Skip to main content
Log in

Explanatory Correlates of Consciousness: Theoretical and Computational Challenges

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Consciousness is a key feature of mammalian cognition and revealing its underlying mechanisms is one of the most important scientific challenges for the 21st century. In this article I review how computational and theoretical approaches can facilitate a transition from correlation to explanation in consciousness science. I describe progress towards identifying ‘explanatory correlates’ underlying four fundamental properties characterizing most if not all conscious experiences: (i) the co-existence of segregation and integration in conscious scenes, (ii) the emergence of a subjective first-person perspective, (iii) the presence of affective conscious contents, either transiently (emotion) or as a background (mood) and (iv) experiences of intention and agency that are characteristic of voluntary action. I also discuss how synthetic approaches can shed additional light on possible functions of consciousness, the role of embodiment in consciousness, and the plausibility of constructing a conscious artefact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Autoscopy is the experience of seeing one’s own body in extrapersonal space, whereas an out-of-body experience is characterized by a shift in perspective to a location outside the body [55].

  2. Intriguingly, the thalamocortical pathway conveying detailed interoceptive signals to the right anterior insula appears to be unique to primates [17].

  3. As Haggard emphasizes, activity in preSMA is not to be interpreted as the origin of ‘free will’ in the sense of an uncaused cause. Brain circuits underlying volition likely consist of complex loops, and indeed input to preSMA from basal ganglia is thought to play an important role in the generation of voluntary action.

  4. Strictly speaking this is a description of ‘property emergence’. There is also the notion of ‘temporal emergence’ which refers to the appearance of a qualitatively new phenomenon over time.

References

  1. Amari S-I. A method of statistical neurodynamics. Kybernetik. 1974;14:201–15.

    PubMed  CAS  Google Scholar 

  2. Baars BJ. A cognitive theory of consciousness. New York: Cambridge University Press; 1988.

    Google Scholar 

  3. Baars BJ, Banks WP, Newman J, editors. Essential sources in the scientific study of consciousness. Cambridge: MIT Press; 2003.

    Google Scholar 

  4. Bedau M. Weak emergence. Philos Perspect. 1997;11:375–99.

    Google Scholar 

  5. Bishop R, Atmanspacher H. Contextual emergence in the description of properties. Found Phys. 2006;36:1753–77.

    Article  Google Scholar 

  6. Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA. 2007;104(29):12187–92.

    Article  PubMed  CAS  Google Scholar 

  7. Bongard J, Zykov V, Lipson H. Resilient machines through continuous self-modeling. Science. 2006;314(5802):1118–21.

    Article  PubMed  CAS  Google Scholar 

  8. Bosse T, Jonker CM, Treur J. Formalization of Damasio’s theory of emotion, feeling and core consciousness. Conscious Cogn. 2008;17(1):94–113.

    Article  PubMed  Google Scholar 

  9. Braitenberg V. Vehicles: experiments in synthetic psychology. Cambridge: MIT Press; 1984.

    Google Scholar 

  10. Bressler SL, Kelso JA. Cortical coordination dynamics and cognition. Trends Cogn Sci. 2001;5(1):26–36.

    Article  PubMed  Google Scholar 

  11. Burgess N. Spatial cognition and the brain. Ann N Y Acad Sci. 2008;1124:77–97.

    Article  PubMed  Google Scholar 

  12. Chalmers DJ. Strong and weak emergence. In: Clayton P, Davies P, editors. The re-emergence of emergence. Oxford: Oxford University Press; 2006.

    Google Scholar 

  13. Chang H. Inventing temperature: measurement and scientific progress. New York: Oxford University Press; 2004.

    Book  Google Scholar 

  14. Cisek P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1585–99.

    Article  PubMed  Google Scholar 

  15. Clowes RW, Seth AK. Axioms, properties and criteria: roles for synthesis in the science of consciousness. Artif Intell Med. 2008;44:93–104.

