Skip to main content
Log in

Reverse Engineering the Vertebrate Brain: Methodological Principles for a Biologically Grounded Programme of Cognitive Modelling

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

How are we to go about understanding the computations that underpin cognition? Here we set out a methodological framework that helps understand different approaches to solving this problem. We argue that a very powerful stratagem is to attempt to ‘reverse engineer’ the brain and that computational neuroscience plays a pivotal role in this programme. En passant, we also tackle the oft-asked and prior question of why we should build computational models of any kind. Our framework uses four levels of conceptual analysis: computation, algorithm, mechanism and biological substrate. As such it enables us to understand how (algorithmic) AI and connectionism may be recruited to help propel the reverse-engineering programme forward. The framework also incorporates the notion of different levels of structural description of the brain, and analysis of this issue gives rise to a novel proposal for capturing computations at multiple levels of description in a single model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In Marr’s original formulation of the computational framework, which appeared in an MIT technical report [35], a fourth level was described. However, this was dropped in the more popular account in Marr [34]. Independently, Gurney proposed a four level account in Ref. [15] which was subsequently developed in Ref. [19].

  2. It is often argued that a ‘divine gift’ of a complete model of the brain would be useless. In the light of the above discussion, however, it would appear this is not true. It may be arduous to unravel the function of all aspects of the model/brain, but this task would certainly be easier than using biological experiments alone.

References

  1. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev. 2006;113(4):700–65.

    Article  PubMed  Google Scholar 

  2. Bogacz R, Gurney K. The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput. 2007;19(2):442–77.

    Article  PubMed  Google Scholar 

  3. Booch G. The accidental architecture. IEEE Software. 2006;23:9–11.

    Article  Google Scholar 

  4. Chun MM, Nakayama K. On the functional role of implicit visual memory for the adaptive deployment of attention across scenes. Vis Cogn. 2000;7:65–81.

    Article  Google Scholar 

  5. Churchland PS, Sejnowski TJ. The computational brain. Cambridge, MA: The MIT Press; 1992.

    Google Scholar 

  6. Cohen JD, Dunbar K, McClelland JL. On the control of automatic processes—a parallel distributed-processing account of the stroop effect. Psychol Rev. 1990;97(3):332–61.

    Article  PubMed  CAS  Google Scholar 

  7. Connor CE, Egeth HE, Yantis S. Visual attention: bottom-up versus top-down. Curr Biol. 2004;14(19):R850–2.

    Article  PubMed  CAS  Google Scholar 

  8. Dennett D. When philosophers encounter artificial intelligence. Daedalus. 1988;117:283–95. Reprinted in ‘Brain Children’ by D.C. Dennett, MIT Press, 1998.

    Google Scholar 

  9. De Schutter E. Reviewing multi-disciplinary papers: a challenge in neuroscience? Neuroinformatics. 2008;6(4):253–5.

    Article  PubMed  Google Scholar 

  10. Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12(7-8):961–74.

    Article  PubMed  Google Scholar 

  11. Dragalin VP, Tartakovsky AG, Veeravalli VV. Multihypothesis sequential probability ratio tests—part i: asymptotic optimality. IEEE Trans Inf Theory. 1999;45(7):2448–61.

    Article  Google Scholar 

  12. Epstein JM. Why model? J Artif Soc Social Simul. 2008;11(4):12.

    Google Scholar 

  13. Findlay JM, Gilchrist ID. Active vision: the psychology of looking and seeing. Oxford, UK: Oxford University Press; 2003.

  14. Girard B, Berthoz A. From brainstem to cortex: computational models of saccade generation circuitry. Prog Neurobiol. 2005;77(4):215–51.

    PubMed  CAS  Google Scholar 

  15. Gurney KN. An introduction to neural networks. London, UK: UCL Press (Taylor and Francis group); 1997.

  16. Gurney KN, Humphries M, Wood R, Prescott TJ, Redgrave P. Testing computational hypotheses of brain systems function: a case study with the basal ganglia. Network. 2004;15(4):263–90.

    Article  PubMed  CAS  Google Scholar 

  17. Gurney KN, Prescott TJ, Redgrave P. A computational model of action selection in the basal ganglia i: a new functional anatomy. Biol Cybern. 2001;84:401–10.

    Article  PubMed  CAS  Google Scholar 

  18. Gurney KN, Prescott TJ, Redgrave P. A computational model of action selection in the basal ganglia ii: analysis and simulation of behaviour. Biol Cybern. 2001;84:411–23.

    Article  PubMed  CAS  Google Scholar 

  19. Gurney KN, Prescott TJ, Wickens JR, Redgrave P. Computational models of the basal ganglia: from robots to membranes. Trends Neurosci. 2004;27(8):453–9.

    Article  PubMed  CAS  Google Scholar 

  20. Gurney KN, Wright MJ. A model for the spatial integration and differentiation of velocity signals. Vision Res. 1996;36(18):2939–55.

    Article  PubMed  CAS  Google Scholar 

  21. Hikosaka O, Nakamura K, Nakahara H. Basal ganglia orient eyes to reward. J Neurophysiol. 2006;95(2):567–84.

    Article  PubMed  Google Scholar 

  22. Hinton GE, Shallice T. Lesioning an attractor network: investigations of acquired dyslexia. Psychol Rev. 1991;98(1):74–95.

