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Abstract
We describe the toolbox Tenscalc that generates specialized C-code to solve non-
linear constrained optimizations and to compute Nash equilibria. Tenscalc is aimed
at scenarios where one needs to solve very fast a large number of optimizations that are
structurally similar. This is common in applications where the optimizations depend
on measured data and one wants to compute optima for large or evolving datasets,
e.g., in robust estimation and classification, maximum likelihood estimation, model
predictive control (MPC), moving horizon estimation (MHE), and combined MPC-
MHE (which requires the computation of a saddle-point equilibria). Tenscalc is
mostly aimed at generating solvers for optimizations with up to a few thousands of
optimization variables/constraints and solve times up to a fewmilliseconds. The speed
achieved by the solver arises from a combination of features: reuse of intermediate
computations across and within iterations of the solver, detection and exploitation of
matrix sparsity, avoidance of run-time memory allocation and garbage collection, and
reliance on flat code that improves the efficiency of the microprocessor pipelining and
caching. All these features have been automated and embedded into the code gener-
ation process. We include a few representative examples to illustrate how the speed
and memory footprint of the solver scale with the size of the problem.
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1 Introduction

In the sciences and engineering, numerical optimizations are often used to determine
parameter values based on measured or simulated data. This arises in the estimation of
parameters using maximum likelihood or robust regression and classification. It also
arises in the computation of optimal control signals using model predictive control
(MPC), moving horizon estimation (MHE), or combined MPC-MHE. In these appli-
cations, it is common to solve many instances of a particular optimization for different
datasets and very significant time savings are possible by building solvers that have
been constructed for a specific optimization.

The TensCalc toolbox generates C code to solve nonlinear constrained mini-
mizations and to compute Nash equilibria. The main goal of the toolbox is to take an
intuitive description of the optimization problem expressed in MATLAB-like syntax
and completely automate the process of generating C code capable of solving the
optimization very fast for different data sets. To achieve this goal, the structure of
the optimization and the computations needed to solve it are analyzed at the code-
generation time to minimize the solve time.

Specifically, the TensCalc toolbox generates C code to solve nonlinear con-
strained minimizations of the general form

f (u∗, p) =min
{
f (u, p) : F(u, p) ≥ 0, G(u, p) = 0, u ∈ R

nu
}

(1)

and to compute two-player Nash equilibria defined by

fu(u
∗, d∗, p) = min

{
fu(u, d∗, p) :Fu(u, d∗, p) ≥ 0,

Gu(u, d∗, p) = 0, u ∈ R
nu

}
, (2a)

gd(u
∗, d∗, p) = min

{
gd(u

∗, d, p) :Fd(u∗, d, p) ≥ 0,

Gd(u
∗, d, p) = 0, d ∈ R

nd
}
. (2b)

In either problem, p ∈ R
n p denotes a vector of parameters that typically changes

from one instance of the optimization to the next. The vectors u ∈ R
nu and d ∈ R

nd

correspond to the optimization variables, the latter only appearing in the two-player
problem (2). The functions

f : Rnu × R
n p → R, (3a)

fu : Rnu × R
nd × R

n p → R, (3b)

gd : Rnu × R
nd × R

n p → R, (3c)

encode the optimization criteria,

G : Rnu × R
n p → R

nG , (4a)

Gu : Rnu × R
nd × R

n p → R
nGu , (4b)

Gd : Rnu × R
nd × R

n p → R
nGd (4c)
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encode equality constraints, and

F : Rnu × R
n p → R

nF , (5a)

Fu : Rnu × R
nd × R

n p → R
nFu , (5b)

Fd : Rnu × R
nd × R

n p → R
nFd (5c)

encode (element-wise) inequality constraints.
The toolbox’s name TensCalc results from the merger of the words “tensor”

and “calculus” and is motivated by the fact that tensors of arbitrary dimension are
the basic elements used to construct the optimization criteria and constraints. In fact,
while in the description above we restricted the formulation so that the domains and
co-domains of all functions in (3)–(5) are organized as real-valued vectors, the toolbox
actually allows these functions to take as inputs and outputs any number of real-valued
tensors of arbitrary sizes, with the exception of the functions in (3) that define the
optimization criteria that must produce scalars. The “calculus” in TensCalc refers
to the fact that the toolbox performs symbolic differentiation of tensors of arbitrary
dimension with respect to tensors of arbitrary dimension, which is instrumental to
solve the optimizations in (1)–(2).

TensCalc has several features that we highlight here:

1. The user-interface uses an optimization modeling language that allows the user to
organize the optimization variables, parameters, and constraints as arbitrary col-
lections of vectors, matrices, or high-dimensional tensors that can be manipulated
using standard operations of matrix calculus that are intuitive and generally com-
patible with theMATLAB syntax. Themain features of this interface are described
in Sect. 3.

2. TensCalc generates primal-dual interior point solvers for the optimizations (1)
and (2). These algorithms, which are discussed in Sect. 4, use exact formulas for
the gradients andHessianmatrices that are computed symbolically byTensCalc.

3. The sparsity structures of all the gradient and Hessian matrices used by the interior
point methods are determined at code-generation time and directly embedded into
the code. This enables the memory management to be resolved at code-generation
time and the mapping of the different nonzero entries of vectors/matrices into
memory locations to be hardwired into the code. Section 5 discusses how sparsity
can be promoted and how it is exploited by TensCalc.

4. All computations needed to carry out the primal-dual interior point method are
encoded into a computation graph whose nodes correspond to scalar-valued oper-
ations and the edges express computational dependencies between the nodes. Code
generation makes use of this graph to minimize the number of computations that
need to be performed in run time, at each iteration of the primal-dual algorithm and
from one optimization to the next. The construction of the computation graph is
described in Sect. 6, which also includes a discussion of how it is used to minimize
the memory footprint of the solver.

5. The code generated does not use external libraries, does not require dynamic
memory allocation, and has few branches and decision points. As discussed in
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Sect. 7, this code is extremely portable, friendly towards compiler optimization,
and generally results in an efficient use of microprocessor instruction pipelining.

From a user perspective, the fundamental distinguishing feature of TensCalc is
the ability to solve medium-size nonlinear optimizations (up to a few thousand of
optimization variables and constraints) much faster than what could be done with
general purpose solvers.

From a technical perspective, this speed up is mostly a consequence of items 3
and 4 above. The idea of incorporating matrix sparsity structures into the code of
optimization solvers was motivated by CVXGEN [19], which generates C code to
solve quadratic programs with linear constraints. One of the key contributions of
our work is demonstrating that the process of discovering and exploiting sparsity
structures can be extended to general nonlinear programs in a computationally effective
fashion.Encoding computational dependencies in a graph that canbeusedboth to avoid
redundant computations and minimize memory footprint is directly inspired by ideas
from compiler optimization. However, TensCalc constructs the graph at a higher
level of abstraction, based on the primal-dual interior point algorithm to generate
C code, rather than based on C code to generate assembly code. This enables global
optimizations over hundreds of thousands of operations and variables, far beyondwhat
canbe effectively accomplishedby current compilers, at a fraction of the computational
cost. Essentially, we take advantage of the fact that a large collection of linear algebra
computations has muchmore structure than a general fragment of C code (all variables
are of the same type, no indirect references to variables, no calls to sub-routines, etc.).

TheTensCalc toolbox is freely available at https://github.com/hespanha/tenscalc
under the GNU General Public License v3.0.

2 Related work

The development of languages to define optimization problems has exploded in recent
years, mostly prompted by the desire to facilitate applying different numerical solvers
to a particular optimization. CVX [15], YALMIP [18], and CasADi [1] are the non-
commercial optimization modeling languages most closely related to TensCalc.
All three are offered as free MATLAB toolboxes and essentially overload the standard
MATLABfunctions andoperators to enable the specificationof objective functions and
constraints with MATLAB-like syntax. CVX is focused on convex optimization and
only permits the construction of problems that can be solved using semi-definite pro-
gramming. YALMIP and CasADi permit a wider variety of optimizations, supported
by a very large collection of internal and external solvers. The optimization modeling
language used by TensCalc is heavily inspired by CVX and it also overloads the
basic MATLAB operators to accept a MATLAB-like syntax. Because TensCalc is
not restricted to convex optimizations, it accepts many constructions not permitted by
CVX. However, it falls short of CVX in that its current version does not explicitly
accept semi-definite constraints (unless the user expresses them, e.g., as inequality
constraints on the minors of a matrix, which is only effective for small matrices).
With respect to YALMIP, TensCalc falls short in that mixed-integer programs are
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not allowed and it only permits optimization criteria that are twice differentiable with
respect to the optimization variables. In terms of functionality TensCalc is very
similar to CasADi and, in fact, it is generally very straightforward to translate an
optimization expressed in TensCalc to CasADi’s Opti stack interface. The key dif-
ference with respect to CVX and YALMIP is that TensCalc generates standalone
C code that does not require external optimization solvers or external libraries. While
CasADi enables the generation of C code to evaluate functions and their derivatives,
it relies on external optimization solvers to actually perform the optimization.

A key feature of TensCalc is that the code generated is highly optimized and
directly integrated with the optimization solver. In practice, this generally enables the
solution of one instance of an optimization much faster than what could be achieved
with general purpose solvers like Ipopt [3,30], SeDuMi [25], SDPT3 [26], or Gurobi
[16]. In this respect, TensCalc is much closer to CVXGEN [19] , which uses a web-
based interface to generate fast custom C code for optimizations that can be expressed
as a linear program or a convex quadratic program.

The algorithmsused byTensCalc to construct the solvers are primal-dual interior-
point methods. This class of optimization algorithms was originally proposed for
linear programs [20,21] and essentially amounts to using Newton’s method to solve
a modified form of the Karush–Kuhn–Tucker (KKT) optimality conditions, with the
progression along the Newton direction constrained so that the inequality constraints
are not violated.This basic approach canbe applied to verygeneral nonlinear programs,
but convergence can typically only beguaranteed for certain classes of convexproblem,
which include linear programming, semidefinite programming, and second-order cone
programming [22,23]. Nevertheless, our experience has been that it is still extremely
effective for many nonlinear and nonconvex optimizations. The specific algorithms
used by TensCalc are heavily inspired by [28] and are also very close to the ones
used by Ipopt [3,30]. However, we have opted to not include in TensCalc any form
of automatic scaling. While this adds extra burden to the user, we did not want to
introduce computational penalties that are not always needed or could be resolved
by the user offline. In practice, this means that TensCalc may require a few extra
iterations of the solver, but we shall see that the computation savings enabled by
specialized code greatly outweigh this shortcoming.

Primal-dual interior-point methods are very attractive because they generally con-
verge to very accurate solutions with a small number of Newton iterations; typically
in the range 10–20, regardless of the problem size. The main difficulty with these
methods lies in the need to solve a linear system of N equations and unknowns to
find the Newton direction, where N is the total number of primal and dual variables.
Using Gauss elimination to solve these equations generally require O(N 3) floating-
point operations [12]. However, when the matrix H ∈ R

N×N that defines the system
of equations is sparse, the number of operations needed to solve these equations can
scale much better than O(N 3). TensCalc takes advantage of this and finds the New-
ton search direction by applying row and column permutations to H to reduce fill-in
of the L and U factors [8]. For the minimization problem (1), the matrix H is symmet-
ric and “almost” quasi-definite and therefore admits an LDL factorization for every
symmetric permutation [28]. Moreover, these factorizations are generally numerically
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stable [11]. For the computation of the Nash equilibrium (2), the matrix H is no longer
symmetric so numerical issues are more likely to arise.

