Skip to main content
Log in

Biologically Inspired Tensor Features

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

According to the research results reported in the past decades, it is well acknowledged that face recognition is not a trivial task. With the development of electronic devices, we are gradually revealing the secret of object recognition in the primate’s visual cortex. Therefore, it is time to reconsider face recognition by using biologically inspired features. In this paper, we represent face images by utilizing the C1 units, which correspond to complex cells in the visual cortex, and pool over S1 units by using a maximum operation to reserve only the maximum response of each local area of S1 units. The new representation is termed C1 Face. Because C1 Face is naturally a third-order tensor (or a three dimensional array), we propose three-way discriminative locality alignment (TWDLA), an extension of the discriminative locality alignment, which is a top-level discriminate manifold learning-based subspace learning algorithm. TWDLA has the following advantages: (1) it takes third-order tensors as input directly so the structure information can be well preserved; (2) it models the local geometry over every modality of the input tensors so the spatial relations of input tensors within a class can be preserved; (3) it maximizes the margin between a tensor and tensors from other classes over each modality so it performs well for recognition tasks and (4) it has no under sampling problem. Extensive experiments on YALE and FERET datasets show (1) the proposed C1Face representation can better represent face images than raw pixels and (2) TWDLA can duly preserve both the local geometry and the discriminative information over every modality for recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alex OM, Terzopoulos D. Multilinear subspace analysis for image ensembles. Int Conf ComputVis Pattern Recognit. 2003;2:93–9.

    Google Scholar 

  2. Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.

    Article  Google Scholar 

  3. Belkin M, Niyogi P, Sindhwani V. On manifold regularization. In: Proc. Int’l Workshop on Artificial Intelligence and Statistics. 2005.

  4. Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Inf Process Syst. 2002;14:585–91.

    Google Scholar 

  5. Bian W, Tao D. Harmonic mean for subspace selection. International conference on pattern recognition; 2008. p. 1–4.

  6. Cai D, He X, Han J. Spectral regression for efficient regularized subspace learning. IEEE international conference on computer vision; 2007. p. 1–8.

  7. Cai D, He X, Han J, Zhang H. Orthogonal Laplacian faces for face recognition. IEEE Trans Image Process. 2006;15(11):3608–14.

    Article  PubMed  Google Scholar 

  8. Fukushima K. Neocognitron: a self organizing neural network model for a mechanism for pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202.

    Article  CAS  PubMed  Google Scholar 

  9. Gao X, Yang Y, Tao D, Li X. Discriminative optical flow tensor for video semantic analysis. Comput Vis Image Underst. 2009;113(3):372–83.

    Article  Google Scholar 

  10. He X, Niyogi P. Locality preserving projections. Neural information processing systems; 2003. p. 20.

  11. He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacian faces. IEEE Trans Patten Anal Mach Intell. 2005;27(3):328–40.

    Article  Google Scholar 

  12. Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24:417–41.

    Article  Google Scholar 

  13. Huang Y, Huang K, Tao D, Tan T, Li X. Enhanced biologically inspired model. Int Conf Comput Vis Pattern Recognit. 2008;1–8.

  14. Li X, Lin S, Yan S, Xu D. Discriminant locally linear embedding with high-order tensor data. IEEE Trans Syst Man Cybern B Cybern. 2008;38(2):342–52.

    Article  PubMed  Google Scholar 

  15. Liu C, Wechsler C. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process. 2002;11(4):467–76.

    Article  PubMed  Google Scholar 

  16. Liu W, Tao D, Liu J. Transductive component analysis. IEEE international conference on data mining; 2008. p. 433–42.

  17. Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2003;60(2):91–100.

    Article  Google Scholar 

  18. Meyers E, Wolf L. Using biologically inspired features for face processing. Int J Comput Vis. 2008;76:93–104.

    Article  Google Scholar 

  19. Mutch J, Lowe D. Multiclass object recognition using sparse, localized features. International conference on computer vision and pattern recognition; 2006. p. 11–8.

  20. Ojala T, Pietikäinen M, Mäenpää T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans Patten Anal Mach Intell. 2002;24(7):971–87.

    Article  Google Scholar 

  21. Phillips PJ, Moon H, Rizvi SA, Rauss PJ. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell. 2000;22(10):1090–104.

    Article  Google Scholar 

  22. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.