    Article  PubMed  CAS  Google Scholar 

  23. Humphries MD. High level modeling of dopamine mechanisms in striatal neurons (tech. rep.). Sheffield: Department of Psychology, University of Sheffield; 2003.

  24. Humphries MD, Gurney KN. A pulsed neural network model of bursting in the basal ganglia. Neural Netw. 2001;14(6-7):845–63.

    Article  PubMed  CAS  Google Scholar 

  25. Humphries MD, Gurney KN. The role of intra-thalamic and thalamocortical circuits in action selection. Network. 2002;13(1):131–56.

    PubMed  CAS  Google Scholar 

  26. Humphries MD, Gurney KN. Deep brain stimulation of the subthalamic nucleus causes paradoxical inhibition of output in a computational model of the “parkinsonian” basal ganglia. Society for Neuroscience Annual Meeting Session 622.9; 2007.

  27. Humphries MD, Stewart RD, Gurney KN. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci. 2006;26(50):12921–42.

    Article  PubMed  CAS  Google Scholar 

  28. Hussain A, Gurney K, Abdullah R, Chambers J. Emergent common functional principles in control theory and the vertebrate brain: a case study with autonomous vehicle control. Icann 2008;(2):949–58.

  29. Izhikevich. Dynamical systems in neuroscience: the geometry of excitability. Cambridge, MA: MIT Press; 2007.

  30. Kitano H. Computational systems biology. Nature. 2002;420(6912):206–10.

    Article  PubMed  CAS  Google Scholar 

  31. Koch C. The biophysics of computation: information processing in single neurons. New York: Oxford University Press; 1999.

    Google Scholar 

  32. Lee TS, Yuille AL. Bayesian brain: probabilistic approaches to neural coding. In: Doya K, Ishi S, Pouget A, Rao RPN, editors. Cambridge, MA: MIT Press; 2007. p. 145–88.

  33. Markram H. The blue brain project. Nat Rev Neurosci. 2006;7(2):153–60.

    Article  PubMed  CAS  Google Scholar 

  34. Marr D. Vision: a computational investigation into human representation and processing of visual information. New York: WH Freeeman and Co.; 1982.

    Google Scholar 

  35. Marr D, Poggio T. From understanding computation to understanding neural circuitry (tech. rep. no. AIM-357). MIT; 1976.

  36. Mel BW, Ruderman DL, Archie KA. Translation-invariant orientation tuning in visual “complex” cells could derive from intradendritic computations. J Neurosci. 1998;18(11):4325–34.

    PubMed  CAS  Google Scholar 

  37. Mink JW, Thach WT. Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol. 1993;3(6):950–7.

    Article  PubMed  CAS  Google Scholar 

  38. Minsky M. The society of mind. New York: Simon and Schuster; 1988.

  39. Niv Y, Schoenbaum G. Dialogues on prediction errors. Trends Cogn Sci. 2008;12(7):265–72.

    Article  PubMed  Google Scholar 

  40. Prescott AJ, Gonzales FM, Gurney KN, Humphries M, Redgrave P. A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw 2005;19(1):31–61.

    Article  PubMed  Google Scholar 

  41. Putnam H. Artificial intelligence: much ado about not very much. Daedalus. 1988;117:269–81.

    Google Scholar 

  42. Rao RPN. Bayesian brain: probabilistic approaches to neural coding. In: Doya K, Ishi S, Pouget A, Rao RPN, editors. Cambridge, MA: MIT Press; 2007. p. 239–67.

  43. Redgrave P. Basal ganglia. Scholarpedia 2007. http://www.scholarpedia.org/article/Basal_ganglia.

  44. Redgrave P, Prescott TJ, Gurney KN. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89:1009–23.

    Article  PubMed  CAS  Google Scholar 

  45. Schall JD. The neural selection and control of saccades by the frontal eye field. Philos Trans R Soc Lond B Biol Sci. 2002;357(1424):1073–82.

    Article  PubMed  Google Scholar 

  46. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–9.

    Article  PubMed  CAS  Google Scholar 

  47. Sejnowski TJ, Koch C, Churchland PS. Computational neuroscience. Science. 1988;241(4871):1299–306.

    Article  PubMed  CAS  Google Scholar 

  48. Servan-Schreiber D, Printz H, Cohen JD. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science. 1990;249(4971):892–5.

    Article  PubMed  CAS  Google Scholar 

  49. Smolensky P. On the proper treatment of connectionism. Behav Brain Sci. 1988;11:1–23.

    Article  Google Scholar 

  50. Stafford T, Gurney KN. Biologically constrained action selection improves cognitive control in a model of the stroop task. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1671–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by EPSRC grant EP/C516303/1. I would like to acknowledge all the members of the Adaptive Behaviour Research Group, past and present, who contributed to the work presented here. In particular, I would like to thank Nathan Lepora for reading an early draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin N. Gurney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurney, K.N. Reverse Engineering the Vertebrate Brain: Methodological Principles for a Biologically Grounded Programme of Cognitive Modelling. Cogn Comput 1, 29–41 (2009). https://doi.org/10.1007/s12559-009-9010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-009-9010-2

Keywords

Navigation