3 TensCalc’s optimizationmodeling language

The optimizations (1)–(2) are specified by first declaring a set of symbolic variables
that correspond to the optimization parameter p and the optimization variables u and
d, and then using these variables to construct the optimization criteria f , fu, gd and
the functions F, Fu, Fd ,G,Gu,Gd that define the constraints.

In TensCalc, symbolic variables are tensors (i.e., multi-dimensional arrays) and
are declared within MATLAB using the TensCalc command

1 Tvariable xpto [n1 ,n2 ,...,nK]

This command creates in theMATLABworkspace a symbolic variable called xpto
and declares it as a tensor1 with n1 indices in the 1st dimension, n2 indices in the 2nd
dimension, etc. The variable xpto is assumed to be full in the sense that TensCalc
does not assume that any particular entry will always be equal to zero (even though
some entries may turn out to be zero).

The variables declared with Tvariable can be used to construct arbitrarily com-
plex tensor-valued symbolic expressions using standard MATLAB syntax. This was
achieved by overloading the builtin functions and operators, including subsref,
reshape, vertcat, horzcat, cat, uplus, plus, +, uminus, minus, -,
sum, exp, log, sqrt, cos, sin, tan, atan, round, ceil, floor, abs, relu,
heaviside, times, *, mtimes, .*, rdivide, ./, inv, trace, det, lu, ldl.
The following logic-valued functions and operators were also overloaded to express
constraints: eq, ==, gt, >, lt, and <. Aside from the standard MATLAB functions
defined above, TensCalc recognizes a few additional expressions that facilitate
constructing expressions using tensors. Among those, we highlight tprod, which
provides a very flexible generalization of matrix multiplication for tensors of arbitrary
size [9].

TensCalc symbolic expressions can also use numerical constants that are declared
with the TensCalc command

2 cpto=Tconstant(expr)

This command creates a variable called cpto with the value given by the MATLAB
expression expr. TensCalc looks for zero entries in expr and will eventually
use its sparsity structure to optimize the code. The value of variables declared with
Tconstantwill be hard-wired into the code of the solver, in contrast to the variables
declared using Tvariable that can be changed from one call to the solver to the
next.

The construction of symbolic variables and expressions is supported by a
TensCalcMATLAB class called Tcalculus, which overloads the standardMAT-
LAB functions and operators listed above so that they can be applied to TensCalc

1 While MATLAB regards scalars and vectors still as matrices with a single column and/or row, this is not
the case for TensCalc.
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symbolic variables and expressions. All TensCalc symbolic expressions are rep-
resented internally through a tree whose nodes are operations between symbolic
operands and whose branches connect a node to all its operands. Nodes correspond-
ing to symbolic variables declared using Tvariable and Tconstant do not have
operands, corresponding to final leaves of the tree.

An important operation supported by the class Tcalculus is symbolic differen-
tiation, which is carried out through the function

3 grad=gradient(expr ,var)

that computes the derivative of the TensCalc expression expr with respect to the
variablevar (the latter necessarily declared usingTvariable). Bothexpr andvar
may be tensors of arbitrary sizes and the resulting symbolic expression grad will be
a tensor whose size is the concatenation of the sizes of expr and var. Specifically,
if expr and var are tensors with sizesm1 ×m2 ×· · ·×mK and n1 × n2 ×· · ·× nL ,
respectively, then grad has size m1 ×m2 × · · · ×mK × n1 × n2 × · · · × nL , and its
entry (i1, i2, . . . , iK , j1, j2, . . . , jL) is given by

∂expri1,i2,...,iK
∂var j1, j2,..., jL

where expri1,i2,...,iK denotes the entry (i1, i2, . . . , iK ) of expr and var j1, j2,..., jL the
entry ( j1, j2, . . . , jL) of var.

The toolbox introduces two functions cmex2optimizeCS and cmex2equili
briumLatentCS that take as inputs TensCalc symbolic expressions and generate
C code to solve the optimizations (1) and (2), respectively. A typical call to the function
cmex2optimizeCS is of the following form:

4 cmex2optimizeCS (’classname ’,’c1’ ,...
5 ’objective ’,f,...
6 ’optimizationVariables ’,{x1 ,x2},...
7 ’parameters ’,{p1,p2 ,p3},...
8 ’constraints ’,{e1,e2,e3},...
9 ’outputExpressions ’,{y1 ,y2});

where f must be a scalar-valued TensCalc symbolic expression that defines the
cost f in (1); x1 and x2 are optimization variables declared using Tvariable;
p1, p2, and p3 are parameters declared using Tvariable; and e1, e2, and e3
are TensCalc symbolic expressions defining equality and/or inequality constraints.
This call generates C code that solves the minimization in (1) and computes the
numerical values of the TensCalc symbolic expressions y1, y2 at the optimum.
In addition, cmex2optimizeCS also creates a MATLAB class named c1 that per-
mits access to the solver from within the MATLAB environment. This class permits
passing to the solver numerical values for the parameters p1, p2, and p3; call-
ing the solver; and retrieving the numerical values of y1 and y2. The command
cmex2equilibriumLatentCS has a similar syntax, but permits the definition of
the two objective functions and the two sets of constraints needed by (2). We refer the
reader to the “Appendix” for specific examples of calls to cmex2optimizeCS and
cmex2equilibriumLatentCS.
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The functionscmex2optimizeCS andcmex2equilibriumLatentCS inter-
nally “reshape” all the optimization variables into (single-dimension) vectors and
stack these vectors appropriately to form the optimization variables u ∈ R

nu

and d ∈ R
nd that appear in (1). The equality and inequality constraints passed

to cmex2optimizeCS and cmex2equilibriumLatentCS can be expressed
through tensors of arbitrary size (with inequalities understood entry-wise). These ten-
sors are also reshaped into (single-dimension) vectors and stacked appropriately to
form the functions F, Fu, Fd ,G,Gu,Gd that appear in (1) and (2). The reshaping
and stacking of variables and expressions is done symbolically, because we need to
subsequently perform symbolic differentiation of the different functions with respect
to the optimization variables to compute the gradient and Hessian matrices required
by the primal-dual interior-point method. However, all this is handled internally by
TensCalc and hidden from the user.

The code-generation engine of TensCalc can also be used to perform repeated
computations very efficiently, beyond the specific optimizations (1)–(2). This is
accomplished by specifying a set of computations using the TensCalc class
csparse and subsequently generating code using the command cmex2compute.
While a detailed description of csparse and cmex2compute is outside the scope
of this paper, it worth noting that cmex2compute takes advantages of all the opti-
mizations described in Sect. 6.

4 Optimization algorithms

Both optimizations (1) and (2) are solved using primal-dual interior-point meth-
ods based on the results discussed below. For simplicity of presentation, in the
remainder of this section we ignore the dependence on the parameter vector p of
the functions f , fu, gd that define the optimization criteria and of the functions
F, Fu, Fd ,G,Gu,Gd that define the constraints.

4.1 Minimization

The algorithm used to solve (1) is based on the following simple duality result.

Lemma 1 (Approximate minimum) Suppose that we have found primal variables u ∈
R
nu and dual variables λ ∈ R

nF , ν ∈ R
nG that simultaneously satisfy the following

conditions

L f (u, λ, ν) = min
ū∈Rnu

L f (ū, λ, ν), (6a)

G(u) = 0nG , (6b)

F(u) ≥ 0nF , λ ≥ 0nF , (6c)
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where L f (u, λ, ν) := f (u) − λ · F(u) + ν · G(u). Then u approximately satisfies
(1) in the sense that

f (u) ≤ ε f + min
{
f (ū) : F(ū) ≥ 0,G(ū) = 0, ū ∈ R

nu
}
, ε f := λ · F(u). (7)

��
The following notation is used in (6)–(7) and below: Given an integer n, we denote
by 0n and by 1n the n-vectors with all entries equal to 0 and 1, respectively. Given
two vectors x, y ∈ R

n we denote by x ≥ y the entry-wise “greater than or equal to”
comparison of the entries of x and y; and by x · y ∈ R, x 	 y ∈ R

n , and x 
 y ∈ R
n

the inner product, entry-wise product, and entry-wise division of the two vectors,
respectively.

When the functions f , G, and F are continuously differentiable, replacing the
unconstrained optimization in (6a) by its first-order necessary condition for optimality
and specializing Lemma 1 to the case ε f := λF(u) = 0 leads to the Karush–Kuhn–
Tucker (KKT) first-order necessary conditions for optimality. Lemma 1 shows that
dropping the KKT complementary slackness condition λ · F(u) = 0 may result in a
suboptimal value for u, but the level of suboptimality is no larger than ε f := λ · F(u).
It is convenient that this does not require strong duality.

The iterative algorithm used by TensCalc to solve (1) consists of using Newton
iterations to solve the following system of nonlinear equations on the primal variables
u ∈ R

nu and on the dual variables λ ∈ R
nF , ν ∈ R

nG :

1. the first-order optimality condition for the unconstrained minimizations in (6a)

∇u L f (u, λ, ν) = 0nu , (8)

where ∇u L f denotes the gradient of L f with respect to the variable u;
2. the equality constraint (6b); and
3. the equation

F(u) 	 λ = μ1nF , (9)

for some μ > 0, which lead to

ε f := λ · F(u) = μ nF .

Since our goal is to find primal variables u for which (7) holds with ε f = 0, we shall
make the variableμ converge to zero as the Newton iterations progress. This is done in
the context of an interior-point method, meaning that all variables will be initialized so
that the inequality constraints (6c) hold strictly and, at each iteration, the progression
along the Newton direction is selected so that these constraints are never violated. The
specific steps of the algorithm that follows are based on the primal-dual interior-point
method described in [27].
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Algorithm 1 (Primal-dual optimization for the minimization (1))

Step 1. Start with estimates u0, λ0, ν0 that satisfy the inequality λ0 > 0, F(u0) > 0
in (6c) and set k = 0. We typically start with

μ0 = 1, ν0 = 0, λ0 = μ01nF 
 F(u0),

which guarantees that we initially have λ0 	 F(u0) = μ01nF .
Step 2. Linearize the equations in (8), (6b), (9) around the current estimate uk, λk, νk ,

leading to

⎡

⎣
∇uu L f (uk, λk, νk) ∇uG(uk)′ −∇u F(uk)′

∇uG(uk) 0 0
−∇u F(uk) 0 −diag[F(uk) 
 λk]

⎤

⎦

⎡

⎣
Δu
Δν

Δλ

⎤

⎦

= −
⎡

⎣
∇u L f (uk, λk, νk)

G(uk)
−F(uk) + μk1nF 
 λk

⎤

⎦ , (10)

where ∇uu L f denotes the Hessian matrix of L f with respect to u. Since
F(uk) > 0 and λk > 0, we can solve this system of equations by first elimi-
nating

Δλ = −λk − diag[λk 
 F(uk)]∇u F(uk)Δu + μk1nF 
 F(uk), (11a)

which leads to
[∇uu L f (uk, λk, νk) + ∇u F(uk)′diag[λk 
 F(uk)]∇u F(uk) ∇uG(uk)′

∇uG(uk) 0

] [
Δu
Δν

]

= −
[∇u f (uk) + ∇uG(uk)′νk − μk∇u F(uk)′

(
1nF 
 F(uk)

)

G(uk)

]
.

(11b)

However, as we shall further discuss in Remark 4, for some problems solving
(10) may actually be preferable to solving (11).

