 ≤ β

2
‖w − y′‖2 + β(2β′ + β)

2(2β′ − β) ‖y − y
′‖2. (55)

Using the above four lemmas, we establish a relation between L(x; y′, λ′, β′)− L⋆(y′, λ′, β′) and L(x; y, λ, β) −
L⋆(y, λ, β).

Proposition 3 For any x, y, y′ ∈ Rn, λ, λ′ ∈ Rd and 0 < β/2 < β′, we have

L(x; y′, λ′, β′)− L⋆(y′, λ′, β′)
≤ L(x; y, λ, β) − L⋆(y, λ, β) + ‖λ− λ′‖

√

((β + β′)Lh1
+ ‖βλ1 − β′λ′1‖)2 + ‖βλ2 − β′λ′2‖2

+β‖λ− λ′‖2 + β−β′

2 ‖Λ(p(x);λ′, β′)− λ′‖2 +
β′−β
2 ‖Λ(p⋆(y′, λ′, β′);λ, β) − λ‖2

+β
2‖Λ(p⋆(y, λ, β);λ, β) − Λ(p(x);λ, β)‖2 + β

2 ‖x⋆(y, λ, β) − y′‖2 +
β(2β′+β)
2(2β′−β)‖y − y′‖2

−β
2‖x− y‖2 +

β′

2 ‖x− y′‖2.

(56)

Proof We first separate L(x; y′, λ′, β′)− L⋆(y′, λ′, β′) into four parts:

L(x; y′, λ′, β′)− L⋆(y′, λ′, β′)

= L(x; y, λ, β) − L⋆(y, λ, β)
︸ ︷︷ ︸

∆1

+L(x; y′, λ′, β′)− L(x; y, λ, β)
︸ ︷︷ ︸

∆2

+ L(x⋆(y′, λ′, β′); y, λ, β) − L⋆(y′, λ′, β′)
︸ ︷︷ ︸

∆3

+L⋆(y, λ, β) − L(x⋆(y′, λ′, β′); y, λ, β)
︸ ︷︷ ︸

∆4

.

By Lemma 6,

∆2 ≤
β

2
‖Λ(p(x);λ, β) − λ‖2 − β′

2
‖Λ(p(x);λ′, β′)− λ′‖2

+ 〈Λ(p(x);λ′, β′)− Λ(p(x);λ, β), β(Λ(p(x);λ, β) − λ)〉 − β

2
‖x− y‖2 + β′

2
‖x− y′‖2,

and

∆3 ≤
β′

2
‖Λ(p⋆(y′, λ′, β′);λ′, β′)− λ′‖2 − β

2
‖Λ(p⋆(y′, λ′, β′);λ, β) − λ‖2

+ 〈Λ(p⋆(y′, λ′, β′);λ, β) − Λ(p⋆(y′, λ′, β′);λ′, β′), β′(Λ(p⋆(y′, λ′, β′);λ′, β′)− λ′)〉

+
β

2
‖x⋆(y′, λ′, β′)− y‖2 − β′

2
‖x⋆(y′, λ′, β′)− y′‖2.

We then get

∆2 +∆3 ≤ −
β

2
‖Λ(p(x);λ, β) − λ‖2 − β′

2
‖Λ(p(x);λ′, β′)− λ′‖2 + 〈Λ(p(x);λ′, β′)− λ′, β(Λ(p(x);λ, β) − λ)〉

− β′

2
‖Λ(p⋆(y′, λ′, β′);λ′, β′)− λ′‖2 − β

2
‖Λ(p⋆(y′, λ′, β′);λ, β) − λ‖2

+ 〈Λ(p⋆(y′, λ′, β′);λ, β) − λ, β′(Λ(p⋆(y′, λ′, β′);λ′, β′)− λ′)〉
+ 〈λ− λ′, β′(Λ(p⋆(y′, λ′, β′);λ′, β′)− λ′)− β(Λ(p(x);λ, β) − λ)〉

− β

2
‖x− y‖2 + β′

2
‖x− y′‖2 + β

2
‖x⋆(y′, λ′, β′)− y‖2 − β′

2
‖x⋆(y′, λ′, β′)− y′‖2

≤ β − β′
2
‖Λ(p(x);λ′, β′)− λ′‖2 + β′ − β

2
‖Λ(p⋆(y′, λ′, β′);λ, β)− λ‖2

+ 〈λ− λ′, β′(Λ(p⋆(y′, λ′, β′);λ′, β′)− λ′)− β(Λ(p(x);λ, β) − λ)〉

− β

2
‖x− y‖2 + β′

2
‖x− y′‖2 + β

2
‖x⋆(y′, λ′, β′)− y‖2 − β′

2
‖x⋆(y′, λ′, β′)− y′‖2,

12

where the last inequality simply relies on 2〈x, y〉 ≤ ‖x‖2 + ‖y‖2. Further, according to Lemma 7,

∆4 ≤ −
β

2
‖Λ(p⋆(y′, λ′, β′);λ, β) − Λ(p⋆(y, λ, β);λ, β)‖2 − β

2
‖x⋆(y′, λ′, β′)− x⋆(y, λ, β)‖2.

Therefore,

∆2 +∆3 +∆4 −
β − β′

2
‖Λ(p(x);λ′, β′)− λ′‖2 − β′ − β

2
‖Λ(p⋆(y′, λ′, β′);λ, β) − λ‖2

≤ 〈λ− λ′, β′(Λ(p⋆(y′, λ′, β′);λ′, β′)− λ′)− β(Λ(p(x);λ, β) − λ)〉

− β

2
‖Λ(p⋆(y′, λ′, β′);λ, β) − Λ(p⋆(y, λ, β);λ, β)‖2 − β

2
‖x⋆(y′, λ′, β′)− x⋆(y, λ, β)‖2

− β

2
‖x− y‖2 + β′

2
‖x− y′‖2 + β

2
‖x⋆(y′, λ′, β′)− y‖2 − β′

2
‖x⋆(y′, λ′, β′)− y′‖2

= 〈λ− λ′, β′(Λ(p⋆(y′, λ′, β′);λ′, β′)− λ′)− β(Λ(p⋆(y′, λ′, β′);λ, β) − λ)〉
+ β〈λ− λ′,Λ(p⋆(y, λ, β);λ, β) − Λ(p(x);λ, β)〉 + β〈λ− λ′,Λ(p⋆(y′, λ′, β′);λ, β) − Λ(p⋆(y, λ, β);λ, β)〉

− β

2
‖Λ(p⋆(y′, λ′, β′);λ, β) − Λ(p⋆(y, λ, β);λ, β)‖2 − β

2
‖x⋆(y′, λ′, β′)− x⋆(y, λ, β)‖2

− β

2
‖x− y‖2 + β′

2
‖x− y′‖2 + β

2
‖x⋆(y′, λ′, β′)− y‖2 − β′

2
‖x⋆(y′, λ′, β′)− y′‖2

≤ ‖λ− λ′‖
√

((β + β′)Lh1
+ ‖βλ1 − β′λ′1‖)2 + ‖βλ2 − β′λ′2‖2 + β‖λ− λ′‖2

+
β

2
‖Λ(p⋆(y, λ, β);λ, β) − Λ(p(x);λ, β)‖2 − β

2
‖x⋆(y′, λ′, β′)− x⋆(y, λ, β)‖2

− β

2
‖x− y‖2 + β′

2
‖x− y′‖2 + β

2
‖x⋆(y′, λ′, β′)− y‖2 − β′

2
‖x⋆(y′, λ′, β′)− y′‖2 (57)

where the last inequality follows from Lemma 8 and Cauchy Schwartz inequality. Now we apply Lemma 9 with
w = x⋆(y, λ, β) and w′ = x⋆(y′, λ′, β′) to obtain:

− β

2
‖x⋆(y′, λ′, β′)− x⋆(y, λ, β)‖2 + β

2
‖x⋆(y′, λ′, β′)− y‖2 − β′

2
‖x⋆(y′, λ′, β′)− y′‖2 (58)

≤ β

2
‖x⋆(y, λ, β) − y′‖2 + β(2β′ + β)

2(2β′ − β) ‖y − y
′‖2.

Plugging (58) into (57) with we derive (56).

Next we give a proof for Proposition 1.

Proof (proof of Proposition 1) We apply Proposition 3 with λ = λs, λ′ = λs+1, β = βs, β
′ = βs+1, x = xs,

y = xs−1 and y′ = xs to obtain

Hs+1(x
s)−H⋆

s+1

≤ Hs(x
s)−H⋆

s + ‖λs − λs+1‖
√
(
(βs + βs+1)Lh1

+ ‖βsλs1 − βs+1λ
s+1
1 ‖

)2
+ ‖βsλs2 − βs+1λ

s+1
2 ‖2

+ βs‖λs − λs+1‖2 + βs − βs+1

2
‖Λ(p(xs);λs+1, βs+1)− λs+1‖2

+
βs+1 − βs

2
‖Λ(p⋆(xs, λs+1, βs+1);λ

s, βs)− λs‖2 +
βs
2
‖Λ(p⋆(xs−1, λs, βs);λ

s, βs)− Λ(p(xs);λs, βs)‖2

+
βs
2
‖x⋆(xs−1, λs, βs)− xs‖2 +

βs(2βs+1 + βs)

2(2βs+1 − βs)
‖xs−1 − xs‖2 − βs

2
‖xs − xs−1‖2.

We apply Lemma 7 with x = xs, y = xs−1, λ = λs and β = βs and get:

βs
2
‖Λ(p⋆(xs−1, λs, βs);λ

s, βs)− Λ(p(xs);λs, βs)‖2 +
βs
2
‖x⋆(xs−1, λs, βs)− xs‖2 ≤ Hs(x

s)−H⋆
s .

13

Furthermore, since βs+1 ≤ βs we have,

βs+1 − βs
2

‖Λ(p⋆(xs, λs+1, βs);λ
s, βs)− λs‖2 ≤ 0.

We then derive (34) by the latter three bounds.

Remark 5 If

h(u) =

{
0 if u = b
+∞ otherwise

for some constant vector b ∈ Rd, for the reason stated in Remark 4, the number of inner iterations ms+1 in
Algorithm 2 can be taken as the smallest integer satisfying

2ǫs + βs‖λs+1 − λs‖2 + βs−βs+1

2 ‖Λ(p(xs);λs+1, βs+1)− λs+1‖2 + β2
s

2βs+1−βs
‖xs−1 − xs‖2 ≤ 2⌊ms+1/Ks+1⌋ǫs+1/2.

4 Inner Solvers

In this section we recall some algorithms satisfying Assumption 2 so that they can be used as inner solvers.
Note that due to space limit we do not give the explicit form of the algorithms and refer the readers to the
given references for details. This section is independent with the previous sections.