    Article  Google Scholar 

  16. Cosmelli D, Lachaux J-P, Thompson E. Neurodynamics of consciousness. In: Zelazo PD, Moscovitch M, Thompson E, editors. The cambridge handbook of consciousness. Cambridge: Cambridge University Press; 2007. p. 731–75.

    Google Scholar 

  17. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.

    PubMed  CAS  Google Scholar 

  18. Crick F, Koch C. Towards a neurobiological theory of consciousness. Semin Neurosci. 1990;2:263–75.

    Google Scholar 

  19. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.

    Article  PubMed  CAS  Google Scholar 

  20. Cruse H. The evolution of cognition: a hypothesis. Cogn Sci. 2003;27:135–55.

    Article  Google Scholar 

  21. Crutchfield J. The calculi of emergence: computation, dynamics, and induction. Physica D. 1994;75:11–54.

    Article  Google Scholar 

  22. Damasio A. Descartes’ error. London: MacMillan; 1994.

    Google Scholar 

  23. Damasio A. The feeling of what happens: body and emotion in the making of consciousness. Arlington Heights: Harvest Books; 2000.

    Google Scholar 

  24. Dehaene S, Sergent C, Changeux JP. A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA. 2003;100(14):8520–5.

    Article  PubMed  CAS  Google Scholar 

  25. Doya K. Modulators of decision making. Nat Neurosci. 2008;11(4):410–6.

    Article  PubMed  CAS  Google Scholar 

  26. Edelman GM. The remembered present. New York: Basic Books; 1989.

    Google Scholar 

  27. Edelman GM. Naturalizing consciousness: a theoretical framework. Proc Natl Acad Sci USA. 2003;100(9):5520–4.

    Article  PubMed  CAS  Google Scholar 

  28. Edelman DB, Baars BJ, Seth AK. Identifying the hallmarks of consciousness in non-mammalian species. Conscious Cogn. 2005;14(1):169–87.

    Article  PubMed  Google Scholar 

  29. Ehrsson HH. The experimental induction of out-of-body experiences. Science. 2007;317(5841):1048.

    Article  PubMed  CAS  Google Scholar 

  30. Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci. 2001;5(1):16–25.

    Article  PubMed  Google Scholar 

  31. Fellous J-M, Arbib MA, editors. Who needs emotions? The brain meets the robot. Oxford: Oxford University Press; 2005.

    Google Scholar 

  32. Franklin S, Graesser A. A software agent model of consciousness. Conscious Cogn. 1999;8(3):285–301.

    Article  PubMed  CAS  Google Scholar 

  33. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319(5867):1215–20.

    Article  PubMed  CAS  Google Scholar 

  34. Gould SJ, Lewontin RC. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci. 1979;205(1161):581–98.

    Article  PubMed  CAS  Google Scholar 

  35. Grandjean D, Sander D, Scherer KR. Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Conscious Cogn. 2008;17(2):484–95.

    Article  PubMed  Google Scholar 

  36. Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37:424–38.

    Article  Google Scholar 

  37. Grossberg S, Gutowski WE. Neural dynamics of decision making under risk: affective balance and cognitive-emotional interactions. Psychol Rev. 1987;94(3):300–18.

    Article  PubMed  CAS  Google Scholar 

  38. Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27(3):377–96; discussion 396–442.

    PubMed  Google Scholar 

  39. Haggard P. Human volition: towards a neuroscience of will. Nat Rev Neurosci. 2008;9(12):934–46.

    Article  PubMed  CAS  Google Scholar 

  40. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.

    Article  PubMed  CAS  Google Scholar 

  41. Haugeland J. Artificial intelligence: the very idea. Cambridge: MIT Press; 1985.

    Google Scholar 

  42. Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6(6):242–7.