    Article  CAS  PubMed  Google Scholar 

  23. Riesenhuber M, Poggio T. Models of object recognition. Nat Neurosci. 2000;3:1199–204.

    Article  CAS  PubMed  Google Scholar 

  24. Riesenhuber M, Poggio T. Neural mechanisms of object recognition. Curr Opin Neurobiol. 2002;12:162–8.

    Article  CAS  PubMed  Google Scholar 

  25. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290:2323–6.

    Article  CAS  PubMed  Google Scholar 

  26. Schneider R, Riesenhuber M. Detailed look at scale and translation invariance in a hierarchical neural model of visual object recognition. AI Memo 2002-011/CBCL Memo218, Massachusetts Institute of Technology, 2002.

  27. Serre T, Riesenhuber M. Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex. AI Memo 2004-017/CBCL Memo239, Massachusetts Institute of Technology, 2004.

  28. Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex. Int Conf Comput Vis Pattern Recognit. 2005;2:994–1000.

    Google Scholar 

  29. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell. 2007;29(3):411–26.

    Article  PubMed  Google Scholar 

  30. Song D, Tao D. Biologically inspired feature manifold for scene classification. IEEE Trans Image Process. 2009;18:1–30.

    Article  CAS  Google Scholar 

  31. Song D, Tao D. C1 units for scene classification. International conference on pattern recognition; 2008. p. 1–4.

  32. Sun J, Tao D, Papadimitriou S, Yu P, Faloutsos C. Incremental tensor analysis: theory and applications. ACM Trans Knowl Discov Data. 2008;2(3):11.1–11.37.

    Google Scholar 

  33. Tao D, Sun J, Shen J, Wu X, Li X, Maybank S, Faloutsos S. Probabilistic tensor analysis with Akaike and Bayesian information criteria. In: Ishikawa M, et al. editors. The 14th international conference on neural information processing. 2008;791–801.

  34. Tao D, Li X, Wu X, Maybank S. Human carrying status in visual surveillance. Int Conf Comput Vis Pattern Recognit. 2006;2:1670–7.

    Google Scholar 

  35. Tao D, Li X, Wu X, Maybank S. General tensor discriminant analysis and Gabor feature for gait recognition. IEEE Trans Pattern Anal Mach Intell. 2007;29(10):1700–15.

    Article  PubMed  Google Scholar 

  36. Tao D, Li X, Wu X, Hu W, Maybank S. Supervised tensor learning. Knowl Inf Syst. 2007;13:1–42.

    Article  Google Scholar 

  37. Tao D, Sun J, Shen J, Wu X, Li X, Maybank S, Faloutsos C. Bayesian tensor analysis. IEEE international joint conference on neural networks; 2008. p. 1403–10.

  38. Tao D, Song M, Li X, Shen J, Sun J, Wu X, et al. Bayesian tensor approach for 3-D Face modeling. IEEE Trans Circuits Syst Video Technol. 2008;18(10):1397–410.

    Article  Google Scholar 

  39. Tao D, Li X, Wu X, Maybank S. Tensor rank one discriminant analysis–a convergent method for discriminative multilinear subspace selection. Neurocomputing. 2008;71(10–12):1866–82.

    Article  Google Scholar 

  40. Tao D, Li X, Wu X, Maybank S. Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):260–74.

    Article  PubMed  Google Scholar 

  41. Turk M, Pentlanbd A. Eigenfaces for recognition. J Cogn Neurosci. 1991;3:71–86.

    Article  Google Scholar 

  42. Ye J, Janardan R, Li Q. Two-dimensional linear discriminant analysis. Neural information processing systems; 2005. p. 1569–76.

  43. Zhang T, Tao D, Li X, Yang J. A unifying framework for spectral analysis based dimensionality reduction. IEEE international joint conference on neural networks; 2008. p. 1671–8.

  44. Zhang T, Tao D, Yang J. Discriminative locality alignment. European conference on computer vision; 2008. p. 725–38.

  45. Zhang T, Tao D, Li X, Yang J. Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng. 2009;21(9):1299–313.

    Article  Google Scholar 

Download references

Acknowledgments

This project was partially supported by the Nanyang Technological University Start-Up Grant (under project number M58020010), 100 Talents Program of The Chinese Academy of Sciences and K. C. WONG Education Foundation Award of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dacheng Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, Y., Tao, D., Li, X. et al. Biologically Inspired Tensor Features. Cogn Comput 1, 327–341 (2009). https://doi.org/10.1007/s12559-009-9028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-009-9028-5

Keywords

Navigation