Consider the following convex minimization problem:

G⋆ := min
x∈Rn

[G(x) ≡ φ(x) + P (x)] , (59)

where P : Rn → R∪{+∞} is a convex, proper and closed function and φ : Rn → R∪{+∞} is a convex function
differentiable on an open set containing dom(P). For any differentiable point x ∈ dom(φ) and any y ∈ dom(φ),
we denote by Dφ(x; y) the Bregman distance from x to y with respect to the function φ:

Dφ(y;x) := φ(y)− φ(x)− 〈∇φ(x), y − x〉.

4.1 Accelerated Proximal Gradient

Assume that there is L > 0 such that

Dφ(y;x) ≤
L

2
‖x− y‖2. (60)

In addition, assume that there is µ > 0 such that for any y ∈ dom(P) there is y⋆ ∈ argmin{G(y) : y ∈ Rn}
satisfying

G(y)−G⋆ ≥ µ

2
‖y − y⋆‖2.

The accelerated proximal gradient (APG) method [29, 4, 43] can be applied to solve problem (59). If {xk} is
the output after k iterations of APG starting with x0 as initial solution, then

G(xk)−G⋆ ≤ 1

2

(
G(x0)−G⋆

)
, ∀k ≥ 2

√

2L/µ,

see e.g. [26, 15].

14

4.2 Accelerated Randomized Coordinate Descent

There exist some variants of APG which may be more efficient when the problem dimension is high and the
objective function has certain separability. If P is separable, i.e.,

P (x) ≡
n∑

i=1

Pi(xi),

then the randomized coordinate extension of APG, known as APPROX [16], can also be applied to solve (59).
At each iteration, APPROX only updates a randomly selected set of coordinates. For simplicity let us consider
the case when one coordinate is chosen uniformly at each iteration. In this case denote by vi > 0 the constant
satisfying the following condition:

Dφ(x+ hei;x) ≤
vi
2
h2, ∀x ∈ dom(P), i ∈ [n], x+ hei ∈ dom(P). (61)

In addition, assume that there is µ > 0 such that for any y ∈ dom(P) there is y⋆ ∈ argmin{G(y) : y ∈ Rn}
satisfying

G(y)−G⋆ ≥ µ

2
‖y − y⋆‖2.

If {xk} is the output after k iterations of APPROX starting with x0 as initial solution, then

E

[

G(xk)−G⋆
]

≤ 1

2

(
G(x0)−G⋆

)
, ∀k ≥ 2n

√

2max
i
vi/µ+ 2,

see e.g. [14]. Note that when carefully implemented APPROX could have significantly reduced per-iteration cost
than its deterministic origin APG, see [16]. The total computational saving is more important when number of
coordinates n is larger.

4.3 Accelerated Stochastic Variance Reduced Method

If P is µ-strongly convex and φ is written as a large sum of convex functions, for example when

φ(x) =
1

m

m∑

j=1

φj(x),

where each φj is convex and there is Lj > 0 such that

Dφj (y;x) ≤ Li

2
‖x− y‖2, ∀x, y ∈ dom(P).

Then the accelerated stochastic variance reduced methods, known as Katyusha [2, 34], can be applied to
solve (59). Katyusha combined the techniques from stochastic gradient descent, variance reduction and Nes-
terov’s acceleration method. In particular, at each step, Katyusha randomly select a subset S ⊂ [m] and use
{∇φj(·) : j ∈ S} to form a stochastic estimator of the gradient ∇φ(·). The convergence rate depends on the way
we choose S, as shown in [34]. We will apply L-Katyusha1 using nonuniform sampling with replacement [34].
More precisely, we use the following stochastic gradient estimator:

τ∑

j=1

p−1
j ∇φσj

(·),

1L-Katyusha stands for Loopless Katyusha. The algorithm Katyusha was first proposed by Allen-Zhu [2]. The loopless vari-
ants [20, 34] have the same complexity order as the original one but has simpler implementation form and improved practical
efficiency.

15

where σj is a random integer equal to j with probability pj := Lj/(L1 + . . . Lm). Here τ ∈ [m] is the batch size.
We shall consider the case when τ ≤ √m, for which there is linear speedup with respect to the increasing batch
size. In this case, if {xk} is the output after k iterations of L-Katyusha starting with x0 as initial solution, then
we know from [34] that

E

[

G(xk)−G⋆
]

≤ 1

2

(
G(x0)−G⋆

)
, ∀k ≥ 10max

(

m,
√

(L1 + · · ·+ Lm)/µ
)

/τ. (62)

Similarly, L-Katyusha becomes more efficient than APG when m is larger. Moreover it enjoys linear speedup
with increasing batch size τ .

4.4 Bregman Proximal Gradient

In this section, we recall the Bregman proximal gradient method for solving (59). This algorithm is an extension
of the classical proximal gradient method in the case when φ does not have a Lipschitz continuous gradient but
satisfies the so-called relative smoothness condition [8, 24]. The latter means the existence of a convex function
ξ(·) differentiable on dom(P) and L > 0 such that

Dφ(y;x) ≤ LDξ(y;x), ∀x, y ∈ dom(P).

In addition, assume that there is µ > 0 such that for any y ∈ dom(P), there is y⋆ ∈ argminy{G(y) : y ∈ Rn}
satisfying

G(y)−G⋆ ≥ µDξ(x; y
⋆).

Let {xk} be the output after k iterations of the Bregman proximal gradient method starting with x0 as initial
solution. Then by [24, Theorem 3.1], we have

G(xk)−G⋆ ≤ 1

2

(
G(x0)−G⋆

)
, ∀k ≥ 2L/µ.

Note that this method requires that the following problem

argmin{P (y) + 〈∇φ(x), y − x〉+ LDξ(y;x) : y ∈ R
n},

is easily solvable for any x ∈ dom(P).
Before we end this section, we note that the above four methods, with appropriate restart if necessary, are

linearly convergent.

5 Applications

In this section we apply Algorithm 2 in different circumstances using the inner solvers discussed in Section 4.
We denote by µg ≥ 0 the strong convexity parameter of the function g. Recall that the objective function to
be minimized at outer iteration s is:

Hs(x) ≡ f(x) + g(x) + h(p(x);λs, βs) +
βs
2
‖x− xs−1‖2 (63)

which can be written in the form of (59) as follows:

Hs(x) = φs(x) + Ps(x),

with

φs(x) ≡ f(x) + h(p(x);λs, βs), Ps(x) ≡ g(x) +
βs
2
‖x− xs−1‖2. (64)

Note that due to Lemma 3, we have

Hs(x)−H⋆
s ≥

βs + µg
2
‖x− y⋆‖2 +Df (x; y

⋆), ∀x ∈ dom(g), y⋆ = argmin
y
Hs(y). (65)

16

5.1 Composition with Linear Functions

Throughout this subsection we consider the special case when p(x) is a linear function. More precisely we focus
on the following problem:

min
x∈Rn

F (x) ≡ f(x) + g(x) + h1(A1x) (66)

s.t. A2x ∈ K

where A1 ∈ Rd1×n and A2 ∈ Rd2×n. Recall that in this special case condition (b) and (c) automatically holds.
In addition we have

φs(x) ≡ f(x) + h(Ax;λs, βs), (67)

where A =:

(
A1

A2

)

. In view of Lemma 3 and (19), the function φs(·) in (67) is differentiable with respect to x

and

Dφs
(y;x) ≤ ‖A‖

2

2βs
‖x− y‖2 +Df (y;x), ∀x, y ∈ dom(g). (68)

We next consider three subcases based on three different assumptions on the functions f and h.

5.1.1 APG as inner solver

In this subsection we consider the case when the function f satisfies the following additional assumption.

Assumption 3 There is L > 0 such that

Df (y;x) ≤
L

2
‖x− y‖2, ∀x, y ∈ dom(g).

Under Assumption 3, it is clear from (68) that

Dφs
(y;x) ≤ L+ β−1

s ‖A‖2
2

‖x− y‖2, ∀x, y ∈ dom(g).

Together with (65), we know from Section 4.1 that in this case APG [29, 4, 43] can be used as an inner solver
with

Ks ≤ 2

√

2(L+ β−1
s ‖A‖2)

µg + βs
+ 1. (69)

Then the following result follows directly from Corollary 4.

Corollary 5 Consider problem (66) under Assumption 1 and 3. Let us apply Algorithm 2 with APG [29, 4, 43]
as inner solver A. Then to obtain an ǫ-solution in the sense of (45), the expected number of APG iterations is
bounded by

Õ

(√
Lβ0+‖A‖2+√

µg√
µgǫ

)

if µg > 0

Õ

(√
Lβ0+‖A‖2

ǫ

)

if µg = 0
(70)

17

5.1.2 Large scale structured problem

In this subsection we consider the following structured special case of (66).

min
x∈Rn

F (x) ≡
m1∑

j=1

fj(Bjx) +
n∑

i=1

gi(x
i) +

m2∑

j=m1+1

ψj(Bjx) (71)

s.t. Bjx ∈ Kj , j ∈ {m2 + 1, . . . ,m−m2}

Here {Bj : j ∈ [m]} are matrices/vectors of appropriate dimensions. In addition we make the following
assumption.

Assumption 4 The functions gi, ψj are all convex, proper closed and simple functions. The sets Kj are all
convex, closed and simple sets. Moreover, for each j ∈ [m1], the function fj is convex and

Dfj (y;x) ≤
1

2
‖x− y‖2, ∀x, y ∈ dom(g).

For each j ∈ [m2], the function ψj is Lipschitz continuous.

In this case, the function φs defined as in (67) can be written in the form of finite sum problem:

φs(x) ≡
1

m

m∑

j=1

φjs(x).

Here, the functions φjs are such that that for each j ∈ [m1],

D
φj
s
(x+ hei;x) ≤

m(B⊤
j Bj)i,i

2
h2, ∀x ∈ dom(g), i ∈ [n], x+ hei ∈ dom(g), (72)

D
φj
s
(y;x) ≤ m‖Bj‖2

2
‖x− y‖2, ∀x, y ∈ dom(g), (73)

and for each j ∈ {m1 + 1, . . . ,m},

D
φj
s
(x+ hei;x) ≤

m(B⊤
j Bj)i,i

2βs
h2, ∀x ∈ dom(g), i ∈ [n], x+ hei ∈ dom(g), (74)

D
φj
s
(y;x) ≤ m‖Bj‖2

2βs
‖x− y‖2, ∀x, y ∈ dom(g). (75)

Combining (72) and (74) we get

Dφs
(x+ hei;x) ≤

∑m1

j=1(B
⊤
j Bj)i,i + β−1

s

∑m
j=m1+1(B

⊤
j Bj)i,i

2
h2, ∀x ∈ dom(g), i ∈ [n], x+ hei ∈ dom(g).

In view of Section 4.2, APPROX can be used as inner solver with

Ks ≤ 2n

√
√
√
√

2maxi

(
∑m1

j=1(B
⊤
j Bj)i,i + β−1

s
∑m

j=m1+1(B
⊤
j Bj)i,i

)

µg + βs
+ 2 + 1.