    Article  PubMed  Google Scholar 

  43. Hesslow G, Jirenhed D-A. The inner world of a simple robot. J Conscious Stud. 2007;14:85–96.

    Google Scholar 

  44. Holland O. Editorial introduction. J Conscious Stud. 2003;10(4/5):1–6.

    Google Scholar 

  45. Holland O. A strongly embodied approach to machine consciousness. J Conscious Stud. 2007;14:97–110.

    Google Scholar 

  46. Hussain A. (this volume). Editorial introduction.

  47. Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA. 2008;105(9):3593–8.

    Article  PubMed  CAS  Google Scholar 

  48. James W. Does consciousness exist? J Philos Psychol Sci Methods. 1904;1:477–91.

    Google Scholar 

  49. Kim J. Emergence: core ideas and issues. Synthese. 2006;151:547–59.

    Article  Google Scholar 

  50. Koch C. The quest for consciousness: a neurobiological approach. Englewood: Roberts and co; 2004.

    Google Scholar 

  51. Koechlin E, Hyafil A. Anterior prefrontal function and the limits of human decision-making. Science. 2007;318(5850):594–8.

    Article  PubMed  CAS  Google Scholar 

  52. Lambie JA, Marcel AJ. Consciousness and the varieties of emotion experience: a theoretical framework. Psychol Rev. 2002;109(2):219–59.

    Article  PubMed  Google Scholar 

  53. Lamme V. Towards a true neural stance on consciousness. Trends Cogn Sci. 2006;10(11):494–501.

    Article  PubMed  Google Scholar 

  54. Laureys S, Pellas F, Van Eeckhout P, Ghorbel S, Schnakers C, Perrin F, et al. The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog Brain Res. 2005;150:495–511.

    Article  PubMed  Google Scholar 

  55. Lenggenhager B, Tadi T, Metzinger T, Blanke O. Video ergo sum: manipulating bodily self-consciousness. Science. 2007;317(5841):1096–9.

    Article  PubMed  CAS  Google Scholar 

  56. Libet B. Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sci. 1985;8:529–66.

    Google Scholar 

  57. Mandik P. Phenomenal consciousness and the allocentric-egocentric interface. In: Buccheri R, editor. Endophysics, time, quantum and the subjective. New York: World Scientific Publishing Co; 2005.

    Google Scholar 

  58. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering minds: the default network and stimulus-independent thought. Science. 2007;315(5810):393–5.

    Article  PubMed  CAS  Google Scholar 

  59. Maturana H, Varela F. Autopoiesis and cognition: the realization of the living, vol. 42. Dordrecht: D. Reidel; 1980.

    Google Scholar 

  60. Mehta B, Schaal S. Forward models in visuomotor control. J Neurophysiol. 2002;88(2):942–53.

    PubMed  Google Scholar 

  61. Merker B. The liabilities of mobility: a selection pressure for the transition to consciousness in animal evolution. Conscious Cogn. 2005;14(1):89–114.

    Article  PubMed  Google Scholar 

  62. Metzinger T. Being no-one. Cambridge: MIT Press; 2003.

    Google Scholar 

  63. Metzinger T. Empirical perspectives from the self-model theory of subjectivity: a brief summary with examples. Prog Brain Res. 2008;168:218–45.

    Google Scholar 

  64. Nagel T. What is it like to be a bat? Philos Rev. 1974;83:435–50.

    Article  Google Scholar 

  65. Northoff G, Panksepp J. The trans-species concept of self and the subcortical-cortical midline system. Trends Cogn Sci. 2008;12(7):259–64.

    Article  PubMed  Google Scholar 

  66. O’Regan JK, Noe A. A sensorimotor account of vision and visual consciousness. Behav Brain Sci. 2001;24(5):939–73; discussion 973–1031.

    Article  PubMed  CAS  Google Scholar 

  67. Panksepp J. Affective consciousness: core emotional feelings in animals and humans. Conscious Cogn. 2005;14(1):30–80.

    Article  PubMed  Google Scholar 

  68. Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci. 2008;9(2):148–58.

