Skip to main content
Log in

Sub-Symbols and Icons

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

There is a relationship between perception through biological senses and simple problem-solving. According to the production system theory, we can define a geometrically based problem-solving model as a production system operating on vectors of fixed dimensions (Icons). Our goal is to form a sequence of associations, which lead to a desired state represented by a vector, from an initial state represented by a vector. We define a simple and universal heuristics function, which takes into account the relationship between the vector and the corresponding similarity of the represented object or state in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aleksander I, Dunmall B, Del Frate V. Neurocomputational models of visualisation: a preliminary report. In: Proc. IWANN, Alicante, Spain; 1999.

  2. Aleksander I, Morton H. Neurons and symbols, the stuff that mind is made of. London: Chapman and Hall; 1993.

    Google Scholar 

  3. Aleksander I, Morton H, Dunmall B. Seeing is believing. In: Proc. IWANN, Granada; 2001.

  4. Allport A. Visual attention. In: Posner M, editor. Foundations of cognitive science. Cambridge, MA: The MIT Press; 1989. p. 631–82.

    Google Scholar 

  5. Anderson J. The architecture of cognition. Cambridge: Harvard University Press; 1983.

    Google Scholar 

  6. Anderson JR. Cognitive psychology and its implications. 4th ed. New York: W. H. Freeman and Company; 1995.

    Google Scholar 

  7. Arp R. Scenario visualization: an evolutionary account of creative problem solving. Cambridge: MIT Press; 2008.

    Google Scholar 

  8. Biederman I, Ju G. Surface vs. edge-based determinants of visual recognition. Cogn Psychol. 1988;20:38–64.

    Article  CAS  PubMed  Google Scholar 

  9. Browne A, Sun R. Connectionistic variable binding. Expert Systems. 1999;16(3):189–206.

    Article  Google Scholar 

  10. Browne A, Sun R. Connectionistic inference models. Neural Networks. 2001;14:1331–55.

    Article  CAS  PubMed  Google Scholar 

  11. Downing C, Oinker S. The spatial structure of visual attention. In: Posner M, Marin O, editors. Attention and performance XI. Hillsdale, NJ: Erlbaum; 1985. p. 171–87.

    Google Scholar 

  12. Feldman J. Four frames suffice: a provisional model of vision and space. Behavioral and Brain Sciences. 1985;8:265–89.

    Article  Google Scholar 

  13. Gilovich T. Tversky. In: Wilson RA, Keil FC, editors. The MIT encyclopedia of the cognitive sciences. New York: The MIT Press; 1999. p. 849–850.

  14. Goldstone R. Similarity. In: Wilson RA, Keil FC, editors. The MIT encyclopedia of the cognitive sciences. New York: The MIT Press; 1999. p. 763–765.

  15. Hofstadter D. Fluid concepts and creative analogies: computer models of the fundamental mechanisms of thought. New York: Basic Books; 1995.

    Google Scholar 

  16. Johnson-Laird P. Mental models: toward a cognitive science of language, inference and consciousness. Cambridge: Harvard University Press; 1983.

    Google Scholar 

  17. Klahr P, Waterman D. Expert systems: techniques, tools and applications. Longman: Addison-Wesley; 1986.

    Google Scholar 

  18. Kosslyn SM. Image and brain, the resolution of the imagery debate. Cambridge: The MIT Press; 1994.

    Google Scholar 

  19. Kurbat M, Smith E, Medin D. Categorization, typicality, and shape similarity. In: Proceedings of the cognitive science meeting. Atlanta, GA; 1994.

  20. Lancy D. Cross-cultural studies in cognition and mathematics. New York: Academic Press; 1983.

    Google Scholar 

  21. Luger GF, Stubblefield WA. Artificial intelligence, structures and strategies for complex problem solving. 3rd ed. Longman: Addison-Wesley; 1998.

    Google Scholar 

  22. McClelland J, Rumelhart D. Distributed memory and the representation of general and specific memory. J Exp Psychol Gen. 1985;114:159–88.