In view of (73), (75) and Section 4.3, L-Katyusha with batch size τ ≤ √m can also be used as inner solver with

Ks ≤ 10max

m,

√

m
∑m1

j=1 ‖Bj‖2 +mβ−1
s
∑m

j=m1+1 ‖Bj‖2
µg + βs

 /τ + 1.

18

Corollary 6 Consider problem (71) under Assumption 1 and 4. Let us apply Algorithm 2 with restart AP-
PROX [14] as inner solver A. Then to obtain an ǫ-solution in the sense of (45), the expected number of
APPROX iterations is bounded by

Õ

n

√

maxi

(

β0

∑m1
j=1

(B⊤
j Bj)i,i+

∑m
j=m1+1(B

⊤
j Bj)i,i

)

+n
√
µg

√
µgǫ

 if µg > 0

Õ

n

√

maxi
(

β0

∑m1
j=1

(B⊤
j Bj)i,i+

∑m
j=m1+1

(B⊤
j Bj)i,i

)

+n

ǫ

 if µg = 0

(76)

If we apply Algorithm 2 with L-Katyusha [34] as inner solver A and mini batch size τ ≤ √m, then to obtain an
ǫ-solution in the sense of (45), the expected number of L-Katyusha iterations is bounded by

Õ

(
√

mβ0

∑m1
j=1

‖Bj‖2+m
∑m

j=m1+1
‖Bj‖2+m

√
µg

τ
√
µgǫ

)

if µg > 0

Õ

(
√

mβ0

∑m1
j=1

‖Bj‖2+m
∑m

j=m1+1 ‖Bj‖2+m

τǫ

)

if µg = 0

(77)

Since (71) is a special case of (66), we can also use APG as inner solver and apply Corollary 5. However,
note that the bounds provided by (70), (76) and (77) are not directly comparable since the iteration cost of
APG, APPROX and L-Katyusha are different. When carefully implemented, n iterations of APPROX or m/τ
iterations of L-Katyusha with mini-batch size τ has the same order of computational complexity as one iteration
of APG. Indeed, n iterations of APPROX or m/τ iterations of L-Katyusha is in expectation equivalent to one
full gradient evaluation (i.e., computation of the gradient of φs), which is required in every iteration of APG.
We provide in Table 1 a comparison of the three inner solvers in terms of batch complexity, i.e. the number of
full gradient evaluation. To simplify we consider the case when ‖Bj‖2 = 1 for all j ∈ [m] and let β0 = 1 and let

B :=
(
B⊤

1 · · · B⊤
m

)

B1
...
Bm

 ∈ R

n×n. (78)

Note that
λmax(B) ≥ maxi λmax(B

⊤
i Bi) = maxi ‖Bi‖2 = 1,

λmax(B) ≥ maxi Bi,i ≥ trace(B)
n = 1

n

∑m
i=1 trace(B

⊤
i Bi) ≥ 1

n

∑m
i=1 ‖Bi‖2 = m

n

(79)

In addition, note that the bound in (79) is conservative. Indeed, the maximal eigenvalue is often much larger
than the maximal diagonal element. We then draw the following conclusion from Table 1.

1. Using APPROX or L-Katyusha as inner solver yields better batch complexity bound than using APG as
inner solver.

2. Whenm≫ n, using L-Katyusha as inner solver yields better batch complexity bound than using APPROX
as inner solver.

Remark 6 (Parallel Linear Speedup) Note that the batch complexity bound for L-Katyusha in Table 1 is
independent of the mini batch size τ . This means that Algorithm 2 with L-Katyusha as inner solver enjoys a
parallel linear speedup when τ ≤ √m.

Remark 7 When we compare the bounds in Table 1 with other related work, some additional transformation
is needed due to different problem formulation. Here we provide one example of comparing the bounds of our

19

Inner solver strongly convex case (µg > 0)

APG (Corollary 5) Õ
(
λmax(B)√

µgǫ

)

APPROX (Corollary 6) Õ
(
maxi Bi,i√

µgǫ

)

L-Katyusha (Corollary 6) Õ
(

1√
µgǫ

)

non-strongly convex case (µg = 0)

APG (Corollary 5) Õ
(
λmax(B)

ǫ

)

APPROX (Corollary 6) Õ
(
maxi Bi,i

ǫ

)

L-Katyusha (Corollary 6) Õ
(
1
ǫ

)

Table 1: Comparison of batch complexity bounds of Algorithm 2 applied on problem (71) using different inner
solvers. Here we consider the special case when ‖Bj‖2 = 1 for all j ∈ [m] and let β0 = 1. The matrix B is
defined as in (78) and Bi,i denotes the ith diagonal element of B.

Table 1 with the complexity bound established in [22] for one special case of problem (71) when m1 = 0 and
m2 = m. Consider the following regularized empirical risk minimization model with µg > 0:

min
x∈Rn

F (x) ≡
n∑

i=1

gi(x
i) +

1

m

m∑

j=1

mψj(Bjx) (80)

which corresponds to problem (1.2) in [22]. W.l.o.g. we assume that each ψj in is 1-Lipschitz continuous so that
we know Lh1

≤ √m. Then by [22, Corollary 3], the number of iterations of Algorithm 4 in [22] is bounded by

O

(

m
√

m
µgǫ

)

, which corresponds to a batch complexity bound O

(
√

m
µgǫ

)

. The Õ in Table 1 hides the constant

c3 defined in (47) which is proportional to
√
c1 when µg > 0. Recall the definition of c1 in (33), which is bounded

by O(L2
h1
) = O(m). Hence the batch complexity bound of our Algorithm 2 with L-Katyusha as inner solver for

problem (80) is Õ

(
√

m
µgǫ

)

, which differs from the bound of [22] by a logarithm term. Nevertheless, note that

our Algorithm 2 with L-Katyusha can enjoy a linear speedup up to τ ≤ √m if parallel implementation is used,
see Remark 6.

5.1.3 Bregman proximal gradient as inner solver

In this subsection we consider the case when f is relatively smooth.

Assumption 5 There is a convex function ξ differentiable on an open set containing dom(g) and L > µ > 0
such that

µDξ(y;x) ≤ Df (y;x) ≤ LDξ(y;x), ∀x, y ∈ dom(g).

Moreover, for any α, β > 0, x ∈ dom(ξ) and x′ ∈ Rn the problem

min
y

{

g(y) +
β

2
‖y − x′‖2 + αDξ(y;x)

}

is easily solvable.

In this case, by (68) we know that

Dφs
(y;x) ≤ β−1

s ‖A‖2
2

‖x− y‖2 + LDξ(y;x)

≤ max
(
β−1
s ‖A‖2, L

)
(
1

2
‖x− y‖2 +Dξ(y;x)

)

∀x, y ∈ dom(g).

20

Moreover, by (65) we know that

Hs(x)−H⋆
s ≥

βs + µg
2
‖x− y⋆‖2 + µDξ(x; y

⋆)

≥ min (βs + µg, µ)

(
1

2
‖x− y⋆‖2 +Dξ(x; y

⋆)

)

, ∀x ∈ dom(g), y⋆ ∈ argmin
y
Hs(y).

Therefore, based on Section 4.4, the Bregman proximal gradient can be used as an inner solver with

Ks ≤
2max

(
β−1
s ‖A‖2, L

)

min (βs + µg, µ)
+ 1.

Corollary 7 Consider problem (66) under Assumption 1 and 5. Let us apply Algorithm 2 with Bregman
proximal gradient [8, 24] as inner solver A. Then to obtain an ǫ-solution in the sense of (45), the expected
number of Bregman proximal gradient iterations is bounded by

Õ

(
max(‖A‖2,Lβ0)+min(µg ,µ)

min(µg ,µ)ǫ

)

if min(µg, µ) > 0

Õ

(
max(‖A‖2,Lβ0)

ǫ2

)

if min(µg, µ) = 0

5.2 Composition with Nonlinear Functions

In this section we consider the general case when p(x) is possibly nonlinear.

Assumption 6 There is Mp2 > 0, M∇p > 0 , L > 0 and L∇p > 0 such that

‖p2(x)‖ ≤Mp2 , ∀x ∈ dom(g), (81)

‖∇p(x)‖ ≤M∇p, ∀x ∈ dom(g), (82)

‖∇p(x)−∇p(y)‖ ≤ L∇p‖x− y‖, ∀x, y ∈ dom(g) (83)

Note that the same type of assumptions was used in [25, Section 2.4]. In particular as mentioned in [25], if the
domain of g is compact then Assumption 6 holds. Assumption 6 is made in order to obtain the smoothness of
the function ∇φs. Recall from (64) and Lemma 3 that

∇φs(x) = ∇f(x) +∇p(x)Λ(p(x);λs, βs).

Lemma 10 Under Assumption 6,

‖∇φs(x)−∇φs(y)‖ ≤ ‖∇f(x)−∇f(y)‖+ L∇p

(
Lh1

+ β−1
s ds

)
+M2

∇pβ
−1
s ‖x− y‖, ∀x, y ∈ dom(g),

where
ds := max

y
min
x
{‖x− y‖ : x ∈ K, ‖y‖ ≤Mp2 + βs‖λs2‖} < +∞.

Further, let Assumption 3 hold. Then Lemma 10 implies

Dφs
(y;x) ≤

(

L+ L∇p

(
Lh1

+ β−1
s ds

)
+M2

∇pβ
−1
s

)

2
‖x− y‖2, ∀x, y ∈ dom(g).

Together with (65), we know from Section 4.1 that in this case APG [29, 4, 43] can be used as an inner solver
with

Ks ≤ 2

√
√
√
√

2
(

L+ L∇p

(
Lh1

+ β−1
s ds

)
+M2

∇pβ
−1
s

)

µg + βs
+ 1.

21

Corollary 8 Consider problem (1) under Assumption 1, 3 and 6. Let us apply Algorithm 2 with APG [29, 4, 43]
as inner solver A. Then to obtain an ǫ-solution in the sense of (45), the expected number of APG iterations is
bounded by

Õ

(
√

Lβ0+L∇p(Lh1
β0+ds)+M2

∇p
+
√
µg

√
µgǫ

)

if µg > 0

Õ

(
√

Lβ0+L∇p(Lh1
β0+ds)+M2

∇p

ǫ

)

if µg = 0

Remark 8 Corollary 8 recovers Corollary 5 as a special case with L∇p = 0 and M∇p = ‖A‖.

Similarly, we could consider the large-scale structured problem as (71) but with nonlinear composite terms, or
the relatively smooth assumption as in Section 5.1.3 instead of Assumption 3,. The same order of iteration
complexity bound as Corollary 6 and 7 can be derived for the nonlinear composite case under Assumption 6.