Step 3. Update the estimates along the Newton search direction determined by (11)
so that the inequalities in (6c) hold strictly:

uk+1 = uk + αΔu, νk+1 = νk + αΔν, λk+1 = λk + αΔλ (12)

where

α := min{αprimal, αdual},

and

αprimal := max
{
α ∈ [0, 1] : F(

uk + α

.99
Δu

) ≥ 0
}
, (13)
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αdual := max
{
α ∈ [0, 1] : λk + α

.99
Δλ ≥ 0

}
. (14)

Step 4. Update μk according to

μk+1 =

⎧
⎪⎨

⎪⎩

γaggressive μk if α ≥ .5, ‖G(uk+1)‖∞ ≤ 100εG ,

‖∇u L f (uk+1, λk+1, νk+1)‖∞ ≤ 100ε

γconservative μk otherwise

(15)

with 0 < γaggressive < γconservative < 1. Typically, we use γaggressive = 1/3 and
γconservative = .75, which means that we only allow for a significant decrease
inμk if sufficient progress was possible along the search direction (large value
for α)), the equality constraints are approximately satisfied, and the gradient
∇u L f (uk+1, λk+1, νk+1) is sufficiently small.

Step 5. Repeat from Step 2 with an incremented value for k until

‖G(uk)‖∞ ≤ εG , ‖∇u L f (uk, λk, νk)‖∞ ≤ ε, λk · F(uk) ≤ εgap. (16)

for sufficiently small tolerances ε, εG, εgap. ��
TensCalc automatically computes the gradients ∇u L f , ∇uG, ∇u F ; the Hessian

∇uu L f ; and assembles the matrix and vectors in (11) based on the symbolic expres-
sions provided by the user. Values for the parameters γaggressive, γconservative and the
tolerances ε, εG , εgap can be set through (optional) input parameters to the function
cmex2optimizeCS.

Remark 1 (Algorithm improvements) One can find in [27] several variations of this
algorithm that can lead to faster convergence, some of which have been implemented
in TensCalc. Among these we highlight the following two: (i) one can include
in (10) a second-order Mehrotra correction term that often reduces the number of
iterations and (ii) at each iteration, one can compute an “optimal” value for μk by
first solving (10) for the “ideal” value of μ = 0 and then selecting μk based on how
much progress is possible along the resulting search direction (until the constraints
are violated). These variations are discussed at length in [27]. Our experience is that
for convex problems they can lead to significant performance improvements, but this
is often not the case for nonconvex problems. An additional improvement inspired by
[19], consists of replacing (11b) by

[∇uu L f (uk, λk, νk) + ∇u F(uk)′diag[λk 
 F(uk)]∇u F(uk) + δ I ∇uG(uk)′
∇uG(uk) −δ I

]

×
[
Δu
Δν

]
= −

[∇u f (uk) + ∇uG(uk)′νk − μk∇u F(uk)′
(
1nF 
 F(uk)

)

G(uk)

]

(17)

for a small constant δ > 0. In this case, the matrix in the left-hand side is quasi-definite
in that it has the top-left sub-matrix positive definite and the bottom-right one negative
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definite. It turns out that quasi-definite matrices are strongly factorizable, i.e., they
admit an LDL factorization for every symmetric permutation, which may not be the
case for the original matrix with δ = 0 [28]. Moreover, their LDL factorization is
generally numerically stable [11]. It turns out that the addition of ±δ I to the diagonal
blocks of the matrix in (11b), corresponds to adding similar terms to the top and
middle diagonal blocks of the matrix in (10) and this does not alter the fact that the
fixed points of the iteration for uk, νk, λk (i.e., points for which we have Δu = 0,
Δν = 0, Δλ = 0) necessarily correspond to values of the primal and dual variables
for which the right-hand side of (10) is equal to zero, which guarantees that (8), (6b),
(9) hold. The selection of δ is guided by a trade-off between doing the exact Newton
step (δ = 0), which would result in a smaller number of iterations if computations
could be done without numerical errors, and selecting a large value for δ that would
improve numerical stability. The heuristic proposed in [28] of setting δ equal to the
square root of the arithmetic’s precision seems to lead to good results for the vast
majority of the problems we have considered, while setting δ = 0 still works very
well for a surprisingly large number of problems. ��
Remark 2 (Smoothness) Algorithm 1 requires the functions f , F,G to be twice dif-
ferentiable for the computation of the matrices that appear in (10). However, this does
not preclude the use of this algorithm in many optimizations with nonsmooth criteria
and/or constraints, because it is often possible to re-formulate non-smooth optimiza-
tions into smooth ones by appropriate transformations. Common examples of such
optimizations include the minimization of criteria involving 
p norms, such as the
(non-differentiable) 
1 and 
∞ optimizations

min
{‖Am×nx − b‖
1 : x ∈ R

n}, min
{‖Am×nx − b‖
∞ : x ∈ R

n}

which are equivalent to the following smooth optimizations

min
{
1m · v : x ∈ R

n, v ∈ R
m,−v ≤ Ax − b ≤ v

}
,

min
{
v : x ∈ R

n, v ∈ R,−v1m ≤ Ax − b ≤ v1m
}
,

respectively. Additional examples of such criteria and the corresponding transforma-
tions can be found, e.g., in [14]. ��
Remark 3 (Initial feasibility) The algorithm described above must be initialized with a
value u0 for the primal variable that satisfies F(u0) > 0. Often it is straightforward to
find initial values for the primal variable that strictly satisfy the inequality constraints.
When this is not the case, a simple alternative is to introduce an additional optimization
variable s ∈ R

nF and replace the original inequality constraint F(u) > 0 by the
following two constraints:

F(u) = s, s > 0nF .

It is now trivial to find an initial value for s that satisfies the inequality constraints, e.g.,
s0 = 1nF . The price paid is that we have an additional equality constraint F(u) = s.

��

123



Tenscalc: a toolbox to generate fast code to solve nonlinear… 463

4.2 Nash equilibrium

The algorithm used to solve (2) is based on the following result from [4].

Lemma 2 (Approximate equilibrium) Suppose that we have found primal variables
u ∈ R

nu , d ∈ R
nd and dual variables λ f u ∈ R

nFu , λgd ∈ R
nFd , ν f u ∈ R

nGu , νgd ∈
R
nGd that simultaneously satisfy all of the following conditions

L f (u, d, λ f u, ν f u) = min
ū∈Rnu

L f (ū, d, λ f u, ν f u), (18a)

Lg(u, d, λgd , νgd) = min
d̄∈Rnd

Lg(u, d̄, λgd , νgd), (18b)

Gu(u, d) = 0, Gd(u, d) = 0, (18c)

Fu(u, d) ≥ 0nFu , λ f u ≥ 0nFu , Fd(u, d) ≥ 0nFd , λgd ≥ 0nFd ,

(18d)

where

L f (u, d, λ f u, ν f u) := fu(u, d) − λ f u · Fu(u, d) + ν f u · Gu(u, d),

Lg(u, d, λgd , νgd) := gd(u, d) − λgd · Fd(u, d) + νgd · Gd(u, d).

Then (u, d) approximately satisfy (2) in the sense that

f (u, d) ≤ ε f + min
{
fu(ū, d) : Fu(ū, d) ≥ 0,Gu(ū, d) = 0, ū ∈ R

nu
}
, (19a)

g(u, d) ≤ εg + min
{
gd(u, d̄) : Fd(u, d̄) ≥ 0,Gd(u, d̄) = 0, d̄ ∈ R

nd
}
. (19b)

with

ε f := λ f u · Fu(u, d), εg := λgd · Fd(u, d).

��
The algorithmused byTensCalc to solve (2) nowconsists of usingNewton iterations
to solve the following system of nonlinear equations on the primal variables u ∈
R
nu , d ∈ R

nd and on the dual variables λ f u ∈ R
nFu , λgd ∈ R

nFd , ν f u ∈ R
nGu , νgd ∈

R
nGd introduced in Lemma 2:

1. the first-order optimality conditions for the unconstrained minimizations in (18a)–
(18b):

∇u L f (u, d, λ f u, ν f u) = 0nu , ∇d Lg(u, d, λgd , νgd) = 0nd ; (20)

2. the equality constraints (18c); and
3. the equations

Fu(u, d) 	 λ f u = μ1nFu , Fd(u, d) 	 λgd = μ1nFd , (21)
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for some μ > 0, which lead to

ε f := λ f u · Fu(u, d) = μ nFu , εg := λgd · Fd(u, d) = μ nFd .

Since our goal is to find primal variables u, d for which (19a) holds with ε f = εg = 0,
we shall make the variable μ converge to zero as the Newton iterations progress.
Defining

z :=
[
u
d

]
, λ :=

[
λ f u

λgd

]
, ν :=

[
ν f u

νgd

]
,

G(z) :=
[
Gu(u, d)

Gd(u, d)

]
, F(z) :=

[
Fu(u, d)

Fd(u, d)

]
,

we can re-write (20), (18c), and (21) as

∇u L f (z, λ, ν) = 0nu , ∇d Lg(z, λ, ν) = 0nd , (22a)

G(z) = 0Ku+Kd , λ 	 F(z) = μ1Mu+Md , (22b)

and (18d) as

λ ≥ 0Mu+Md , F(z) ≥ 0Mu+Md . (23)

These equations are similar in structure to the ones that we encountered in (8), (6b), (9),
permitting the development of an algorithm to solve (2) that is essentially identical
to the Algorithm 1 used to solve (1). The key difference is that the Newton search
direction is now obtained through the linearization of (22) around a current estimate
zk, λk, νk , leading to

⎡

⎢⎢
⎣

∇uz L f (zk, λk, νk) ∇uνL f (zk) ∇uλL f (zk)
∇dz Lg(zk, λk, νk) ∇dνLg(zk) ∇dλLg(zk)

∇zG(zk) 0 0
∇z F(zk) 0 diag[F(zk) 
 λk]

⎤

⎥⎥
⎦

⎡

⎣
Δz
Δν

Δλ

⎤

⎦

= −

⎡

⎢⎢
⎣

∇u L f (zk, λk, νk)
∇d Lg(zk, λk, νk)

G(zk)
F(zk) − μ1 
 λk

⎤

⎥⎥
⎦ . (24)

where ∇xy L f denotes the Hessian matrix of L f with respect to the variables x and y.
Also here we can solve this system of equations by first eliminating

Δλ = −λk − diag[λk 
 F(zk)]∇z F(zk)Δz + μ1 
 F(zk) (25a)
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which leads to

⎡

⎣
∇uz L f (zk, λk, νk) − ∇uλL f (zk)diag[λk 
 F(zk)]∇z F(zk) ∇uνL f (zk)
∇dz Lg(zk, λk, νk) − ∇dλLg(zk)diag[λk 
 F(zk)]∇z F(zk) ∇dνLg(zk)

∇zG(zk) 0

⎤

⎦

×
[
Δz
Δν

]
= −

⎡

⎣
∇u f (zk) + ∇u

(
(ν f u)kGu(zk)

) + μ∇uλL f (zk)
(
1 
 F(zk)

)

∇dg(zk) + ∇d
(
(νgd)kGd(zk)

) + μ∇dλLg(zk)
(
1 
 F(zk)

)

G(zk)

⎤

⎦

(25b)

A notable difference between the previous system of equations in (11b) and the one in
(25b) is that now the matrix in the left-hand side is no longer symmetric, which forces
an LU factorization, rather than an LDL factorization. Aside from computationally
more intensive, the LU factorization can also be numerically more unstable.

In the remainder of the paper, we focus our discussion on the code generation for the
Algorithm 1 that solves (1), with the understanding that the same discussion applies
to the algorithm used by TensCalc to solve (2), with (11b) replaced by (25b).