    Article  PubMed  CAS  Google Scholar 

  69. Phillips ML, Medford N, Senior C, Bullmore ET, Suckling J, Brammer MJ, et al. Depersonalization disorder: thinking without feeling. Psychiatry Res. 2001;108(3):145–60.

    Article  PubMed  CAS  Google Scholar 

  70. Prescott TJ, Bryson JJ, Seth AK. Modelling natural action selection (edited special issue). Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1519–721.

    Google Scholar 

  71. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.

    Article  PubMed  CAS  Google Scholar 

  72. Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci. 1996;263(1369):377–86.

    Article  PubMed  CAS  Google Scholar 

  73. Rees G, Kreiman G, Koch C. Neural correlates of consciousness in humans. Nat Rev Neurosci. 2002;3(4):261–70.

    Article  PubMed  CAS  Google Scholar 

  74. Revonsuo A. Inner presence: consciousness as a biological phenomenon. Cambridge: MIT Press; 2005.

    Google Scholar 

  75. Searle J. Minds, brains, and programs. Behav Brain Sci. 1980;3:417–57.

    Article  Google Scholar 

  76. Seth AK. Causal connectivity analysis of evolved neural networks during behavior. Network: Comput Neural Syst. 2005;16(1):35–55.

    Article  Google Scholar 

  77. Seth AK. Causal networks in simulated neural systems. Cogn Neurodyn. 2008;2:49–64.

    Article  PubMed  Google Scholar 

  78. Seth AK. Measuring emergence via nonlinear Granger causality. In: Bullock S, Watson R, Noble J, Bedau M, editors. Artificial life XI: proceedings of the 11th international conference on the simulation and synthesis of living systems. Cambridge: MIT Press; 2008. p. 41–9.

  79. Seth AK. Functions of consciousness. In: Banks WP, editor. Elsevier encyclopedia of consciousness. Amsterdam: Elsevier (in press).

  80. Seth AK, Edelman GM. Environment and behavior influence the complexity of evolved neural networks. Adapt Behav. 2004;12(1):5–20.

    Article  Google Scholar 

  81. Seth AK, Edelman, GM. Consciousness and complexity. In: Meyer B, editor. Springer encyclopedia of complexity and systems science. Berlin: Springer (in press).

  82. Seth AK, Izhikevich E, Reeke GN, Edelman GM. Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci USA. 2006;103(28):10799–804.

    Article  PubMed  CAS  Google Scholar 

  83. Seth AK, Dienes Z, Cleeremans A, Overgaard M, Pessoa L. Measuring consciousness: relating behavioural and neurophysiological approaches. Trends Cogn Sci. 2008;12(8):314–21.

    Article  PubMed  Google Scholar 

  84. Shadlen MN, Gold JI. The neurophysiology of decision-making as a window on cognition. In: Gazzaniga MS, editor. The cognitive neurosciences. 3rd ed. Cambridge: MIT Press; 2004. p. 1229–41.

    Google Scholar 

  85. Shalizi C, Moore C. What is a macrostate? Subjective observations and objective dynamics. 2006. http://arxiv.org/abs/cond-mat/0303625.

  86. Shanahan M. A cognitive architecture that combines internal simulation with a global workspace. Conscious Cogn. 2006;15(2):433–49.

    Article  PubMed  Google Scholar 

  87. Shanahan M. Dynamical complexity in small-world networks of spiking neurons. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;78(4 Pt 1):041924.

    PubMed  Google Scholar 

  88. Sporns O, Lungarella M. Evolving coordinated behavior by maximizing information structure. In: Rocha L, Yaeger L, Bedau M, Floreano D, Goldstone RL, Vespigniani A, editors. Artificial life X: proceedings of the 10th international conference on the simulation and synthesis of living systems. Cambridge: MIT Press; 2006. p. 322–9.

  89. Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex. 2000;10:127–41.

    Article  PubMed  CAS  Google Scholar 

  90. Thagard P, Aubie B. Emotional consciousness: a neural model of how cognitive appraisal and somatic perception interact to produce qualitative experience. Conscious Cogn. 2008;17(3):811–34.