6 Further Discussion

6.1 Efficient Inner Problem Stopping Criteria

In Algorithm 2, we provide an upper bound on the number of inner iterations ms needed in order to obtain an
solution xs such that

E[Hs(x
s)−H⋆

s] ≤ ǫs.
In some cases, it is possible to have a computable upper bound Us(x

s) such that Us(x
s) ≥ Hs(x

s)−H⋆
s . Then

we can check the value of Us(x
s) and stop the inner solve either when Us(x

s) ≤ ǫs or when the number of inner
iterations exceeds ms. Note that the solution xs obtained in this way satisfies E[Hs(x

s) −H⋆
s] ≤ 2ǫs, which is

equivalent to a change from ǫ0 to 2ǫ0 in the previous analysis and hence all the previous complexity bounds
apply. In particular, in the case of structured problem (71), the inner problem takes the following form

min
x∈Rn

̥(x) ≡ Ψ(x) +

m∑

j=1

Φj(Bjx)

 , (84)

to which we can associate the following dual problem:

max
y∈Rm

D(y) ≡ −Ψ∗(−B⊤y)−
m∑

j=1

Φ∗
j(yj)

 , (85)

where B =:

B1
...
Bm

. In this case a computable upper bound is given by ̥(xs) − D(ys) where ys is a dual

feasible solution constructed from xs.

6.2 KKT Solution

The convergence of ALM can also be measured through the KKT residual. Recall that a solution is said to
be an ǫ-KKT solution if there exists (u, v) ∈ ∂L(x, λ) such that ‖u‖ ≤ ǫ and ‖v‖ ≤ ǫ, see e.g. [25]. Due to
the possible randomness of the iterates in our algorithm, we shall measure the expected distance of the partial
gradient of the Lagrangian to 0.

22

Algorithm 3 IPALM KKT(A)
Parameters: β0 > 0, ρ ∈ (1/2, 1), η ∈ (0, ρ3], m0 ∈ N++, {Ls}s≥0 satisfying (86)
Initialize: x−1 ∈ dom(g), λ0 ∈ dom(h∗)
1: x̃0 ← A(x−1,m0,H0)
2: ǫ0 ≥ H0(x

0)−H∗
0

3: for s = 0, 1, 2, . . . do

4: xs ← argminy∈Rn

{

〈∇φs(x̃s), y − x̃s〉+ Ls

2 ‖y − x̃s‖2 +
βs

2 ‖y − xs−1‖2 + g(y)
}

5: λs+1 ← Λ(p(xs);λs, βs)
6: βs+1 = ρβs
7: ǫs+1 = ηǫs
8: choose ms+1 to be the smallest integer satisfying (37)
9: x̃s+1 ← A(xs,ms+1,Hs+1)

10: end for

For simplicity we restrict the discussion for the case when for any outer iteration s there is a constant Ls > 0
such that

Dφs
(y;x) ≤ Ls

2
‖x− y‖2, ∀x, y ∈ dom(g). (86)

We modify slightly Algorithm 2 by adding one additional proximal gradient step (Line 5 in Algorithm 3) into
each outer iteration. In addition, in Algorithm 3 we require η to be smaller than ρ3. Since the proximal gradient
step is guaranteed to decrease the objective value, we have

E[Hs(x
s)−H⋆

s] ≤ E[Hs(x̃
s)−H⋆

s] ≤ ǫs, ∀s ≥ 0. (87)

Hence Algorithm 3 falls into the class of Algorithm 1 and all the results in Section 2.2 can be applied. Moreover,
in analogue to Theorem 1, we have the following bounds for the KKT residual.

Theorem 3 Consider Algorithm 3. For any s ≥ 0 we have

dist(0, ∂xL(x
s, λs+1)) ≤

√

16Ls (Hs(x̃s)−H⋆
s) + 2β2s‖xs − xs−1‖2 , (88)

dist(0, ∂λL(x
s, λs+1)) ≤ βs‖λs+1 − λs‖. (89)

Corollary 9 Consider Algorithm 3. Assume that there is γ > 0 such that Ls ≤ γβ−1
s . Then to obtain a

solution such that

E
[
dist(0, ∂xL(x

s, λs+1))
]
≤ ǫ, E

[
dist(0, ∂λL(x

s, λs+1))
]
≤ ǫ (90)

it suffices to run Algorithm 3 for

s ≥ ln(c4/ǫ)

ln(1/ρ)
(91)

number of outer iterations where

c4 := max
(√

16γǫ0/β0 + 8c0β0, β0
√
c0

)

.

Note that the outer iteration bound (91) for the KKT convergence (90) only differs from the bound for the
objective value convergence (32) by a constant in the logarithm term. For each outer iteration, Algorithm 3
has one more proximal gradient step to execute than Algorithm 2 and this will only add a term with logarithm
dependence with respect to ǫ into the total complexity bound. In particular, we can derive Õ(1/ǫ) complexity
bound to obtain ǫ-KKT convergence in the sense of (90), and Õ(1/

√
ǫ) if the function g is strongly convex. For

brevity we omit the details which are highly similar to Section 5.

23

6.3 Bounded Primal and Dual Domain

The bound Õ(1/ǫℓ) can be improved to O(1/ǫℓ) if both the primal and dual domain are bounded. Indeed, we
require η < ρ in Algorithm 2 to ensure the boundedness (in expectation) of the sequence {(xs, λs)}. If the
domain of g is bounded and there is no constraint, i.e., K = Rd2 , then {(xs, λs)} of Algorithm 1 is bounded for
any choice of {ǫs} and {βs}. In this case we can let η = ρ and the bound in (42) can be improved to

s∑

t=1

E[mt] ≤ s+ c2

s∑

t=1

Kt.

Consequently, the bound in (46) can be improved to

s∑

t=0

E[mt] ≤ m0 +
cℓ1

ǫℓρℓℓ ln(1/ρ)
+ c2

(
ςcℓ1

ρℓℓ ln(1/ρ)
+

ωcℓ1
βℓ0(1− ρℓ)

)
1

ǫℓ
,

and we get the O(1/ǫℓ) iteration complexity bound for an ǫ-solution in the sense of (45). However, for the
ǫ-KKT solution in the sense of (90) we still only have Õ(1/ǫℓ) iteration complexity bound.

7 Numerical Experiments

We will test the performance of Algorithm 2 with APPROX and L-Katyusha as inner solver, which are referred to
as IPALM-APPROX and IPALM-Katyusha. We mainly compare with first-order primal dual solvers ASGARG-
DL [41] and SMART-CD [1]. Note that comparison with linearized ADMM [10] and ASGARD [42] are not
included as they were compared with ASGARG-DL in [41]. Since all the three algorithms depends on the
choice of β0, we test β0 ∈ {10−2, 10−1, 1, 10, 100} and choose the best result to compare. (Note that the
problem data used are all scaled so that the row vectors all have norm 1.) We also run CVX so as to obtain a
good approximation of the optimal value F ⋆, which is needed in the computation of the error term:

log10

∣
∣
∣
∣

F (x)− F ⋆

F ⋆

∣
∣
∣
∣
. (92)

However, due to the large-scale problem that we solve, CVX may return inaccurate solution or even fail. To
solve the issue on unknown F ⋆, note that either CVX or our algorithm can provide a lower bound Fl and an
upper bound Fu so that F ⋆ ∈ [Fl, Fu]. Define

ǫc := (Fu − Fl)/Fl

as the confidence error level. Then for any x such that F (x) = (1 + ǫ)Fu for some 1 > ǫ > ǫc, we have

ǫ =
F (x)− Fu

Fu
≤ F (x)− F ⋆

F ⋆
≤ F (x)− Fl

Fl
= ǫc + (1 + ǫc)ǫ < 3ǫ.

So we use F (x)−Fu

Fu
as an approximation of F (x)−F ⋆

F ⋆ for those x such that F (x) > (1 + ǫc)Fu.

7.1 Least Absolute Deviation

The first problem we solve is of the form:

min
x∈Rn

‖Ax− b‖1 + λ ‖x‖1

which is also know as Least Absolute Deviation (LAD) problem [44]. We use training data of three different
datasets from libsvm [11] as A and modify b such that Ax = b has a sparse solution. We set λ = 0.01. The

24

0 200 400 600 800 1000

time

-5

-4

-3

-2

-1

0

1

2

3

4

5
lo

g|
F

(x
)-

 F
* |/F

*
news20scale2

ASGARD-DL
IPALM-APPROX
SMART-CD

(a) news20scale

0 200 400 600 800 1000

time

-3

-2

-1

0

1

2

3

4

5

lo
g|

F
(x

)-
 F

* |/F
*

rcv1

ASGARD-DL

IPALM-APPROX

SMART-CD

(b) rcv1

0 200 400 600 800 1000

time

-3

-2

-1

0

1

2

3

4

5

lo
g|

F
(x

)-
 F

* |/F
*

rcv1mc

ASGARD-DL
IPALM-APPROX
SMART-CD

(c) rcv1mc

Figure 1: Comparison of three algorithms for LAD problem on three datasets. The x-axis is time and y-axis is
log((F (x)− F ⋆)/F ⋆). Here we use the result of CVX as an approximation of F ⋆.

details about the datasets are given in Table 2. The result is shown in Figure 1. We also compare the time of
CVX with IPALM-APPROX to get a mid-level accurate solution in Table 3.

As we can see form Figure 1, IPALM-APPROX has the best performance after accuracy 10−3. ASGARD-
DL works with full dimensional variables and therefore has slow convergence in time. SMART-CD has similar
performance as IPALM-APPROX but tends to be slower for obtaining more accurate solution. From Table
3 we can see to get a mid-level accurate solution, IPALM-APPROX significantly outperforms CVX for these
three datasets.

Dataset Training size (m) Number of features (n)

news20scale 15,935 62,061
rcv1 20,242 47,236
rcv1mc 15,564 47,236

Table 2: Datasets from libsvm

Dataset accuracy (92) CVX time IPALM-APPROX time

news20scale 10−5 ∼4200s ∼ 500s
rcv1 10−3 ∼4000s ∼400s
rcv1mc 10−3 ∼1800s ∼300s

Table 3: Running time of CVX and IPALM-APPROX for Least absolute deviation problem on three datasets.

7.2 Basis Pursuit

The second problem we solve is of the form:

min
x∈Rn

‖x‖1
s.t. Ax = b

which is known as basis pursuit problem [12]. The datasets used are shown in Table 2 and we modify b for each
dataset to make sure that the problem is feasible. The results are shown in Figure 2 for the objective value gap
and in Figure 3 for the infeasibility gap. We also compare the time of CVX with IPALM-APPROX to get a
mid-level accurate solution in Table 4.

25

As we can see from Figure 2 and 3, IPALM-APPROX works well both in objective value and feasibility.
Since SMART-CD reduces β much faster than IPALM-APPROX, it has fast convergence at the beginning, but
small β leading to small stepsize and slow convergence in objective value for high accuracy. From Table 4, we
see the difference between IPALM-APPROX and CVX if only medium accuracy is required.