5 Promoting and exploring sparsity

The bulk of the computation needed to solve (1) and (2) is associated with constructing
and solving the system of equations (11b) and (25b) used to compute the Newton
search directions. Using Gauss elimination to solve these equations can require up to
O(N 3) floating-point operations [12], where N denotes the total number of entries in
the primal variables plus the number of entries in the dual variables associated with
the equality constraints. However, the matrices that appear in (11b) and (25b) often
have a large number of “structurally zero” entries. By “structurally zero”, we mean
that these entries will be zero for every iteration of the algorithm and that this can be
determined at code-generation time. As we shall see, this permits the construction of
solvers with memory and computation complexities much better than O(N 3), often
with complexities that scale only linearly with the problem size.

Aside from the zero bottom-right block that we see in the matrices in (11b) and
(25b), the remaining blocks of these matrices typical have numerous zero entries. This
is explained by two main reasons that we discuss in the context of (11b):

1. In general, most equality constraints (corresponding to the rows of G(u) = 0)
do not involve every single optimization variable in the vector u and therefore
∇uG(uk) will have a large number of structurally zero entries.

2. Often, many second-order derivatives of L f (u, λ, ν) := f (u) − λ · F(u) + ν ·
G(u) with respect to pairs of variables in u, λ, and ν are structurally zero. For
example, any second-order partial derivative of L f (u, λ, ν) with respect to the
pair (ui , λ j ) is nonzero only for those variable ui that appear in the inequality
constraint corresponding to the j th row of F(u).
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5.1 Promoting sparsity

The computation and memory savings due to sparsity can be so significant that it is
often beneficial to introduce latent variables and equality constraints to obtain larger
but more sparse matrices in (11b) and (25b). In fact, this is almost always the case
in problem arising in MPC and/or MHE, where the introduction of the system’s state
as additional optimization variables (subject to equality constraints corresponding to
the system dynamics) results in much more scalable problems. To understand this,
consider a prototypical constrained LQR optimization with a cost function of the
form:

J =
N∑

k=1

x2k + u2k, (26a)

where

x1 = 10, xk+1 = xk + uk, ∀k ∈ {1, 2, . . . , N − 1}, (26b)

subject to the constraints that

|uk | ≤ 1, ∀k ∈ {1, 2, . . . , N }. (26c)

One option to solve this problem consists of using (26b) to conclude that

xk = 10 +
k−1∑

j=1

u j , ∀k ∈ {1, 2, . . . , N − 1},

and then replacing xk in (26a) to express the cost function solely in terms of the
optimization variables u := {u1, . . . , uN }, leading to a problem of the form (1) with
no equality constraints and the following cost and inequality constraints:

f (u) :=
N∑

k=1

⎛

⎝10 +
k−1∑

j=1

u j

⎞

⎠

2

+ u2k, F(u) :=
[
1 − u
1 + u

]
≥ 0. (27)

An alternative consists of regarding both the u := {u1, . . . , uN } and the x :=
{x1, . . . , xN } as optimization variables and taking the (26b) as equality constraints.
This would still lead to a problem of the form (1), but with

f (u, x) :=
N∑

k=1

x2k + u2k, F(u, x) :=
[
1 − u
1 + u

]
≥ 0, (28a)
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Fig. 1 Comparison of the solvers associated with the two alternative formulations (27) and (28) of the same
original problem (26), for different values of the horizon length N . In the legends, “nonsparse” refers to the
formulations (27) and “sparse” refers to the formulation in (28). See Sect. 8 for details on the computer,
operating system, and compiler used

G(u, x) =

⎡

⎢⎢⎢
⎣

x1 − 10
x2 − (x1 + u1)

...

xN − (xN−1 + uN−1)

⎤

⎥⎥⎥
⎦

= 0, (28b)

with the understanding that now the optimization variables include both u and x .
The matrix in (11b) for (27) is N × N but most of its entries are nonzero because

most second-order derivatives of f (u) in (27) are nonzero. In contrast, the same
matrix for (28) is 3N × 3N and therefore has 9 times the number of entries. However,
most second order derivatives of f (u, x) in (28) are zero. In fact, every second order
derivative with respect to ui , u j , i �= j and with respect to ui , x j is zero. This means
that the larger 3N × 3N matrix corresponding to (28) actually has a much smaller
number of (structurally) nonzero entries than the N ×N matrix corresponding to (27).
This ultimately leads to a solver for (28) that requires less memory and is faster. We
can see in Fig. 1 that the formulation (27) leads to a number of nonzero entries of the
matrix in (11b) that scales with N 2, which eventually leads to solve times that scale
roughly with N 4.2. In contrast, the formulation (28) leads to a number of nonzero
entries of the matrix in (11b) that scales linearly with N and solve times that also scale
roughly with N .

Since theHessianmatrix∇uu L f (u, λ, ν) associatedwith (27) is essentially full, one
should expect the Gauss elimination involved in computing the Newton direction to
scale noworse than N 3.However,we see inFig. 1 solve times for (27) that scale roughly
with N 4.2. This is because, even though the number of floating-point operations scales
no worse than N 3, as the code size increases we see additional speed degradation due
to a larger code that does not fit into the CPU cache.
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5.2 Exploiting sparsity

The sparsity of the matrices and vectors that appear in (11b) and (25b) is mostly
explored in three operations:

1. Additions and subtractions of matrix/tensor entries that are structurally zero can
be omitted.

2. Multiplications by matrix/tensor entries that are structurally zero can be omitted
and, in fact, render the products structurally zero.

3. The system of equations in (11b) and (25b) are solved by performing an LU
factorization of the matrices in the left-hand side, which takes advantage of the
entries that are structurally zero to greatly increase efficiency. For the particular
case of (11b), the matrix to factorize is symmetric and therefore we can perform
an LDL factorization, which generally has lower memory and computation costs
[12].

To make use of the sparsity structure of the left-hand side matrices in (11b) and
(25b), we perform the LDL and LU factorizations with pivoting and column permu-
tation to reduce fill-in of the L and U factors. We use the MATLAB implementation
of the COLAMD algorithms that computes approximate minimum degree orderings
for sparse matrices [7,8]. For symmetric matrices we use the SYMAMD algorithm
described in the same references. For most of the problems we have encountered, this
algorithm results in a total number of nonzero entries in the L and U factors that is of
the same magnitude as the number of nonzero entries in the original matrix and that
scales similarly with the size of the problem. For example in the problem in Fig. 1, the
permutations computed using the SYMAMD algorithm lead to a number of nonzero
entries in the L factor of the LDL factorization of the matrix in (11b) that is roughly
half the total number of nonzero entries in the original matrix.

To encode the sparsity structure of the matrix in the C code, the row and column
permutations must be determined at code-generation time. At this time, the sparsity
structure of the matrix is known, but precise values of the nonzero entries are generally
not known. We use two alternative options to overcome this problem: In the absence
of any additional information, we generate a random matrix with the known sparsity
structure, but with random entries uniformly distributed in the interval [0,1] for the
nonzero entries. This matrix is used to obtain row and column permutations that
minimize fill-in.

While the use of a random matrix works for a large number of problems, in some
cases it may generate row-permutations that result in numerically unstable pivoting;
especially in the computation of Nash equilibria, where the matrix in (25b) cannot be
made quasi-definite. To overcome this, we also permit the user to provide “typical”
values for the entries of the matrix, which are used to compute the permutations. To
facilitate the generation of “typical” values, the C-code solver can save snapshots of
the values of the matrices being factored.

One challenge with either option is that the row and column permutations will be
hardwired into the code so they will have to remain the same for every Newton step.
Since these permutations essentially define the pivots used by Gauss elimination, this
can cause numerical issues if there is nofixed choice of pivots that performs satisfactory
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Fig. 2 Comparison of the solvers for the Soft-margin SVM classifier described in Sect. 8.1 obtained by
solving (10) (label “large”) or (11) (label “small”). See Sect. 8 for details on the computer, operating system,
and compiler used

across all iterations of the optimization algorithm. However, our experience has been
that this is not a significant issue for most problems; especially when we replace
(11b) by (17), which improves the stability of the LDL factorization, as discussed in
Remark 1.

Remark 4 (Small vs. large Newton-step matrix) In Step 2 of Algorithm 1, one can
compute the search direction by solving either (10) or (11). The latter may seem
preferable because it involves a smaller system of equations, but this is not always the
case. When ∇u F(uk) has one or more rows that are not sparse, the product

∇u F(uk)
′diag[λk 
 F(uk)]∇u F(uk) (29)

is full and the top-left block in thematrix in (11) becomes full, even if∇uu L f (uk, λk, νk)
is sparse. In such cases, it is generally preferable to work with (10) directly. Even when
(29) is sparse, it may still be preferable to let the COLAMD or SYMAMD determine
the best order to eliminate variables in (10), rather than first eliminating Δλ, which
is what was done to obtain (11). This is shown in Fig. 2 for the Soft-margin SVM
classifier that we shall encounter in Sect. 8.1. We can see that while (11) requires the
factorization of a smaller matrix, (10) actually leads to smaller code and shorter solve
times. This is the case for essentially all the examples in Sect. 8.1, which use (10)
rather than (11). However, TensCalc permits the user to select between these two
options using the parameter smallerNewtonMatrix. ��
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6 Scalarization and computation graph

The first step towards generating the C code needed to implement Algorithm 1 consists
of “scalarizing” all computations needed to execute the full algorithm and organizing
all these computations in the form of a single large computation graph. By “scalar-
ized”, wemean that we break each vector- andmatrix-valued computation that appears
in Algorithm 1 into a set of primitive operations, each producing a single scalar corre-
sponding to one entry of a matrix or vector needed by Algorithm 1. For example, the
update step

uk+1 = uk + αΔu ∈ R
nu (30)

is converted into nu multiplications of the scalar α by each entry of Δu, followed by
nu additions that correspond to summations of each entry of uk with the corresponding
entry of αΔu. In general, the most expensive computation that needs to be scalarized
is the LDL factorization of the matrix in the left-hand side of (11b), which is used to
solve (11b) for the nu + nG unknowns that correspond to the entries of Δu ∈ R

nu and
Δν ∈ R

nG . The scalarization of this and all other operations is done at code generation
time and takes advantage of the structural sparsity discussed in Sect. 5. For example,
no primitive operation is generated to perform an addition with or multiplication by
an entry of a matrix/tensor that is structurally zero.

The process of scalarization encodes the dependencies betweenprimitive operations
into the computation graph, which is a directed graph G = (N , E), whereN denotes
the set of nodes and E ⊂ N × N the set of edges. Each node i ∈ N corresponds to
a scalar-valued variable si that is needed to compute an entry of a matrix/vector used
by Algorithm 1. For example, the computation of the update step in (30) will require
1 + 3nu nodes: 1 to store the value of α, nu to store the values of Δu, nu to store the
values of the intermediate computation αΔu, and finally nu nodes to store the final
uk+1. This does not mean that this computation will need 1 + 3nu distinct memory
locations to produce uk+1 (clearly it will not, because we can reuse memory), but it
will need 1+3nu nodes in the computation graph that is constructed at code generation
time. The number of nodes in N essentially equals the total number of scalar-valued
computations needed to execute Algorithm 1, from the variable initialization in Step 1
to the checking the exit conditions in Step 5.

The edges of the computation graph G = (N , E) encode dependencies between
the scalars corresponding to the nodes. Specifically, an edge (i, j) ∈ E from a parent
node i ∈ N to a child node j ∈ N indicates that the computation of the scalar s j
requires the value of the scalar si .