    Article  PubMed  Google Scholar 

  91. Thompson E. Life and mind: from autopoeisis to neurophenomenology: a tribute to Francisco Varela. Phenomenol Cogn Sci. 2004;3:381–98.

    Article  Google Scholar 

  92. Thompson E, Varela FJ. Radical embodiment: neural dynamics and consciousness. Trends Cogn Sci. 2001;5(10):418–25.

    Article  PubMed  Google Scholar 

  93. Tononi G. An information integration theory of consciousness. BMC Neurosci. 2004;5(1):42.

    Article  PubMed  Google Scholar 

  94. Tononi G, Edelman GM. Consciousness and complexity. Science. 1998;282(5395):1846–51.

    Article  PubMed  CAS  Google Scholar 

  95. Tononi G, Koch C. The neural correlates of consciousness: an update. Ann N Y Acad Sci. 2008;1124:239–61.

    Article  PubMed  Google Scholar 

  96. Tononi G, Sporns O. Measuring information integration. BMC Neurosci. 2003;4(1):31.

    Article  PubMed  Google Scholar 

  97. Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA. 1994;91(11):5033–7.

    Article  PubMed  CAS  Google Scholar 

  98. Tsuchiya N, Adolphs R. Emotion and consciousness. Trends Cogn Sci. 2007;11(4):158–67.

    Article  PubMed  Google Scholar 

  99. Vallar G, Ronchi R. Somatoparaphrenia: a body delusion. A review of the neuropsychological literature. Exp Brain Res. 2008;192(3):533–51.

    Article  PubMed  Google Scholar 

  100. Varela FJ. Patterns of life: intertwining identity and cognition. Brain Cogn. 1997;34(1):72–87.

    Article  PubMed  CAS  Google Scholar 

  101. Wagar BM, Thagard P. Spiking phineas gage: a neurocomputational theory of cognitive-affective integration in decision making. Psychol Rev. 2004;111(1):67–79.

    Article  PubMed  Google Scholar 

  102. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2.

    Article  PubMed  CAS  Google Scholar 

  103. Wegner D. The illusion of conscious will. Cambidge: MIT Press; 2002.

    Google Scholar 

  104. Werner G. Metastability, criticality and phase transitions in brain and its models. Biosystems. 2007;90(2):496–508.

    Article  PubMed  Google Scholar 

  105. Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11(7–8):1317–29.

    Article  PubMed  CAS  Google Scholar 

  106. Yaeger L, Sporns O. Evolution of neural structure and complexity in a computational ecology. In: Rocha L, Yaeger L, Bedau M, Floreano D, Goldstone RL, Vespigniani A, editors. Artificial life X: proceedings of the 10th international conference on the simulation and synthesis of living systems. Cambridge: MIT Press; 2006, p. 330–6.

  107. Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. Neuron. 2005;46(4):681–92.

    Article  PubMed  CAS  Google Scholar 

  108. Zeman A. What in the world is consciousness. Prog Brain Res. 2005;150:1–10.

    Article  PubMed  Google Scholar 

  109. Ziemke T. The embodied self—theories, hunches, and robot models. J Conscious Stud. 2007;14:167–79.

    Google Scholar 

  110. Ziemke T, Jirenhed D-A, Hesslow G. Internal simulation of perception: a minimal neurorobotic model. Neurocomputing. 2005;68:85–104.

    Article  Google Scholar 

Download references

Acknowledgements

Preparation of this article was supported by EPSRC leadership fellowship EP/G007543/1. I am grateful to Tom Ziemke for useful comments on a first draft and to Owen Holland for Fig. 3b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Seth.

Additional information

Invited article for inaugural issue of Cognitive Computation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seth, A. Explanatory Correlates of Consciousness: Theoretical and Computational Challenges. Cogn Comput 1, 50–63 (2009). https://doi.org/10.1007/s12559-009-9007-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-009-9007-x

Keywords

Navigation