0 500 1000 1500

time

-6

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g|

F
(x

)-
 F

* |/F
*

news20scale2

ASGARD-DL

IPALM-APPROX

SMART-CD

(a) news20scale

0 500 1000 1500 2000

time

-4

-3

-2

-1

0

1

2

3

4

5

lo
g|

F
(x

)-
 F

* |/F
*

rcv1

ASGARD-DL

IPALM-APPROX

SMART-CD

(b) rcv1

0 500 1000 1500 2000 2500 3000

time

-4

-3

-2

-1

0

1

2

3

4

5

lo
g|

F
(x

)-
 F

* |/F
*

rcv1mc

ASGARD-DL

IPALM-APPROX

SMART-CD

(c) rcv1mc

Figure 2: Comparison of three algorithms for basis pursuit problem on three datasets. The x-axis is time and
y-axis is log((F (x) − F ⋆)/F ⋆). Here we use the result of CVX as an approximation of F ⋆.

0 500 1000 1500

time

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g|

A
x-

 b
|

news20scale2

ASGARD-DL

IPALM-APPROX

SMART-CD

(a) news20scale

0 500 1000 1500 2000

time

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g|

A
x-

 b
|

rcv1

ASGARD-DL

IPALM-APPROX

SMART-CD

(b) rcv1

0 500 1000 1500 2000 2500 3000

time

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g|

A
x-

 b
|

rcv1mc

ASGARD-DL

IPALM-APPROX

SMART-CD

(c) rcv1mc

Figure 3: Comparison of three algorithms for basis pursuit problem on three datasets. The x-axis is time and
y-axis is infeasibility error log ‖Ax− b‖.

Dataset accuracy (92) CVX time IPALM-APPROX time

news20scale 10−6 ∼4200s ∼600s
rcv1 10−2 ∼2700s ∼1000s
rcv1mc 10−2 ∼1500s ∼700s

Table 4: Running time of CVX and IPALM-APPROX for basis pursuit problem on three datasets.

26

0 500 1000 1500

time

-4

-3

-2

-1

0

1

2

3

4
lo

g|
F

(x
)-

 F
* |/F

*
news20scale2

ASGARD-DL
IPALM-APPROX
SMART-CD
IPALM-KATYUSHA

(a) news20scale

0 500 1000 1500

time

-4

-3

-2

-1

0

1

2

3

4

lo
g|

F
(x

)-
 F

* |/F
*

rcv1

ASGARD-DL
IPALM-APPROX
SMART-CD
IPALM-KATYUSHA

(b) rcv1

0 500 1000 1500

time

-4

-3

-2

-1

0

1

2

3

4

lo
g|

F
(x

)-
 F

* |/F
*

rcv1mc

ASGARD-DL
IPALM-APPROX
SMART-CD
IPALM-KATYUSHA

(c) rcv1mc

Figure 4: Comparison of four algorithms for Fused Lasso problem on three datasets. The x-axis is time and
y-axis is log((F (x) − F ⋆)/F ⋆). Here we use the result of CVX as an approximation of F ⋆.

7.3 Fused Lasso

The third problem we solve is of the form:

min
x∈Rn

1

2
‖Ax− b‖22 + λr ‖x‖1 + λ(1− r)

∑

i

|xi − xi+1|

which is known as Fused Lasso problem [40]. The datasets used are shown in Table 2 and we set λr = λ(1−r) =
0.01.

The results are shown in Figure 4 and Table 5. For this problem, we tested both IPALM-APPROX and
IPALM-Katyusha. Note that for the datasets in Table 2, we have n ≤ m ≤ 2n where m is the problem size
in (71). According to Table 1, we should expect IPALM-Katyusha to work similarly as IPALM-APPROX,
which is indeed observed in practice. Note that in our implementation we used τ =

√
m with single processor.

Hence the computational time of IPALM-Katyusha can be further reduced when multi-processor and parallel
implementation is used.

Dataset accuracy CVX time IPALM-APPROX time IPALM-Katyusha time

news20scale 10−4 ∼1600s ∼1700s ∼ 400s
rcv1 10−4 ∼7000s ∼300s ∼ 300s
rcv1mc 10−4 ∼5500s ∼400s ∼ 300s

Table 5: Running time of CVX, IPALM-APPROX and IPALM-Katyusha for Fused Lasso on three datasets.

As we can see form Figure 4, IPALM-APPROX and IPALM-Katyusha both perform better than ASGARD
and SMART-CD. From Table 5, IPALM-Katyusha significantly outperforms CVX to get a mid-level accurate
solution for these three datasets.

7.4 Soft Margin SVM

The last problem we solve is of the form:

min
x∈Rn,ω∈R

λ ‖x‖1 +
1

m

m∑

i=1

max (0, 1 − bi (〈ai, x〉 − ω))

which is known as l1 regularized soft margin support vector machine problem [49]. Here ai ∈ Rn are feature
vectors and bi ∈ {−1, 1} are labels for i = 1, . . . ,m. We use three different datasets from libsvm [11]. The
details about the datasets are given in Table 6.

27

Dataset Training size (m) Number of features (n)

w4a 7366 300
w8a 49479 300
real-sim 72309 20958

Table 6: Datasets from libsvm

0 20 40 60 80 100

time

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g|

F
(x

)-
 F

* |/F
*

w4a

ASGARD-DL
IPALM-APPROX
SMART-CD
IPALM-KATYUSHA

(a) w4a

0 1000 2000 3000 4000 5000

time

-3

-2

-1

0

1

2

3

4

lo
g|

F
(x

)-
 F

* |/F
*

w8a

ASGARD-DL
IPALM-APPROX
SMART-CD
IPALM-KATYUSHA

(b) w8a

0 500 1000 1500 2000 2500 3000 3500

time

-4

-3

-2

-1

0

1

2

3

4

lo
g|

F
(x

)-
 F

* |/F
*

realsim

ASGARD-DL
IPALM-APPROX
SMART-CD
IPALM-KATYUSHA

(c) real-sim

Figure 5: Comparison of four algorithms for SVM problem on three datasets. The x-axis is time and y-axis is
log((F (x)− F ⋆)/F ⋆). Here we use the best result of these four algorithms as an approximation of F ⋆.

Since here m ≥ n, we expect IPALM-Katyusha to converge faster than IPALM-APPROX, as indicated by
our theoretical bounds given in Table 1. Indeed, as we observe from Figure 5, IPALM-Katyusha has the best
performance for all datasets. For w4a and real-sim, the difference of IPALM-Katyusha and IPALM-APPROX
is small. But for w8a with m ≫ n, IPALM-Katyusha significantly outperforms IPALM-APPROX, as well as
SMART-CD and ASGARD-DL. Note that for this problem CVX fails so we cannot compare the running time
with CVX.

8 Conclusion and Future Research

In this paper we consider a class of structured convex minimization problem and develop an inexact proximal
augmented Lagrangian method with explicit inner termination rule. Our framework allows arbitrary linearly
convergent inner solver, including in particular many randomized first-order methods. When p(·) is linear,
under the same assumptions as [27, 21, 28, 33, 23, 25] but without the boundedness of dom(g), we obtain nearly
optimal Õ(1/ǫ) and Õ(1/

√
ǫ) complexity bound respectively for the non-strongly convex and strongly convex

case. The flexible inner solver choice allows us to deal with large-scale constrained problem more efficiently, with
the aid of recent advances in randomized first-order methods for unconstrained problem. We provide numerical
evidence showing the efficiency of our approach compared with existing ones when the problem dimension is
high.

There are several interesting directions to exploit in the future.

1. The complexity bound established in this paper for non-strongly convex problem is Õ(1/ǫ). Throughout
the paper we only rely on the fact that the sequence generated by PPA is bounded, whereas it is known
that PPA can be linearly convergent if certain metric sub-regularity is satisfied, see e.g. [48]. We expect
to obtain a linearly convergent rate under these conditions, see e.g. [22].

2. In numerical experiments, the choice of β0 does influence the performance. Can a reasonable guess on β0
be derived from the analysis?

28

3. When f is only relatively smooth (see Section 5.1.3), we only obtained Õ(1/ǫ2) and Õ(1/ǫ) complexity
bound for non-strongly convex and strongly convex case. Can we improve to Õ(1/ǫ) and Õ(1/

√
ǫ)?

4. Can this work be extended to saddle point problem? In particular, [19] discussed an inexact primal-dual
method for nonbilinear saddle point problems with bounded dom(g). Can we get rid of the boundedness
assumption for saddle point problem?

5. Can this work be extended to weakly convex case as in [13, 35]?

A Inexact Proximal Point algorithm and inexact Augmented Lagrangian

method

A.1 Inexact Proximal Point Method

Let T : Rn+d → Rn+d be a maximal monotone operator and Jρ = (I + ρT)−1 be the resolvent of T , where I
denotes the identity operator. Then for any z∗ such that 0 ∈ T (z∗) [37],

‖Jρ(z)− z∗‖2 + ‖Jρ(z)− z‖2 ≤ ‖z − z∗‖2 . (93)

Algorithm 4 PPA

Input: z0, {εs}, {ρs}.
for k = 0, 1, . . . do

Compute zs+1 ≈ Jρs(zs) such that
∥
∥zs+1 − Jρs(zs)

∥
∥ ≤ εs;

end for

Lemma 11 [37] Let {zs} be the sequence generated by Algorithm 4. Then for any z∗ such that 0 ∈ T (z∗),
∥
∥zs+1 − z∗

∥
∥ ≤ ‖z0 − z∗‖+

s∑

i=0

εi

∥
∥zs+1 − zs

∥
∥ ≤ ‖z0 − z∗‖+

s∑

i=0

εi

We now give a stochastic generalization of Algorithm 4.

Algorithm 5 sPPA

Input: z0, {εs}, {ρs}.
for k = 0, 1, . . . do

Compute zs+1 ≈ Jρs(zs) such that E
[∥
∥zs+1 − Jρs(zs)

∥
∥2
]

≤ ε2s;
end for

We then extend Lemma 11 for Algorithm 5.