Algorithm 1 interacts with the computation graph through “set events” and “get
events.” Set events correspond to assigning values to the scalars si and take place
during the initialization of the algorithm in Step 1 to assign values to optimization
parameters (see Sect. 3), to initialize μ0, to initialize the primal variable u0, and to
initialize the dual variables ν0, λ0. Set events also occur at the end of each iteration in
Step 3 to update the values of the primal and dual variables, in preparation for the next
iteration. Algorithm 1 also interacts with the computation graph through get events,
which correspond to getting the values of the scalars si . Get events occur in the update
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of the primal and dual variables in Step 3, the update of μk in Step 4, checking the
termination condition in Step 5, and, upon termination, the computation of the output
expressions selected by the user (see Sect. 3). Note that the updates in (12) actually
require both get and set events: first get events to obtain the values of uk + αΔuk ,
νk +αΔνk , λk +αΔλk , followed by set events that overwrite these values in the nodes
corresponding to uk , νk , λk , in preparation for the following iteration of the algorithm.

The following pseudo-code shows the structure of the code that will be generated
by TensCalc to execute Algorithm 1, in terms of the set and get events discussed
above:

10 function solve ()
11 % Step 1 of Algorithm 1
12 set_event(parameter_nodes , parameters_values );
13 set_event(mu_node , mu0_initial_value );
14 set_event(primal_variables_nodes ,
15 primal_variables_initial_values)
16 set_event(dual_variables_nodes ,
17 dual_variables_initial_values )
18 repeat {
19 % Steps 2-3 of Algorithm 1
20 (u,nu,lambda) = get_event(next_primal_variables_nodes ,
21 next_dual_variables_nodes)
22 set_event(primal_variables_nodes , u)
23 set_event(dual_variables_nodes , (nu ,lambda ))
24 % Step 4 of Algorithm 1
25 set_event(mu_node , {equation 15});
26 % Step 5 of Algorithm 1
27 stop = get_event(termination_condition_node)
28 } until (stop)
29 return get_event(output_expression_nodes )
30 end

where the function set_event(nodes,values) assigns numerical
values to specific nodes of the computational graph and the function
values=get_event(nodes) retrieves the values associated with the given
set of nodes. All the actual computations are embedded within the get_event
functions and are carried out “as-needed” based on the structure of the computation
graph, as discussed in the following sections.

In the pseudo-code above, parameter_nodes refers to the nodes of the compu-
tation graph that hold the values of the optimization parameters declared in line 7 of
the call to cmex2optimizeCS in Sect. 3; mu_node refers to the node that holds the
value of μk in (12); primal_variables_nodes refers to the nodes that hold the
value of the primal variable uk ; dual_variables_nodes refers to the nodes that
hold the value of the dual variables νk, λk ; next_primal_variables_nodes
refers to the nodes that hold the value of the primal variable uk+1 in (12);
next_dual_variables_nodes refers to the nodes that hold the value of
the dual variables νk+1, λk+1 in (12); termination_condition_node refers
to the node associated with the conjunction of the three conditions in (16), and
output_expression_nodes refers to the nodes that hold the values of the output
expressions declared in line 9 of the call to cmex2optimizeCS in Sect. 3.
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The computation graph is heavily used in the process of generating code for the
solver: it is needed to determine the correct scheduling of computations to make sure
that the calls toget_event return the correct values and it also enables several forms
of optimization that significantly decrease the run-time of the solver, as discussed in
the remainder of this section.

6.1 Avoiding redundant computations

We can see in Algorithm 1 that several computations are used multiple times in each
iteration: for example G(uk) appears in Step 2 in the vector in the right-hand side of
(11b), in Step 4 to update μk , and in the termination conditions of Step 5. Moreover,
the specific structure of the function f that defines the optimization criteria and of
the constraint functions F and G typically hide additional computation redundancies:
Suppose for example that

F(u) = 1

2
u′Pu, G(u) = 1

2
u′Qu.

In this case, the results obtained in the computation of the gradient ∇u F(uk) = u′
k P

that is needed for the matrix in the left-hand side of (10) can be reused to compute
F(uk) = 1

2u
′
k Puk = 1

2∇u F(uk)uk in the right-hand side of (10). Regarding the
equality constraint, we can see in (15) that G(uk+1) = 1

2 (u
′
k+1Q)uk+1 is computed at

the end of iteration k and we will need ∇G(uk+1) = u′
k+1Q at the next iteration. In

this case, we can reuse the intermediate result u′
k+1Q computed at the end of iteration

k to obtain ∇G(uk+1) at iteration k + 1, without any further computation.
Computational redundancies like the ones noted above, can be detected automati-

cally when constructing the computation graph because they lead to two ormore nodes
that correspond to the same primitive computation (i.e., the same operator) with the
same set of parent nodes (i.e., the same operands). When this is detected, a new node
is not added to the graph and, instead, the existing node is reused.

In addition, some “computations” involving matrices and vectors also do not lead
to new nodes in the computation graph. For example, the concatenation of the matrix

[∇uu L f (uk, λk, νk) + ∇u F(uk)′diag[λk 
 F(uk)]∇u F(uk) ∇uG(uk)′
∇uG(uk) 0

]
(31)

in (11b) from its 4 constituent blocks or the partition of the vector
[

Δu
Δν

]
into the two

distinct variables Δu and Δν do not require new nodes in the computation graph,
which means that these operations do not consume memory or computation time in
the final C code. Instead, the LDL-factorization of the matrix in (11b) directly uses the
nodes associated with the values of the entries of the three non-zero block matrices
in (31) and the computations in (11a), (12) directly use the nodes associated with the
entries of the vector

[
Δu
Δν

]
obtained by solving (11b). In practice, this means that some

of the operations used to construct TensCalc expressions (including subsref,
reshape, vertcat, horzcat, cat) do not require adding new nodes to the com-
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putation graph and, in practice, are “free” in the sense that they do not translate into
any C code or memory allocation for the solver.

6.2 Computation scheduling

The computation graph G = (N , E) permits the establishment of an order of com-
putation that makes sure that a parent node is evaluated before all its child nodes
are evaluated. This is done by performing a topological sorting of the graph nodes.
Specifically, we need to assign to each node i ∈ N an integer oi such that

(i, j) ∈ E ⇒ oi < o j . (32)

If we then order the computation of the nodes by increasing values of the oi , we can
be sure that if the computation corresponding to the child node j requires the value
produced by the parent node i , then the parent node will be computed before the child
node.

Topological sorting can be performed very rapidly for large graphs. TensCalc
uses the topological sorting algorithm in [17], which sorts graphs with 100,000s of
nodes in just a few milliseconds. This sorting is performed at code-generation time to
make sure that the solver’s code performs the computations needed by Algorithm 1 in
an appropriate order.

6.3 Minimizing recomputation

Some but not all values of the matrices and vectors in Algorithm 1 change from one
iteration to the next. For example, at each iteration all entries of uk will typically
change, but many of the entries in the matrix and vector in (11b) will not. This is the
case, e.g., when we have linear equality constraints for which the corresponding rows
of ∇uG(uk) are constant and independent of uk . Similarly, many entries of ∇uu L f ,
∇uνL f , ∇uλL f remain unchanged from one iteration to the next.

The computation graph G = (N , E) can be used to determine the smallest set
of nodes that needs to be recomputed to perform each iteration of Algorithm 1. To
accomplish this, we can associate to each node i ∈ N a Boolean variable bi that
indicates that the scalar si associated with the node i needs to be (re)computed. At run
time, all the bi , i ∈ N should be initializedwith true to indicate that all nodes need to
be computed and then set tofalse once a node is computed.Any subsequent set event
that changes the values si of the node i ∈ N should reset all the b j associated with
descendants of i back to true, to trigger subsequent recomputations of those nodes.
Specifically, a set event that assigns values to a given group of nodes is implemented
as follows:

31 function set_event(nodes ,values)
32 for i in nodes
33 s_i = values[i]
34 for j in descendants_of (nodes)
35 b_j = true
36 end
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wheredescendants_of(nodes) returns a set containing all children of the nodes
in nodes, their children’s children, and so on. A get event that retrieves the values of
a given group of nodes is implemented as follows:

37 function get_event(nodes)
38 for i in topological(ancestors_of(nodes))
39 if b_i == true
40 { ... compute node s_i ... }
41 b_i = false
42 return [s_i for i in nodes]
43 end

where ancestors_of(nodes) returns a set contain all nodes in nodes, their
parents, their parents’ parents, and so on; and topological(s) sorts the set of
nodes x according to the topological order oi in (32).

In practice, the use of one Boolean variable bi for each node i ∈ N would lead to
a prohibitively expensive run-time overhead. However, this is not needed because the
functions above will result in large groups of nodes always having the same values for
their variables bi . To understand why this is so, suppose that we say that two nodes
i, j ∈ N are dependency equivalent if the following two properties hold:

1. for every set event set_event(nodes,values) required by Algorithm 1,
the nodes i and j either both belong to descendants_of(nodes) or none
does; and

2. for every get event get_event(nodes) required by Algorithm 1, the nodes i
and j either both belong to ancestors_of(nodes) or none does.

Dependency equivalence defines an equivalence relation in the set of nodesN , which
can be used to partition N into equivalence classes that we call dependency groups
and denote by

{G1,G2, . . . ,GL}, N =
L⋃

k=1

Gk, Gk ∩ G
 = ∅, ∀k �= 
, (33)

From the definition of dependency equivalence, for every two nodes i, j ∈ N in
the same equivalence class, the variables bi and b j will always remain equal to each
other since all calls to set_event(nodes,values) and get_event(nodes)
assign the same value to both variables. This means that we do not need one Boolean
variable bi for each node i ∈ N ; instead we only need one Boolean variable bk
for each equivalence class Gk . While the total number of nodes in a computation
graph often grows to the 100,000s, the number of equivalence classes rarely grows
above 100. It should also be noted that the number of equivalence classes and which
equivalence classes are relevant for each set and get event required by Algorithm 1
can be determined at code-generation time. This means that one can hard-wire in the
code of each set and get event the precise list of variables bk that need to be tested and
set, leading to very little run-time overhead.

The algorithm described above has a significant impact on the total time it takes
to solve an optimization, by avoiding redundant computations both within a single
iteration and across the multiple iterations of Algorithm 1. In addition, it typically also
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Fig. 3 Computation times for each iteration of Algorithm 1 for the optimization in (28) with N = 100. The
plot shows times for 4 optimizations solved consecutively with different initializations. The first time the
optimization is executed, the first iteration takes about 150us, whereas subsequent iterations take only about
25us. In subsequent optimizations, the first iteration only takes about 35us, as all computations that do not
depend on the parameters that changed can be re-used. The small increase in computation time that we see
around iteration 9 or 10 corresponds to the iteration at which μk starts to change through the top branch in
(15). When μk does not change, a larger number of computations can be re-used from one iteration to the
next

saves significant computations from one optimization to the next. This effect can be
seen in Fig. 3, wherewe plot the times is takes to solve each iteration ofAlgorithm 1 for
multiple instances of the optimization in (28). We can see that the first iteration of the
first optimization requires about 6 times more computation than subsequent iterations,
which is explained by the fact that there are very large structures within (10) and (24)
that remain unchanged across different instances of the same optimization. Effects of
this magnitude can be seen in essentially every one of the examples that we discuss in
Sect. 8 and not just for quadratic programs like (28).

6.4 Minimizingmemory footprint

The computation graph G = (N , E) and the dependency groups in (33) are also
used to determine the run-time memory required by the computations involved in
Algorithm 1, avoiding run-time memory allocation and garbage collection.