    Article  CAS  PubMed  Google Scholar 

  23. Newell A. Physical symbol systems. San Francisco: Norman; 1981.

    Google Scholar 

  24. Newell A. Unified theories of cognition. Cambridge: Harvard University Press; 1990.

    Google Scholar 

  25. Newell A, Simon H. Human problem solving. Englewood Cliffs: Prentice-Hall; 1972.

    Google Scholar 

  26. Newell A, Simon H. Computer science as empirical inquiry: symbols and search. Communication of the ACM. 1976;19(3):113–26.

    Article  Google Scholar 

  27. Opwis K, Ploetzner R. Kognitive psychologie mit dem computer. Heidelberg: Spektrum Akademischer Verlag; 1996.

    Google Scholar 

  28. Osherson DN. New axioms for the contrast model of similarity. J Math Psychol. 1987;31:93–103.

    Article  Google Scholar 

  29. Osherson DN. Probability judgment. In: Smith EE, Osherson DN, editors. Thinking, 2nd edn, vol. 3. Chap. 2, New York: MIT Press; 1995. p. 35–75.

  30. Plate T. Holographic reduced representations. IEEE Transactions on Neural Networks. 1995;6(3):623–41.

    Article  CAS  PubMed  Google Scholar 

  31. Plate T. Distributed representations. In: Nadel L, editor. Macmillan encyclopedia of cognitive science. London: Macmillan; 2002.

    Google Scholar 

  32. Posner MI, Raichle EM. Images of mind. New York: Scientific American Library; 1994.

    Google Scholar 

  33. Russell SJ, Norvig P. Artificial intelligence: a modern approach. Englewood Cliffs: Prentice-Hall; 1995.

    Google Scholar 

  34. Simon HA. The science of the artificial. New York: The MIT Press; 1969.

    Google Scholar 

  35. Simon HA. Models of my life. New York: Basic Books; 1991.

    Google Scholar 

  36. Smith E, Sloman S. Similarity vs. rulebased categorization. Memory Cognition. 1994;22:377–86.

    CAS  PubMed  Google Scholar 

  37. Smith EE. Concepts and categorization. In: Smith EE, Osherson DN, editors. Thinking, 2nd edn, vol. 3. Chap. 1, New York: MIT Press; 1995, p. 3–33.

  38. Stiny G. Shape: talking about seeing and doing. New York: MIT Press; 2006.

    Google Scholar 

  39. Sun R. A two-level hybrid architecture for structuring knowledge for commonsense reasoning. In: Sun R, Bookman LA, editors. Computational architectures integrating neural and symbolic processing. Chap. 8, Boston: Kluwer Academic Publishers; 1995, p. 247–182.

  40. Sussman G. A computer model of skill acquisition. Cambridge: MIT; 1975.

    Google Scholar 

  41. Tarski A. The semantic conception of truth and foundations of semantics. Philos. and Phenom. Res. 1944;4:241–376.

    Google Scholar 

  42. Tarski A. Logic, semantics, metamathematics. London: Oxford University Press; 1956.

    Google Scholar 

  43. Tarski A. Pisma logiczno-filozoficzne. Prawda, vol. 1. Warszawa: Wydawnictwo Naukowe PWN; 1995.

    Google Scholar 

  44. Tversky A. Feature of similarity. Psychol Rev. 1977;84:327–52.

    Article  Google Scholar 

  45. Wichert A. Pictorial reasoning with cell assemblies. Connection Science. 2001;13(1):1–42.

    Article  Google Scholar 

  46. Wichert A. Learning of associative prediction by experience. Neurocomputing. 2002;48(1–4):741–2.

    Article  Google Scholar 

  47. Wichert A. Associative computer: a hybrid connectionistic production system. Cognitive Systems Research. 2005;6(2):111–44.

    Article  Google Scholar 

  48. Wichert A, Pereira JD, Carreira P. Visual search light model for mental problem solving. Neurocomputing. 2008;71(13–15):2806–22.

    Article  Google Scholar 

  49. Winston PH. Artificial intelligence. 3rd ed. Longman: Addison-Wesley; 1992.

    Google Scholar 

  50. Wermter S, Sun R. Hybrid neural systems. Berlin: Springer–Verlag; 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wichert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wichert, A. Sub-Symbols and Icons. Cogn Comput 1, 342–347 (2009). https://doi.org/10.1007/s12559-009-9027-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-009-9027-6

Keywords

Navigation