Lemma 12 Let {zs} be the sequence generated by Algorithm 5. Then for any z∗ such that 0 ∈ T (z∗),

E
[∥
∥zs+1 − z∗

∥
∥
]
≤ ‖z0 − z∗‖+

s∑

i=0

εi

E
[∥
∥zs+1 − zs

∥
∥
]
≤ ‖z0 − z∗‖+

s∑

i=0

εi

(

E

[∥
∥zs+1 − z∗

∥
∥
2
])1/2

≤ ‖z0 − z∗‖+
s∑

i=0

εi

29

Proof By the definition of zs, we have
(
E
∥
∥zs+1 − Jρs(zs)

∥
∥
)2 ≤ E

∥
∥zs+1 − Jρs(zs)

∥
∥2 ≤ ε2s. The first and second

estimates can be obtained by taking expectation on both sides of the result of Lemma 11. The third estimate is
derived from (93):

0 ≤ ‖Jρs − zs‖2 ≤ ‖zs − z∗‖2 − ‖Jρs(zs)− z∗‖2

= ‖zs − z∗‖2 −
∥
∥Jρs(zs)− zs+1 + zs+1 − z∗

∥
∥
2

≤ ‖zs − z∗‖2 −
∥
∥zs+1 − z∗

∥
∥
2 −

∥
∥Jρs(zs)− zs+1

∥
∥
2
+ 2

∥
∥Jρs(zs)− zs+1

∥
∥
∥
∥zs+1 − z∗

∥
∥

Taking expectation on both sides we have:

0 ≤ E

[

‖zs − z∗‖2
]

− E

[∥
∥zs+1 − z∗

∥
∥
2
]

− E

[∥
∥Jρs(zs)− zs+1

∥
∥
2
]

+ 2E
[∥
∥Jρs(zs)− zs+1

∥
∥
∥
∥zs+1 − z∗

∥
∥
]

≤ E

[

‖zs − z∗‖2
]

− E

[∥
∥zs+1 − z∗

∥
∥
2
]

− E

[∥
∥Jρs(zs)− zs+1

∥
∥
2
]

+ 2
(

E

[∥
∥Jρs(zs)− zs+1

∥
∥
2
]

E

[∥
∥zs+1 − z∗

∥
∥
2
])1/2

= E

[

‖zs − z∗‖2
]

−
((

E

[∥
∥zs+1 − z∗

∥
∥
2
])1/2

−
(

E

[∥
∥Jρs(zs)− zs+1

∥
∥
2
])1/2

)2

where the second inequality we use E[XY] ≤ (E[X2])1/2(E[Y 2])1/2. Therefore

(

E

[∥
∥zs+1 − z∗

∥
∥
2
])1/2

− εs ≤
(

E

[∥
∥zs+1 − z∗

∥
∥
2
])1/2

−
(

E

[∥
∥Jρs(zs)− zs+1

∥
∥
2
])1/2

≤
(

E

[

‖zs − z∗‖2
])1/2

Then summing up the latter inequalities from s = 0 we obtain the third inequality.

A.2 Inexact ALM

We define the maximal monotone operator Tl as follows.

Tl(x;λ) = {(v;u) : (v;−u) ∈ ∂L(x;λ)}

=

{(
∇f(x) + ∂g(x) +∇p(x)λ

−p(x) + ∂h∗(λ)

)}

Recall the definitions in (50). We further let Λ⋆(y, λ, β) := Λ(p⋆(y, λ, β);λ, β). By first order optimality
condition and (18), we know that

0 ∈ ∇f(x⋆(y, λ, β)) + ∂g(x⋆(y, λ, β)) +∇p(x⋆(y, λ, β))Λ⋆(y, λ, β) + β(x⋆(y, λ, β) − y)

Secondly we know from (23) that

p⋆(y, λ, β) − β(Λ⋆(y, λ, β) − λ) ∈ ∂h∗(Λ⋆(y, λ, β)).

It follows that

(I + β−1Tl)−1(y;λ) = (x⋆(y, λ, β); Λ⋆(y, λ, β)) (94)

We can then establish the following well known link between inexact ALM and inexact PPA.

Proposition 4 (compare with [37]) Algorithm 1 is a special case of Algorithm 5 with T = Tl, ρs = 1/βs
and εs =

√

2ǫs/βs.

Proof This follows from (94) and Lemma 7.

30

B Missing proofs

B.1 Proofs in Section 2.2

Proof (proof of Lemma 2) For any x, y ∈ Rn and α ∈ [0, 1], let z = αx+ (1− α)y. By condition (15),

h (p(z)− αu− (1− α)v) ≤ αh(p(x) − u) + (1− α)h(p(y) − v), ∀u, v ∈ R
d.

It follows that

ψ̃(z) = inf
ω
{h(p(z) − ω) + ψ(ω)} = inf

u,v
{h (p(z)− αu− (1− α)v) + ψ(αu+ (1− α)v)}

≤ inf
u,v
{αh(p(x) − u) + (1− α)h(p(y) − v) + αψ(u) + (1− α)ψ(v)}

= α inf
u
{h(p(x)− u) + ψ(u)} + (1− α) inf

v
{h(p(y)− v) + ψ(v)}

= αψ̃(x) + (1− α)ψ̃(y).

Proof (proof of Lemma 3) The convexity of ψ̃ follows from (20) and Lemma 2 with ψ(w) := 1
2β‖w‖2+〈w, λ〉.

The gradient formula follows from (18).

Proof (proof of Lemma 4) This is a direct consequence of Proposition 4 and Lemma 12.

Proof (proof of Corollary 1) By Lemma 4, we have

E
[∥
∥(xs, λs+1)− (xs−1, λs)

∥
∥
]
≤
∥
∥(x−1, λ0)− (x⋆, λ⋆)

∥
∥+

2
√

ǫ0/β0

1−
√

η/ρ
, ∀s ≥ 0,

and

E

[∥
∥(xs, λs+1)− (x⋆, λ⋆)

∥
∥
2
]

≤
(

∥
∥(x−1, λ0)− (x⋆, λ⋆)

∥
∥+

2
√

ǫ0/β0

1−
√

η/ρ

)2

, ∀s ≥ 0.

Consequently,

E
[∥
∥λs+1 − λs

∥
∥
]
≤
∥
∥(x−1, λ0)− (x⋆, λ⋆)

∥
∥+

2
√

ǫ0/β0

1−
√

η/ρ
, ∀s ≥ 0,

and

max
(

E

[

‖xs − x⋆‖2
]

,E
[∥
∥λs+1 − λ⋆

∥
∥
2
])

≤
(

∥
∥(x−1, λ0)− (x⋆, λ⋆)

∥
∥+

2
√

ǫ0/β0

1−
√

η/ρ

)2

, ∀s ≥ 0.

We then conclude.

Proof (proof of Theorem 1) First,

h1(p1(x
s))− h(p(xs);λs, βs)

(22)
= h1(p1(x

s))− h1(p1(xs)− βs(λs+1
1 − λs1))− βs

2 (‖λs+1‖2 − ‖λs‖2)
≤ Lh1

βs‖λs+1 − λs‖+ βs

2 (‖λs‖2 − ‖λs+1‖2).
(95)

Then we know that

F (xs)− L(xs;xs−1, λs, βs) = h1(p1(x
s))− h(p(xs);λs, βs)−

βs
2
‖xs − xs−1‖2

(95)

≤ Lh1
βs‖λs+1 − λs‖+ βs

2
(‖λs‖2 − ‖λs+1‖2)− βs

2
‖xs − xs−1‖2.

31

Since Hs(·) is βs-strongly convex, we know that

L⋆(xs−1, λs, βs) ≤ L(x⋆;xs−1, λs, βs)− βs
2
‖x⋆ − x⋆(xs−1, λs, βs)‖2

(20)

≤ F ⋆ +
βs
2
‖x⋆ − xs−1‖2 − βs

2
‖x⋆ − x⋆(xs−1, λs, βs)‖2.

Combining the latter two bounds we get

F (xs)− F ⋆ ≤ L(xs;xs−1, λs, βs)− L⋆(xs−1, λs, βs) + Lh1
βs‖λs+1 − λs‖+ βs

2
(‖λs‖2 − ‖λs+1‖2)

+
βs
2
‖x⋆ − xs−1‖2 − βs

2
‖x⋆ − x⋆(xs−1, λs, βs)‖2 −

βs
2
‖xs − xs−1‖2.

Furthermore, by convexity of h1(·),

inf
x
F (x) + 〈λ⋆2, p2(x)〉 − h∗2(λ⋆2) ≥ inf

x
f(x) + g(x) + 〈λ⋆, p(x)〉 − h∗(λ⋆) = D(λ⋆).

Now we apply the strong duality assumption (11) to obtain:

F (xs) + 〈λ⋆2, p2(xs)〉 − h∗2(λ⋆2) ≥ inf
x
F (x) + 〈λ⋆2, p2(x)〉 − h∗2(λ⋆2) ≥ F ⋆.

Consequently,

F (xs)− F ⋆ ≥ 〈λ⋆2,−p2(xs)〉+ h∗2(λ
⋆
2) ≥ sup

v
〈λ⋆2, v − p2(xs)〉 − h2(v) ≥ −‖λ⋆2‖dist(p2(xs),K).

From (23) we know
p2(x

s)− βs(λs+1
2 − λs2) ∈ K,

and thus
dist(p2(x

s),K) ≤ βs‖λs+1
2 − λs2‖.

Proof (proof of Corollary 2) Using Corollary 1, the bounds in Theorem 1 can be relaxed as:

E[F (xs)− F ⋆] ≤ ǫs + 2L2
h1
βs + c0βs

E[F (xs)− F ⋆] ≥ −βs‖λ⋆2‖
√
c0,

E[dist(p2(x
s),K)] ≤ βs

√
c0.

We then conclude by noting that (32) guarantees

max(ǫ0 + 2L2
h1
β0 + c0β0, β0‖λ⋆2‖

√
c0, β0

√
c0) ≤ ǫρ−s.

B.2 Proofs in Section 3.2

Proof (proof of Lemma 5) We first bound

E[
(
(βs + βs+1)Lh1

+ ‖βsλs1 − βs+1λ
s+1
1 ‖

)2
+ ‖βsλs2 − βs+1λ

s+1
2 ‖2]

≤ 2(βs + βs+1)
2L2

h1
+ 2E[‖βsλs − βs+1λ

s+1‖2]
≤ 2(βs + βs+1)

2L2
h1

+ 4(β2s + β2s+1)c

≤ 4(β2s + β2s+1)(L
2
h1

+ c).

Since
λs+1 = Λ(p(xs);λs, βs),

32

by Lemma 8 we have

‖βs+1

(
Λ(p(xs);λs+1, βs+1)− λs+1

)
− βs(λs+1 − λs)‖ (96)

≤
√
(
(βs + βs+1)Lh1

+ ‖βsλs1 − βs+1λ
s+1
1 ‖

)2
+ ‖βsλs2 − βs+1λ

s+1
2 ‖2 . (97)

Therefore,

‖Λ(p(xs);λs+1, βs+1)− λs+1‖

≤ β−1
s+1βs‖λs+1 − λs‖+ β−1

s+1

√
(
(βs + βs+1)Lh1

+ ‖βsλs1 − βs+1λ
s+1
1 ‖

)2
+ ‖βsλs2 − βs+1λ

s+1
2 ‖2.

If follows that

E[‖Λ(p(xs);λs+1, βs+1)− λs+1‖2] ≤ 2β−2
s+1β

2
sc+ 8β−2

s+1(β
2
s + β2s+1)(L

2
h1

+ c) (98)

By E[XY] ≤ (E[X2])1/2(E[Y 2])1/2, we get

E

[

‖λs+1 − λs‖
√
(
(βs + βs+1)Lh1

+ ‖βsλs1 − βs+1λ
s+1
1 ‖

)2
+ ‖βsλs2 − βs+1λ

s+1
2 ‖2

]

≤
√

4c(β2s + β2s+1)(L
2
h1

+ c).