Since each node i ∈ N corresponds to a scalar number si involved in the compu-
tation of all the matrices and vectors needed for Algorithm 1, the memory required
to store all the computations is never larger than the number of nodes in the graph.
However, one can typically substantially reduce the memory footprint of Algorithm 1
by reusing memory locations for different nodes, based on ideas from compiler live-
ness analysis [2]. Essentially, node i in a dependency group Gk can reuse a memory
locationm associated with a node j in the same equivalence group Gk if the following
three conditions hold:

1. the value s j is not the output of a get_event(nodes) function;
2. j has no children outside Gk ; and
3. j has no child within Gk that is computed after i , where “computed after” refers

to a topological order in (32).
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The first item guarantees that we do not discard a value s j that needs to be returned
by a get_event(nodes) call; the second item guarantees that we do not discard a
value s j that could subsequently be needed by a computation in a different dependency
group; and the third item guarantees that we do not discard s j before it is used by its
own children nodes within the same dependency group.

The assignment of graph nodes to memory locations is performed at code-
generation time, based on the memory reuse rules outlined above. This means that
we can store all (non-zero) entries of all the matrices and vectors needed for Algo-
rithm 1 (including all intermediate computations) in a single linear array that can be
statically allocated.

7 Code generation

The code that needs to be generated to solve Algorithm 1 consists of the following
collection of C functions:

1. The solve() function outlined in Sect. 6, which contains the main loop of
Algorithm 1.

2. Theset_event(nodes,values) andget_event(nodes) functions that
appear in the pseudo-code of Algorithm 1 and are used to set and retrieve the values
associated with the nodes of the computation graph.

3. One function compute_group(k) for each dependency group Gk , which
updates the values si associated with all the nodes i ∈ Gk . These functions are
called in line 40 of the get_event(nodes) pseudo-code to compute the values
of the nodes in Gk .
The bulk of the computation time is spent in the computations of the update for the

primal and dual variables in line 20 of the solve() pseudo-code; in particular, in
the functions compute_group(k) within get_event(nodes), which actually
perform the update of the node values si associated with the appropriate dependency
groups.

The code for the compute_group(k) functions is generated directly based on
the computation graph, with each node of the graph resulting in 1–2 lines of C code
that perform the corresponding primitive computation. The order in which the compu-
tations appear in the code is determined by the topological order discussed in Sect. 6.2.
The functions compute_group(k) make no use of external libraries and, due to
the scalarization process used to compute the computation graph, can be loop-free,
because all vector/matrix operations have been “unrolled” into primitive scalar-value
operations. While this generally results in large object-code, the resulting code is very
portable and leads to very few execution branches, which improves microprocessor
pipelining. Also, since all the memory mapping is resolved at computation time, this
code does not need real-time dynamic memory allocation, further improving portabil-
ity and efficiency.

The assignment of computations to memory locations is performed at code genera-
tion time and maximizes memory reuse, as discussed in Sect. 6.4. This permits storing
all computations in a single array, which we call the scratchbook, that is allocated
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Fig. 4 Solve time and code size, as a function of the minInstructions4loop parameter, for C-code
compilation with optimization -Os and -Ofast

when the code starts to execute, either as a global variable or dynamically allocated
with a single malloc() instruction. The same scratchbook variable is reused not
only across the multiple iterations of Algorithm 1, but also across multiple calls to the
solver with different optimization parameters, which means that nodes of the compu-
tation graph that are not changed from one call to solve() to another are reused. It is
not uncommon, for significant portions of thematrix in (11b) to remain the same across
multiple optimizations, which means that portions of the computationally expensive
LDL/LU-factorization can be reused. As discussed in Sect. 6.3, the effect of reusing
scratchbook variables can be clearly seen in Fig. 3.

Remark 5 vLoop rolling/unrolling) To minimize the size of the code, TensCalc
looks for groups of similar scalar instructions that read/write memory loca-
tions of the scratchbook following a fixed pattern. The user-defined parameter
minInstructions4loop, provides a threshold above which such sets of instruc-
tions are replaced by loops, in a process that can be viewed as the reverse of loop
unrolling. This can reduce the size of the code with minimal penalty in terms of solve
times. In fact, for very large problems this can result in faster solve times, as it permits
a larger portion of the solver’s code to remain in the microprocessor’s memory cache.
However, one must keep in mind that compiler optimization can “undo” TensCalc’s
loop rolling.

123



478 J. P. Hespanha

Figure 4 shows the effect of minInstructions4loop in the soft-margin SVM
classifier and the MPC-MHE control problem that we shall encounter in Sect. 8.1.
We can see that with the compiler optimization focused mostly on execution speed
(-Ofast), varying minInstructions4loop form 10 to 100 has almost no effect
on the size of the object code or the solve time, as the compiler optimization seems to
override TensCalc’s attempt to unroll loops. However, with the compiler optimiza-
tion focused on code size (-Os), smaller values for minInstructions4loop do
result in smaller code, with a relatively small impact on execution speed. The opti-
mal value for minInstructions4loop depends on the problem size and also on
the processor’s memory cache, but we found that minInstructions4loop=50
provides consistently good results, which is the default value used by the toolbox. ��

7.1 MATLAB interface to the solver

While TensCalc generates C code that can run independently from MATLAB, this
toolbox also generates wrapper code to call the solver from within the MATLAB
environment. The solver code is compiled into a library that is dynamically linked to
MATLAB and functions callable from within MATLAB are created to

1. call the set_event() functions that are needed to set the optimization param-
eters declared in line 7 of the call to cmex2optimizeCS and to initialize the
primal variables declared in lines 6 of the call to cmex2optimizeCS;

2. call the function solver() discussed above that executes Algorithm 1;
3. call the get_event() functions used to get the output expressions declared in

line 9 of the call to cmex2optimizeCS.

TensCalc also generates a MATLAB class to provide an object-oriented interface
to the solver.

In addition to the cmex2optimizeCS and cmex2equilibriumLatentCS
functions that generate C code to solve (1) and (2), respectively, the
TensCalc toolbox includes sister functions class2optimizeCS and
class2equilibriumLatentCS that generate MATLAB classes to solve
(1) and (2), respectively. These classes use the same interior-point algorithms
described in Sect. 4, but implement these algorithms in MATLABwithout performing
the scalarization step described in Sect. 6. The functions class2optimizeCS
and class2equilibriumLatentCS take exactly the same parameters as
cmex2optimizeCS and cmex2equilibriumLatentCS and the MATLAB
class generated by the former has exactly the same methods as the wrapper class gen-
erated by the later. While the MATLAB solvers generated by class2optimizeCS
and class2equilibriumLatentCS are generally much slower than the C-code
solvers generated by cmex2optimizeCS and cmex2equilibriumLatentCS,
they can be useful for debugging numerical issues.

Internally, TensCalc uses the class csparse to store all the set events,
get events, and computation graph associated with Algorithm 1. The commands
cmex2optimizeCS and cmex2equilibriumLatentCS start by constructing
an appropriate instance of this class and then generate C code to perform the corre-
sponding computations. TensCalc provides direct access to the class csparse and
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a command cmex2compute that can be used to generate the corresponding C code.
The code generated by this function benefits from all the optimizations described in
Sect. 6 and also includes a wrapper MATLAB class that provides an object-oriented
interface, with methods to call the access the different set and get events.

8 Examples

We demonstrate the functionality and performance of TensCalc through six opti-
mization examples. For each example, we provide the mathematical formulation for
the optimization and the TensCalc code needed to generate the solver (in the
“Appendix”). We then provide plots showing how the size of the object code, data
memory (i.e., the scratchbook size), and solve time scale with the size of the problem,
ranging from small problems with just a few 10s of optimization variables/constraints
to large problems with 1000s of variables/constraints.

The solve times and number of iterations reported in Figs. 6, 7, 8, 9 and 10 cor-
respond to averages obtained from solving a large number of random instances of
the optimization problem (typically 10,000). For the examples corresponding to con-
vex optimizations (presented in Sects. 8.1, 8.2, 8.5) there were no solver “failures”
in the sense that the solver always terminated with the exit conditions (16) on the
equality constraints, norm of the gradient, and duality gap satisfied. For the remaining
(nonconvex) problems, there were no solver failures for distance-based localization
(Sect. 8.4), Hougen–Watson model identification (Sect. 8.3) reached the maximum
number of iterations 1.8% of the times, and the MPC-MHE min–max computation
(Sect. 8.6) reached the maximum number of iterations less than .8% of the times. The
maximum number of iterations was set to 100 for all problems.

The complexity scaling exponents that appear in the legends of Figs. 1, 2, 5, and 6
were obtained through fitting using the right-most few points in the figures (corre-
sponding to the largest values of N ) and the fitting is shown as a dotted line in the
plots. These scalings are empirical and should not be taken as true measures of mem-
ory/computational complexity.

The size of the object code and solve times depend on the compiler and optimization
flags used. For consistency, all code was compiled on OSX 10.15.7 with the clang
compiler version Apple 12.0.0, with the -Ofast optimization flag (unless noted
otherwise). The solver times were obtained in a Late 2013 iMac with an 3.5 GHz
Quad-Core Intel Core i7, 32GB memory, 256KB L2 Cache, 8MB L3 Cache. All
TensCalc solvers run on a single thread.

8.1 Lasso

Given N training pairs (xi , yi ) ∈ R
K × R, i ∈ {1, 2, . . . , N }, we solve

minimize
N∑

i=1

(yi − β · xi )2
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(e) MPC (N horizon length)
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Fig. 5 Data and code memory footprint

w.r.t. β := [
β1 β2 · · · βK

] ∈ R
K

subject to
K∑

j=1

|β j | ≤ λ.

In this problem, the total number of primal and dual variables scales linearly with the
dimension K of the feature vectors xi and therefore the total number of entries in the
Newton-step matrix is O(K 2). While the Newton-step matrix has a large number of
zero entries, it still has a dense component with O(K 2) nonzero entries. Figures 5
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Fig. 6 Solve time and number of iterations

and 6 show the memory footprint and solution time for the solver as a function of the
number N of training pairs, for K = 20. We can see that the code size and solver
times both scale roughly linearly with N .
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8.2 Soft-margin SVM classifier

Given N training pairs (xi , yi ) ∈ R
K × {−1,+1}, i ∈ {1, 2, . . . , N }, we solve

minimize
1

N

N∑

i=1

ζi + λ‖β‖2

w.r.t. β := [
β1 β2 · · · βK

] ∈ R
K

subject to yi (β · xi + b) ≥ 1 − ζi , ζi ≥ 0, ∀i ∈ {1, 2, . . . , N }

In this problem, the total number of primal and dual variables scales linearly with the
number N of training pairs and therefore the total number of entries in the Newton-
stepmatrix is O(N 2). However, the number of nonzero entries only scales with O(N ).
Figures 5 and 6 show thememory footprint and solution time for the solver as a function
of N , for feature vectors xi with K = 20 dimensions. We can see that the code size
scales linearly with N , whereas the solver times scale roughly with N 2.2.

8.3 Hougen–Watsonmodel identification

We estimate the parameters β1, β2, . . . , β5 ≥ 0 of the Hougen–Watson model

y = β1b − β5c

1 + β2a + β3b + β4c

with input x := [
a b c

] ∈ R
3 and output y ∈ R, given N pairs of noisy input-

output measurements. Assuming that the inputs measurements ãi , b̃i , c̃i and the output
measurements ỹi are all corrupted by zero-mean Gaussian independent and identically
distributed (iid) noise, the maximum likelihood estimate of the parameter β is given
by

minimize
N∑

i=1

(ãi − ai )
2 + (b̃i − bi )

2 + (c̃i − ci )
2

+
(
ỹi − β1bi − β5ci

1 + β2ai + β3bi + β4ci

)2

w.r.t. β j ∈ R, j ∈ {1, . . . , 5},
ai , bi , ci ∈ R, i ∈ {1, 2, . . . , M}

subject to βmin
j ≤ β j ≤ βmax

j , ∀ j ∈ {1, . . . , 5}

where the ai , bi , ci represents the actual inputs, yi the actual output, ãi , b̃i , c̃i the
noisy input measurements, and ỹi the noisy output measurement. For simplicity, the
formula above assumes that all input measurements are corrupted by noise with unit
variance, whereas the output measurements are corrupted by noise with variance λ.
This minimization problem is not convex.
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In this problem, the total number of primal and dual variables scales linearly with
the number N of input-output measurements and therefore the total number of entries
in the Newton-step matrix is O(N 2). However, the number of nonzero entries only
scales with O(N ). Figures 5 and 6 show the memory footprint and solution time for
the solver as a function of N . We can see that the code and data memory size scales
linearly with N , as well as the solve times.

8.4 Distance-based localization

Given noisymeasurements of distances di (t) at times t ∈ {1, 2, . . . , N } from amoving
point P to M beacons at fixed positions bi ∈ R

3, i ∈ {1, 2, . . . , M}, we want to
reconstruct the point’s positions p(t) ∈ R

3, t ∈ {1, 2, . . . , N }. The point’s changes in
velocity

a(t) := v(t + 1) − v(t), ∀t ∈ {1, . . . , N − 2},
v(t) := p(t + 1) − p(t), ∀t ∈ {1, . . . , N − 1}.

are assumed to be zero-mean Gaussian independent and identically distributed (iid).
Assuming that the distance measurements d̃i (t) are corrupted by zero-mean Gaussian
iid noise, the maximum likelihood estimate of the point’s positions is given by

minimize
N∑

t=1

M∑

i=1

(
‖p(t) − bi‖ − d̃i (t)

)2 + λ

N−2∑

t=1

‖a(t)‖2

w.r.t. p(t) ∈ R
3, t ∈ {1, . . . , N }

subject to pmin ≤ p(t) ≤ pmax, ∀t ∈ {1, . . . , N }

where pmin, pmin ∈ R
3 define a bounding box for the point’s positions. This mini-

mization problem is not convex.
In this problem, the total number of primal and dual variables scales linearly with

the number N of time instants and therefore the total number of entries in the Newton-
stepmatrix is O(N 2). However, the number of nonzero entries only scales with O(N ).
Figures 5 and 6 show thememory footprint and solution time for the solver as a function
of N forM = 5 beacons.We can see that the code and datamemory size scales linearly
with N and the solve time with N 1.7.

8.5 MPC for linear quadratic problemwith constraints

We control a linear system modeled by an ARX model

yk+1 = α0yk + α1yk−1 + · · · + αn−1yk−n+1

+β0uk + β1uk−1 + · · · + βn−1uk−n+1, (34)
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where the uk ∈ R denote control inputs and the yk ∈ Rmeasured outputs. Given n past
outputs yk−n+1, . . . , yk ∈ R and n − 1 past control inputs, uk−n+1, . . . , uk−1 ∈ R,
our goal is to compute the future control inputs uk, . . . , uK+T−1 ∈ R, for a criteria of
the form

min
uk ,...,uk+T−1|u
|≤umax

k+T−1∑


=k

y2
+1 + u2
.

As discussed in Sect. 5.1, we use the future outputs yk+1, . . . , yk+T as additional
optimization variables subject to the equality constraints given by (34) to promote
sparsity.

In this problem, the total number of primal and dual variables scales linearly with
the horizon length T and therefore the total number of entries in the Newton-step
matrix is O(T 2). However, the number of nonzero entries of this matrix only scales
with O(T ). Figures 5 and 6 show the memory footprint and solution time for the
solver as a function of N := T . We can see that the code size scales linearly with N
and the solve time with N 1.2. This scaling is consistent with the observations made in
Sect. 5.1 and results from the fact that the number of nonzero entries of the matrix in
(10) scales linearly with N .

8.6 MPC-MHE for linear quadratic problemwith constraints

We control a linear system modeled by an ARX model

yk+1 = α0yk + α1yk−1 + · · · + αn−1yk−n+1

+β0uk + β1uk−1 + · · · + βn−1uk−n+1 + dk, (35)

where the uk ∈ R denote control inputs, the dk ∈ R unmeasured disturbances, and the
yk ∈ R outputs for which we only have noisy measurements. Given L past noisy mea-
surements ỹk−L+1, . . . , ỹk ∈ R of the actual outputs yk−L+1, . . . , yk ∈ R and L − 1
past control inputs, uk−L+1, . . . , uk−1 ∈ R, our goal is to compute the future control
inputs uk, . . . , uK+T−1 ∈ R, for worst case initial outputs yk−L+1, . . . , yk−L+n , dis-
turbances dk−L+n, . . . , dk+T−1, and measurement noise ỹk−L+1 − yk−L+1, . . . , ỹk −
yk , for a criteria of the form:

min
uk ,...,uk+T−1|u
|≤umax

max
yk−L+1,...,yk−L+n
dk−L+n ,...,dk+T−1

|d
|≤dmax, |ỹ
−y
|≤nmax

k+T−1∑


=k

y2
+1 + u2


−λ1

k∑


=k−L+1

(y
 − ỹ
)
2 − λ2

k+T−1∑


=k−L+n

d2


[4]. When the minimum and maximum commute, this corresponds to a Nash equilib-
rium with symmetric costs for the two players (zero-sum), which is an optimization of
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the form (2). As discussed in Sect. 5.1, we use the actual outputs yk−L+n+1, . . . , yk+T

as additional optimization variables subject to the equality constraints given by (35)
to promote sparsity.

In this problem, the total number of primal and dual variables scales linearly with
the horizon length T + L and therefore the total number of entries in the Newton-step
matrix is O

(
(T + L)2

)
. However, by using future outputs as additional optimization

variables subject, the number of nonzero entries only scales with O(T + L). Figures 5
and 6 show the memory footprint and solution time for the solver as a function of
N := L = T . We can see that the code size scales linearly with N and the solve time
with N 1.3.

8.7 Compiler optimization

We can see in Fig. 7 that the -O1 optimization flag roughly cuts the size of the object
code and solver times to about one half, with respect to the -O0 flag (no optimization).

By disassembling the code generated with -O0 and -O1, we can see that the key
difference is that the memory address of the “scratchbook” array (see Sect. 7) is kept in
a CPU register with -O1 optimization. Since this address never changes, this variable
only needs to be read once when the solver starts. In contrast, with -O0 this variable
is read for every single computation (often multiple times). This explains the large
solve-time savings observed with -O1. In addition, -O1 also keeps in CPU registers
scratchbook variables that are reused shortly after they are first computed, which saves
code and time by not having to reload those variables from memory. More aggressive
optimization settings like -O2, -O3, and -Ofast result in additional reductions of
the solve time.

We have observed that the register allocation algorithms can become very slow
when the code inside a function becomes very large. To overcome this issue, the
current version of TensCalc can limit the size of code inside a single function
by breaking functions into pieces. While this restricts the ability of a compiler
to optimize register allocation, the performance penalty is generally minimal and,
for some compilers, the resulting compile times may be significantly reduced.
The parameter maxInstructionsPerFunction permits the user to select the
maximum number of instructions that will be included in a single function. Fig-
ure 8 shows how the solve time and clang’s compile time vary, as a function of
maxInstructionsPerFunction. For the large versions of the lasso and soft-
margin SVM problems we see a significant reduction in the compilation times as we
decrease maxInstructionsPerFunction, but this difference is not as notice-
able in the other problems. By and large, we see very small changes in solve times as
we vary maxInstructionsPerFunction. Aside from this figure, all results in
this paper used the default value of maxInstructionsPerFunction=100.

In spite of the reduction in compile time introduced by
maxInstructionsPerFunction, we can see in Fig. 8 that compiler opti-
mization through -Ofast still introduces a significant computational burden, which
reflects the fact that compilers are not optimized for code as long as that generated by
TensCalc for large problems. For TensCalc-generated code, the use of general
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Fig. 7 Solve time for different levels of compiler optimization

purpose compiler optimization may be an overkill as the computation graph generated
by TensCalc could be used, e.g., to judiciously select which variables to keep as
CPU registers. In fact, in an earlier version of TensCalc we directly generated
assembly code and obtained solver times and code sizes that were essentially the
same as those obtained with the -O1 optimization flag. However, we abandoned this
approach so that our code was not tied to a particular microprocessor.
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Fig. 8 Solver and compile times as a function of the maxInstructionsPerFunction parameter for
C-code compiled with optimization -Ofast. For comparison, we also include in the plots the solver and
compile times without compiler optimization (-O0)

8.8 UMFPACK

As mentioned before, the most expensive computation that needs to be scalarized is
the solution of the system of equations in (11b). TensCalc provides the option to
perform this operation using the UMFPACK library [5,6], instead of the exhaustive
scalarization described in Sect. 6. When the UMFPACK library is used, all operations
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Fig. 9 Solve time and code size with and without using the UMFPACK library

are scalarized except for solving (11b), which is performed by UMFPACK functions
as an atomic operation.

Figure 9 compares the results obtained with the exhaustive scalarization of all
operations versus a partial scalarization that used the UMFPACK library for matrix
factorizations. The use of UMFPACK results in smaller code, but at the expense of
a significant increase in solve time: around one order of magnitude for the problems
considered here. The solve-time penalty is due to the overhead involved in addressing
the elements of the sparse matrix. It is not surprising to see similar solve-time scaling
laws with the problem size because TensCalc uses essentially the same algorithms
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Fig. 10 Solve times using TensCalc, Ipopt (through the CasADi interface), and CVXGEN

as UMFPACK to achieve the sparsification of the LDL factors. However, one should
note that an important advantage of using UMFPACK is that pivoting need not be
determined at code generation time and therefore can be optimized for numerical
stability at run time.
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8.9 Ipopt and CVGEN

As noted in Sect. 2, the nonlinear programming algorithm used by TensCalc is very
similar to the one used by Ipopt, with the caveat that, in the interest of speed, we left
out automatic scaling and some of the improvements described in [3,30] (including
the line-search filter, inertia correction, accelerating heuristics, and KKT error restora-
tion). Our goal was to generate code for very light and fast optimization solvers that
would take full advantage of the fixed sparsity pattern of the matrices involved in the
computation of the Newton search direction.

Figure 10 compares the results of the solver generated by TensCalc with the
Ipopt solver accessed through CasADi’sMATLAB interface using the Opti stack. This
CasADi help class can be used to generate calls to Ipopt using a problem description
that is very close to that of TensCalc (see “Appendix”). Especially for large prob-
lems, Ipopt can achieve convergence with a smaller number of iterations. For example
in th MPC example, Ipopt typically requires only 4 iterations, whereas TensCalc
requires at least 6. However, all the processing done by TensCalc at code-generation
time to optimize computations translates into very large computational savings, gen-
erally on the order of 10–100 times faster.

One crucial difference between the solvers generated by TensCalc and Ipopt is
that the size of the executable code generated by TensCalc grows with the problem
size, as we can see in Fig. 5. With Ipopt, the data memory grows with the problem
size, but not the size of the executable.

Three of the problems considered here fall in the class of convex quadratic optimiza-
tions with linear constraints, for which CVXGEN can generate specialized solvers that
can also take advantage of the sparsity structure of the problem. CVXGEN is some-
what limited in problem size, but we included in Fig. 10 the solve times obtained
with code generated by CVXGEN, for the problem sizes that it can support. As with
TensCalc, we can see the benefits of using code that has been specialized for the
structure of the problem.We conjecture that themain reasonwhyTensCalc achieves
smaller solve times for most problems is the algorithm discussed in Sect. 6.1 to avoid
redundant computations.