(99)

Combining (41), (98) and (99), we then get an upper bound for E[Ms]:

E[Ms+1] ≤ βsc+ βs−βs+1

2

(
2β−2

s+1β
2
s c+ 8β−2

s+1(β
2
s + β2s+1)(L

2
h1

+ c)
)
+ β2

s

2βs+1−βs
c+

√

4c(β2s + β2s+1)(L
2
h1

+ c)

≤ βsc+ βs
(
β−2
s+1β

2
s c+ 4β−2

s+1(β
2
s + β2s+1)(L

2
h1

+ c)
)
+ β2

s

2βs+1−βs
c+ 2βs

√

c(1 + β2s+1β
−2
s)(L2

h1
+ c)

≤ 2βsc+ βs
(
β−2
s+1β

2
s c+ (5 + 4β−2

s+1β
2
s + β2s+1β

−2
s)(L2

h1
+ c)

)
+ β2

s

2βs+1−βs
c

,

where the last inequality used 2
√
ab ≤ a+ b for any a, b > 0. Next we plug in βs = β0ρ

s to obtain

E[Ms] ≤ βs
(
2c+ ρ−2c+ (9 + ρ−2)(L2

h1
+ c) + (2ρ− 1)−1c

)
≤ βs

(
(11 + 2ρ−2)(L2

h1
+ c) + (2ρ− 1)−1c

)
.

Proof (proof of Proposition 2) Since Algorithm 2 is a special case of Algorithm 1 with βs = β0ρ
s and

ǫs = ǫ0η
s, we know from Corollary 1 that (41) holds with c = 4c0. Applying Lemma 5 we know that

E[Ms] ≤ Cβs,

with C = (11 + 2ρ−2)(L2
h1

+ 4c0) + 4(2ρ − 1)−1c0. If ms+1 is the smallest integer satisfying (37), then

ms+1 ≤ Ks+1

(
log2

(
4ǫsǫ

−1
s+1 + 2Msǫ

−1
s+1

)
+ 1
)
+ 1. (100)

By the concavity of log2 function we get

E[ms+1] ≤ Ks+1

(
log2

(
4ǫsǫ

−1
s+1 + 2Cβsǫ

−1
s+1

)
+ 1
)
+ 1 = Ks+1

(
log2

(
4η−1 + 2Cβ0ǫ

−1
0 η−1ρsη−s

)
+ 1
)
+ 1.

Since ρ > η, we get

E[ms+1] ≤ Ks+1

(
log2

((
4η−1 + 2Cβ0ǫ

−1
0 η−1

)
ρsη−s

)
+ 1
)
+ 1

= Ks+1

(
log2

(
4η−1 + 2Cβ0ǫ

−1
0 η−1

)
+ 1 + log2

(
ρsη−s

))
+ 1

= Ks+1

(
s log2

(
ρη−1

)
+ c2

)
+ 1.

33

B.3 Proofs in Section 3.3

We first state a lemma similar to Lemma 2.

Lemma 13 Let ψ(·) : Rn → R ∪ {+∞} be a convex function. Define:

ψ̃(w) := inf
x
{h(p(x)− w) + ψ(x)},

Then condition (15) ensures the convexity of ψ̃.

Proof The proof is similar to Lemma 2 in Appendix B.1.

Proof (proof of Lemma 6) By the definitions (24), (16) and (17), we have

L(x; y, λ, β) − L(x; y′, λ′, β′) + β

2
‖Λ(p(x);λ, β) − λ‖2 − β′

2
‖Λ(p(x);λ′, β′)− λ′‖2

= 〈Λ(p(x);λ, β) − Λ(p(x);λ′, β′), p(x)〉 − h∗(Λ(p(x);λ, β)) + h∗(Λ(p(x);λ′, β′)) +
β

2
‖x− y‖2 − β′

2
‖x− y′‖2.

Next we apply (23) to get

h∗(Λ(p(x);λ′, β′)) ≥ h∗(Λ(p(x);λ, β)) + 〈Λ(p(x);λ, β) − Λ(p(x);λ′, β′), β(Λ(p(x);λ, β) − λ)− p(x)〉,

and

h∗(Λ(p(x);λ, β)) ≥ h∗(Λ(p(x);λ′, β′)) + 〈Λ(p(x);λ, β) − Λ(p(x);λ′, β′), p(x) − β′(Λ(p(x);λ′, β′)− λ′)〉.

Proof (proof of Lemma 7) In this proof we fix y ∈ Rn, λ ∈ Rd and β > 0. Recall the definitions in (50).
Define

L(x,w; y, λ, β) := f(x) + g(x) + h(p(x)− w) + 1

2β
‖w‖2 + 〈w, λ〉 + β

2
‖x− y‖2 − β

2
‖x− x⋆(y, λ, β)‖2.

Then by (20),

min
w
L(x,w; y, λ, β) = L(x; y, λ, β) − β

2
‖x− x⋆(y, λ, β)‖2. (101)

Since L(x; y, λ, β)− β
2 ‖x−x⋆(y, λ, β)‖2 is a convex function with x⋆(y, λ, β) being a critical point, it follows that

min
x

min
w
L(x,w; y, λ, β) = L⋆(y, λ, β). (102)

Denote

H(w; y, λ, β) := min
x
L(x,w; y, λ, β). (103)

In view of (21),

L(x; y, λ, β) − β

2
‖x− x⋆(y, λ, β)‖2 = L(x, β(Λ(p(x);λ, β) − λ); y, λ, β)

(103)

≥ H(β(Λ(p(x);λ, β) − λ); y, λ, β).
(104)

Note that

min
w
H(w; y, λ, β) = min

w
min
x
L(x,w; y, λ, β) = min

x
min
w
L(x,w; y, λ, β)

(102)
= L⋆(y, λ, β). (105)

34

Denote Λ⋆(y, λ, β) = Λ(p⋆(y, λ, β);λ, β). It follows that,

H(β(Λ⋆(y, λ, β) − λ); y, λ, β) ≥ min
w
H(w; y, λ, β)

(105)
= L⋆(y, λ, β) = L(x⋆(y, λ, β); y, λ, β).

Using again (104) with x = x⋆(y, λ, β) we deduce

H(β(Λ⋆(y, λ, β) − λ); y, λ, β) = min
w
H(w; y, λ, β). (106)

Moreover, it follows from Lemma 13 that H(w; y, λ, β) is 1/β-strongly convex with respect to w. Thus,

L(x; y, λ, β) − L⋆(y, λ, β) − β

2
‖x− x⋆(y, λ, β)‖2

(104)+(105)

≥ H(β(Λ(p(x);λ, β) − λ); y, λ, β) −min
w
H(w; y, λ, β)

(106)

≥ 1

2β
‖β(Λ(p(x);λ, β) − λ)− β(Λ⋆(y, λ, β) − λ)‖2

=
β

2
‖Λ(p(x);λ, β) − Λ⋆(y, λ, β)‖2.

Proof (proof of Lemma 8) Denote

Λi(ui;λi, β) := argmax
ξi

{

〈ξi, ui〉 − h∗i (ξi)−
β

2
‖ξi − λi‖2

}

, i = 1, 2, (107)

so that Λ(u;λ, β) = (Λ1(u1;λ1, β); Λ2(u2;λ2, β)). We can then decompose (23) into two independent conditions:

Λi(ui;λi, β) ∈ ∂hi(ui − β(Λi(ui;λi, β)− λi)), i = 1, 2. (108)

By condition (a) in Assumption 1,

‖Λ1(u1;λ1, β)‖ ≤ Lh1
(109)

which yields directly

‖β(Λ1(u1;λ1, β)− λ1)− β′(Λ1(u1;λ
′
1, β

′)− λ′1)‖ ≤ (β + β′)Lh1
+ ‖βλ1 − β′λ′1‖. (110)

On the other hand, since h2 is an indicator function, ∂h2 is a cone and (108) implies

βΛ2(u2;λ2, β) ∈ ∂h2(u2 − β(Λ2(u2;λ2, β) − λ2)). (111)

The latter condition further leads to

〈βΛ2(u2;λ2, β) − β′Λ2(u2;λ
′
2, β

′), β(Λ2(u2;λ2, β)− λ2)− β′(Λ2(u2;λ
′
2, β

′)− λ′2)〉 ≤ 0,

which by Cauchy-Schwartz inequality implies

‖β(Λ2(u2;λ2, β)− λ2)− β′(Λ2(u2;λ
′
2, β

′)− λ′2)‖ ≤ ‖βλ2 − β′λ′2‖.

Then (54) is obtained by simple algebra.

Proof (proof of Lemma 9) We first recall the following basic inequality:

‖u+ v‖2 ≤ (1 + a)‖u‖2 + (1 + 1/a)‖v‖2, ∀u, v ∈ R
n, a > 0. (112)

In view of (112) and the fact that β′ > β/2, we know that

− β

2
‖w′ − w‖2 ≤ β

2
‖w − y′‖2 − β

4
‖w′ − y′‖2,

− β′ + β/2

2
‖w′ − y′‖2 ≤ β(2β′ + β)

2(2β′ − β) ‖y − y
′‖2 − β

2
‖w′ − y‖2.

Combining the latter two inequalities we get (55).

35

B.4 Proof in Section 5.1

Proof (proof of Corollary 5) If Ks satisfies (69), then

Ks ≤ 2

√

2(Lβ0 + ‖A‖2)
µgβs + β2s

+ 1 ≤

2
√

2(Lβ0+‖A‖2)/µg√
βs

+ 1 if µg > 0

2
√

2(Lβ0+‖A‖2)
βs

+ 1 if µg = 0

We then apply Corollary 4.

The proof of Corollary 6 and 7 are similar.

B.5 Proofs in Section 5.2

We first state a useful Lemma.

Lemma 14 For any u, λ ∈ Rd, β > 0,

‖Λ(u;λ, β)‖ ≤ Lh1
+ β−1 dist(u2 + βλ2,K) (113)

Proof From (20),

h(u;λ, β) = min
z

{

h(z) +
1

2β
‖u+ βλ− z‖2 − β

2
‖λ‖2

}

(114)

with optimal solution
z∗ = u+ βλ− βΛ(u;λ, β).

In particular, dist(u2 + βλ2,K)2 = β2‖Λ2(u2;λ2, β)‖2. Together with (109) we obtain the desired bound.

Proof (proof of Lemma 10)

‖∇p(x)Λ(p(x);λs, βs)−∇p(y)Λ(p(y);λs, βs)‖
≤ ‖∇p(x)−∇p(y)‖‖Λ(p(x);λs, βs)‖+ ‖∇p(y)‖‖Λ(p(x);λs, βs)− Λ(p(y);λs, βs)‖
(113)+(19)

≤ L∇p‖x− y‖
(
Lh1

+ β−1
s dist(p2(x) + βsλ

s
2,K)

)
+M∇p‖p(x)− p(y)‖β−1

s

≤
(
L∇p

(
Lh1

+ β−1
s dist(p2(x) + βsλ

s
2,K)

)
+M2

∇pβ
−1
s

)
‖x− y‖.

Note that by (81) and the definition of ds,

dist(p2(x) + βsλ
s
2,K) ≤ ds.

B.6 Proofs in Section 6.2

Proof (proof of Theorem 3) We know from the basic property of proximal gradient step [31] that

‖xs − x̃s‖2 ≤ 2 (Hs(x̃
s)−H⋆

s) /Ls.

By Line 4 in Algorithm 3,

0 ∈ ∇φs(x̃s) + Ls(x
s − x̃s) + βs(x

s − xs−1) + ∂g(xs).

Therefore,

dist(0,∇φs(xs) + ∂g(xs)) ≤ Ls‖x̃s − xs‖+ ‖∇φs(xs)−∇φs(x̃s)‖+ βs‖xs − xs−1‖
≤ 2Ls‖x̃s − xs‖+ βs‖xs − xs−1‖

36

Combining the last two bounds and (18) we get ∇φs(xs) = ∇f(xs) +∇p(xs)λs+1 and

dist(0,∇f(xs) +∇p(xs)λs+1 + ∂g(xs))2 ≤ 16Ls (Hs(x̃
s)−H⋆

s) + 2β2s‖xs − xs−1‖2.

Secondly we know from (23) that

p(xs)− βs(λs+1 − λs) ∈ ∂h∗(λs+1).

It follows that
dist(0, p(xs)− ∂h∗(λs+1)) ≤ βs‖λs+1 − λs‖.

Proof (proof of Corollary 9) Due to (87), we can have the same bound (in expectation) of the sequence
{(x̃s, xs, λs)} as Corollary 1. Hence,

E
[
dist(0, ∂xL(x

s, λs+1))
]
≤
√

16Lsǫs + 8c0β2s ≤
√

16γǫ0/β0 + 8c0β0ρ
s,

E
[
dist(0, ∂λL(x

s, λs+1))
]
≤ β0

√
c0ρ

s.

References

[1] A. Alacaoglu, Q. Tran-Dinh, O. Fercoq, and V. Cevher. Smooth primal-dual coordinate descent algorithms
for nonsmooth convex optimization. In Advances in Neural Information Processing Systems, pages 5852–
5861, 2017.

[2] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In The Journal of
Machine Learning Research, volume 18(1), pages 8194–8244, 2017.

[3] A. Auslender and M. Teboulle. Interior Projection-like Methods for Monotone Variational Inequalities.
Math. Program., 104(1):39–68, Sept. 2005.

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[5] A. Beck and M. Teboulle. Smoothing and First Order Methods: A Unified Framework. SIAM Journal on
Optimization, 22(2):557–580, 2012.

[6] A. Belloni, V. Chernozhukov, and L. Wang. Square-Root lasso: Pivotal Recovery of Sparse Signals via
Conic Programming. SSRN Electronic Journal, 01 2011.

[7] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press, 2014.

[8] J. Bolte, H. H. Bauschke, and M. Teboulle. A Descent Lemma Beyond Lipschitz Gradient Continuity:
First-Order Methods Revisited and Applications. Mathematics of Operations Research, 42, 07 2016.

[9] A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C.-B. Schonlieb. Stochastic primal-dual hybrid gradient
algorithm with arbitrary sampling and imaging applications. SIAM Journal on Optimization, 28(4):2783–
2808, 2018.

[10] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to
imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

[11] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM transactions on
intelligent systems and technology (TIST), 2(3):27, 2011.

[12] S. Chen, D. Donoho, and M. Saunders. Atomic Decomposition by Basis Pursuit. SIAM Journal on
Scientific Computing, 20(1):33–61, 1998.

37

[13] D. Drusvyatskiy and C. Paquette. Efficiency of minimizing compositions of convex functions and smooth
maps. Mathematical Programming, pages 1–56.

[14] O. Fercoq and Z. Qu. Restarting the accelerated coordinate descent method with a rough strong convexity
estimate. arXiv:1803.05771, 2018.

[15] O. Fercoq and Z. Qu. Adaptive restart of accelerated gradient methods under local quadratic growth
condition. IMA Journal of Numerical Analysis, 03 2019.

[16] O. Fercoq and P. Richtárik. Accelerated, parallel and proximal coordinate descent. SIAM Journal on
Optimization, 25(4):1997–2023, 2015.

[17] M. P. Friedlander and G. Goh. Efficient evaluation of scaled proximal operators. Electronic Transactions
on Numerical Analysis, 46:1–22, 2017.

[18] H. H. Bauschke and P. Combettes. The baillon-haddad theorem revisited. Journal of Convex Analysis, 17,
06 2009.

[19] L. T. K. Hien, R. Zhao, and W. B. Haskell. An inexact primal-dual smoothing framework for large-scale
non-bilinear saddle point problems. arXiv preprint arXiv:1711.03669, 2017.

[20] D. Kovalev, S. Horváth, and P. Richtárik. Don’t Jump Through Hoops and Remove Those Loops: SVRG
and Katyusha are Better Without the Outer Loop. 2019.

[21] G. Lan and R. D. Monteiro. Iteration-complexity of First-order Augmented Lagrangian Methods for Convex
Programming. Math. Program., 155(1-2):511–547, Jan. 2016.

[22] H. Li and Z. Lin. On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized
Dual Coordinate Ascent. arXiv preprint arXiv:1807.00261, 2018.

[23] Y. Liu, X. Liu, and S. Ma. On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian
Framework for Composite Convex Programming. Mathematics of Operations Research, 44(2):632–650,
2019.

[24] H. Lu, R. Freund, and Y. Nesterov. Relatively Smooth Convex Optimization by First-Order Methods, and
Applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[25] Z. Lu and Z. Zhou. Iteration-complexity of first-order augmented Lagrangian methods for convex conic
programming. arXiv preprint arXiv:1803.09941, 2018.

[26] I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for non-strongly convex
optimization. Mathematical Programming, Jan 2018.

[27] I. Necoara, A. Patrascu, and F. Glineur. Complexity of first-order inexact Lagrangian and penalty methods
for conic convex programming. Optimization Methods and Software, 34(2):305–335, 2019.

[28] V. Nedelcu, I. Necoara, and Q. Tran-Dinh. Computational Complexity of Inexact Gradient Augmented
Lagrangian Methods: Application to Constrained MPC. SIAM Journal on Control and Optimization,
52(5):3109–3134, 2014.

[29] Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet
Mathematics Doklady, 27(2):372–376, 1983.

[30] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–152,
May 2005.

[31] Y. Nesterov et al. Gradient methods for minimizing composite objective function, 2007.

38

[32] Y. Ouyang, Y. Chen, G. Lan, and E. P. Jr. An accelerated linearized alternating direction method of
multipliers. SIAM Journal on Imaging Sciences, 8(1):644–681, 2015.

[33] A. Patrascu, I. Necoara, and Q. Tran-Dinh. Adaptive inexact fast augmented Lagrangian methods for
constrained convex optimization. Optimization Letters, 11, 05 2015.

[34] X. Qian, Z. Qu, and P. Richtárik. L-SVRG and L-Katyusha with arbitrary sampling. arXiv:1906.01481,
2019.

[35] H. Rafique, M. Liu, Q. Lin, and T. Yang. Non-convex min-max optimization: Provable algorithms and
applications in machine learning. arXiv preprint arXiv:1810.02060, 2018.

[36] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex
programming. Mathematics of operations research, 1(2):97–116, 1976.

[37] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and
optimization, 14(5):877–898, 1976.

[38] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model predictive control (feasibility
implies stability). IEEE Transactions on Automatic Control, 44(3):648–654, March 1999.

[39] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal of Computational and
Graphical Statistics, 2013.

[40] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso.
Journal of the Royal Statistical Society Series B, pages 91–108, 2005.

[41] Q. Tran-Dinh, A. Alacaoglu, O. Fercoq, and V. Cevher. An Adaptive Primal-Dual Framework for Nons-
mooth Convex Minimization. arXiv preprint arXiv:1808.04648, 2018.

[42] Q. Tran-Dinh, O. Fercoq, and V. Cevher. A smooth primal-dual optimization framework for nonsmooth
composite convex minimization. SIAM Journal on Optimization, 28(1):96–134, 2018.

[43] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Submitted to SIAM
Journal on Optimization, 2008.

[44] H. Wang, G. Li, and G. Jiang. Robust regression shrinkage and consistent variable selection through the
lad-lasso. Journal of Business and Economic Statistics, 25(3):347–355, 2007.

[45] Y. Xu. First-order methods for constrained convex programming based on linearized augmented Lagrangian
function. arXiv preprint arXiv:1711.08020, 2017.

[46] Y. Xu. Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming.
arXiv:1711.05812, 2017.

[47] Y. Xu and S. Zhang. Accelerated primal–dual proximal block coordinate updating methods for constrained
convex optimization. Computational Optimization and Applications, 70(1):91–128, 2018.

[48] X. Yuan, S. Zeng, and J. Zhang. Discerning the linear convergence of ADMM for structured convex
optimization through the lens of variational analysis. optimization-online, 2018.

[49] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1normm Support Vector Machines. In Proceedings
of the 16th International Conference on Neural Information Processing Systems, NIPS’03, pages 49–56,
Cambridge, MA, USA, 2003. MIT Press.

39

	1 Introduction
	2 Preliminaries
	2.1 Problem and Assumptions
	2.2 Proximal ALM Revisited

	3 Recursive Relation of Inexactness
	3.1 Inner Iteration Complexity Control for ALM
	3.2 Overall Iteration Complexity Bound
	3.3 Proof of Proposition ??

	4 Inner Solvers
	4.1 Accelerated Proximal Gradient
	4.2 Accelerated Randomized Coordinate Descent
	4.3 Accelerated Stochastic Variance Reduced Method
	4.4 Bregman Proximal Gradient

	5 Applications
	5.1 Composition with Linear Functions
	5.1.1 APG as inner solver
	5.1.2 Large scale structured problem
	5.1.3 Bregman proximal gradient as inner solver

	5.2 Composition with Nonlinear Functions

	6 Further Discussion
	6.1 Efficient Inner Problem Stopping Criteria
	6.2 KKT Solution
	6.3 Bounded Primal and Dual Domain

	7 Numerical Experiments
	7.1 Least Absolute Deviation
	7.2 Basis Pursuit
	7.3 Fused Lasso
	7.4 Soft Margin SVM

	8 Conclusion and Future Research
	A Inexact Proximal Point algorithm and inexact Augmented Lagrangian method
	A.1 Inexact Proximal Point Method
	A.2 Inexact ALM

	B Missing proofs
	B.1 Proofs in Section ??
	B.2 Proofs in Section ??
	B.3 Proofs in Section ??
	B.4 Proof in Section ??
	B.5 Proofs in Section ??
	B.6 Proofs in Section ??