9 Conclusions and future work

We developed a toolbox that generates specialized C code to solve nonlinear optimiza-
tions and compute Nash equilibria. The solvers use a primal-dual interior point method
and generate C code that performs the required computations very efficiently; automat-
ically exploring the sparsity structures associated with the specific optimization and
minimizing the amount of computation needed for each iteration of the algorithm. The
generation of C code, which becomes specialized for a specific optimization problem,
takes advantage of a set of optimizations that result in very fast solve times.

An important feature of the toolbox is that it automatically performs all the sym-
bolic manipulations needed to determine the first and second-order derivatives needed
by each Newton step. Through this process, the toolbox automatically determines
structural sparsity patterns and computations that can be re-used within and across
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iterations. Currently only basic symbolic simplifications are performed to reduce com-
putation, including discarding additions of zero and multiplications by zero or one.
We believe that improving the symbolic engine could improve performance for many
problems. TensCalc uses symbolic differentiation performed over matrix/tensor-
valued functions rather than automatic differentiation, which is typically carried out
over scalar-valued operations. Significant work has been done to construct efficient
algorithms to minimize computation in the automatic differentiation of sparse Jaco-
bian/Hessian matrices and it remains to explore how these could be used to improve
TensCalc [10,13,24,29].

The current algorithm used to reduce the memory footprint starts by finding a
topological sorting of the graph nodes and then reuses a memory location when it is
no longer needed by subsequent computations. However, topological sorting is not
unique and some node orderings are better than others at minimizing memory usage.
This provides significant opportunities to reduce memory usage that are not explored
in the current version of TensCalc.

The code generation is based on the construction of a computation graph that
encodes all the computational dependencies needed for a single iteration of the primal-
dual interior point algorithm. This graph is used to minimize recomputations, reduce
the memory footprint, and schedule computations within a single thread. For multi-
core processors, one should be able to use this graph to reduce computation time by
distributing computation across multiple cores.

Operations like matrix multiplication or LU/LDL factorizations of matrices with
regular sparsity patterns involve the repeated execution of a large number of similar
fragments of code that could take advantage of processors with single instruction, mul-
tiple data (SIMD) instructions. Complex code fragments could even be implemented
in specialized field-programmable gate array (FPGA) fabrics. This is also a topic for
future research.
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Appendix

This appendix contains the TensCalc code used to specify the optimization
criteria and constraints for the examples discussed in Sect. 8. In the inter-
est of saving space, we only include the calls to cmex2optimizeCS and
cmex2equilibriumLatentCS in a couple of examples.

Lasso

44 % parameters
45 Tvariable X [N,K];
46 Tvariable y [N];
47 Tvariable lambda [];
48 % optimization variables
49 Tvariable beta [K];
50 Tvariable abs_beta [K];
51 % criteria
52 J = norm2(y-X*beta);
53 % constraints
54 constraints ={ beta >=-abs_beta;
55 beta <= abs_beta;
56 sum(abs_beta ,1)<= lambda; };
57 cmex2optimizeCS (’classname ’,’lasso_solver ’ ,...
58 ’objective ’,J,...
59 ’optimizationVariables ’,{beta ,abs_beta },...
60 ’constraints ’,constraints ,...
61 ’outputExpressions ’,{J,beta ,abs_beta },...
62 ’parameters ’,{X,y,lambda });

For comparison, we include below the corresponding code using CasADi’s Opti stack
MATLAB interface.

63 opti=casadi.Opti ();
64 % parameters
65 X=opti.parameter(N,K);
66 y=opti.parameter(N,1);
67 lambda=opti.parameter ();
68 % optimization variables
69 beta=opti.variable(K,1);
70 abs_beta=opti.variable(K,1);
71 % criteria
72 opti.minimize(sum((y-X*beta ).^2));
73 % constraints
74 opti.subject_to(beta >=-abs_beta );
75 opti.subject_to(beta <= abs_beta );

123

http://creativecommons.org/licenses/by/4.0/


Tenscalc: a toolbox to generate fast code to solve nonlinear… 493

76 opti.subject_to(sum(abs_beta ,1)<= lambda );
77 opti.solver(’Ipopt’);

Soft-margin SVM classifier

78 % parameters
79 Tvariable y [N];
80 Tvariable X [N,K];
81 Tvariable lambda [];
82 % optimization variables
83 Tvariable beta [K];
84 Tvariable b [];
85 Tvariable zeta [N];
86 % criteria
87 J = sum(zeta ,1)/N+lambda*norm2(beta);
88 % constraints
89 constraints ={ y.*(X*beta+b)>= 1-zeta;
90 zeta >=0; };

Hougen–Watsonmodel identification

91 % parameters (measured inputs & outputs)
92 Tvariable tilde_abc [N,3];
93 Tvariable tilde_y [N,1];
94 Tvariable lambda [];
95 Tvariable beta_bounds [5 ,2];
96 % optimization variables
97 % (noiseless inputs/outputs & model parameters)
98 Tvariable abc [N,3];
99 Tvariable y [N,1];

100 Tvariable beta [5 ,1];
101 % criteria (log -likelihood)
102 J = norm2(tilde_y -y)+ lambda*norm2(tilde_abc -abc);
103 % constraints
104 constraints ={
105 (1+ abc (:,1)* beta (2 ,1)+abc (: ,2)* beta (3 ,1)..
106 +abc (: ,3)* beta (4 ,1)).*y...
107 ==abc (:,2)* beta(1,1)-abc (: ,3)* beta (5 ,1);
108 beta >= beta_bounds (:,1);
109 beta <= beta_bounds (:,2); };

Distance-based localization

110 % parameters
111 Tvariable B [3,1,M];
112 Tvariable tilde_d [N,M];
113 Tvariable lambda [];
114 Tvariable pbox [3 ,2];
115 % optimization variables
116 Tvariable p [3,N];
117 % criteria
118 p1=reshape(p,[3,N ,1]);
119 pB=p1(:,:,ones(1,M))-B(:,ones(1,N),:);
120 % vectors from beacons to point
121 d=sqrt(tprod(pB ,[-1,1,2],pB ,[ -1 ,1 ,2]));
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122 % distances from beacons to point
123 v=p(:,2:end)-p(:,1:end -1); % velocity
124 a=v(:,2:end)-v(:,1:end -1); % acceleration
125 J=norm2(tilde_d -d)+ lambda*norm2(a);

% log -likelihood
126 % constraints
127 constraints ={ p>=pbox(:,ones(1,N));
128 p<=pbox (:,2* ones(1,N)); };

MPC for linear quadratic problemwith constraints

129 % parameters
130 Tvariable u_past [n-1 ,1]; % [ u(k-n+1) ... u(k-1) ]
131 Tvariable y0 [n,1]; % [ y(k-n+1) ... y(k) ]
132 Tvariable lambda_u [];
133 Tvariable alph [n,1];
134 Tvariable beta [n,1];
135 Tvariable umax [];
136 % optimization variables
137 Tvariable u_future [T,1]; % [ u(k) ... u(k+T-1) ]
138 Tvariable y1 [T,1]; % [ y(k+1) ... y(k+T) ]
139 y=[y0;y1]; % [ y(k-n+1) ... y(k+T) ]
140 % criteria
141 J=norm2(y(n+1:end ,1))... % [ y(k+1) ... y(k+T) ]
142 +lambda_u*norm2(u_future ); % [ u(k) ... u(k+T-1) ]
143 % constraints
144 u=[ u_past;u_future ]; % [ u(k-n+1) ... u(k+T-1) ]
145 yy=Tzeros(T,1); % [ y(k+1) ... y(k+T) ]
146 for i=1:n
147 % += alph(i) * [ y(k+1-i) ... y(k+T-i) ]
148 % beta(i) * [ u(k+1-i) ... u(k+T-i) ]
149 yy=yy+y(n-i+1:end -i,1)* alph(i,1)+u(n-i+1:end -i+1,1)
150 *beta(i,1);
151 end
152 % constraints
153 constraints ={ -umax <= u_future; u_future <=umax;
154 y(n+1:end ,1)== yy; }
155

156 [classname ,code]= cmex2optimizeCS (...
157 ’classname ’,’mpc_solver ’ ,...
158 ’objective ’,J,...
159 ’optimizationVariables ’,{u_future ,y1},...
160 ’constraints ’,constraints ,...
161 ’outputExpressions ’,{J,u_future ,y1},...
162 ’parameters ’,{lambda_u ,umax ,...
163 alph ,beta ,...
164 y0 ,u_past });

MPC-MHE for linear quadratic problemwith constraints

165 % parameters
166 Tvariable tilde_y [L,1]; % [ y(k-L+1) ... y(k) ]
167 Tvariable u_past [L-1 ,1]; % [ u(k-L+1) ... u(k-1) ]
168 Tvariable lambda_u [];
169 Tvariable lambda_n [];
170 Tvariable lambda_d [];
171 Tvariable alph [n,1];
172 Tvariable beta [n,1];
173 Tvariable umax [];
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174 Tvariable dmax [];
175 Tvariable nmax [];
176 % optimization variables
177 Tvariable u_future [T,1]; % [ u(k) ... u(k+T-1) ]
178 Tvariable d [T+L-n,1]; % [ d(k-L+n) ... d(k+T-1) ]
179 Tvariable y0 [n,1]; % [ y(k-L+1) ... y(k-L+n) ]
180 Tvariable y1 [T+L-n,1]; % [ y(k-L+n+1) ... y(k+T) ]
181 y=[y0;y1]; % [ y(k-L+1) ... y(k+T) ]
182 % criteria
183 J=norm2(y(L+1:end ,1))+ lambda_u*norm2(u_future )...
184 -lambda_n*norm2(y(1:L,1)- tilde_y)-lambda_d*norm2(d);
185 % constraints
186 u=[ u_past;u_future ]; % [ u(k-L+1) ... u(k+T-1) ]
187 yy=d; % [ y(k-L+n+1) ... y(k+T) ]
188 for i=1:n
189 % += alpha(i) * [ y(k-L+1+n-i) ... y(k+T-i) ]
190 % beta(i) * [ u(k-L+1+n-i) ... u(k+T-i) ]
191 yy=yy+y(n-i+1:end -i,1)* alpha(i,1)+u(n-i+1:end -i+1,1)
192 *beta(i,1);
193 end
194 % minimizer constraints
195 P1constraints ={ -umax <= u_future; u_future <=umax; };
196 % maximizer constraints
197 P2constraints ={ -dmax <=d; d<=dmax;
198 -nmax <=y(1:L,1)- tilde_y; y(1:L,1)
199 -tilde_y <=nmax};
200 % common constraints
201 Lconstraints ={ y(n+1:end ,1)== yy; };
202

203 [classname ,code]= cmex2equilibriumLatentCS (...
204 ’classname ’,’mpcmhe_solver ’ ,...
205 ’P1objective ’,J,...
206 ’P2objective ’,-J,...
207 ’P1optimizationVariables ’,{u_future },...
208 ’P2optimizationVariables ’,{d,y0},...
209 ’latentVariables ’,{y1},...
210 ’P1constraints ’,P1constraints ,...
211 ’P2constraints ’,P2constraints ,...
212 ’latentConstraints ’,Lconstraints ,...
213 ’outputExpressions ’,{J,u_future ,d,y(1:L,1)-tilde_y ,
214 y0 ,y1},...
215 ’parameters ’,{lambda_u ,lambda_n ,lambda_d ,...
216 umax ,dmax ,nmax ,...
217 alph ,beta ,...
218 tilde_y ,u_past });
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