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Abstract In aiming for advanced robotic systems that au-advantage from both a robotic and biological perspective.
tonomously and permanently readapt to changing and urRobotically, it may provide a highly efficient (low learn-
certain environments, we introduce a scheme of fast legrnining cycle) method of initial mapping between hand and eye
and readaptation of robotic sensorimotor mappings based @s well as additional adaptive remapping strategies where
biological mechanisms underpinning the development ancequired. Biologically, it may identify a putative develop
maintenance of accurate human reaching. The study presentental mechanism that explains how this change from pre-
a range of experiments, using two distinct computationateaching to reaching takes place as well as highlightingadd
architectures, on both learning and realignment of robotitional features of the remapping process. This study assess
hand-eye coordination. Analysis of the results provide inwhatis currently known about the biological mechanism and
sights into the putative parameters and mechanisms relquirérom that derives a robotic model which is subsequently val-
for fast readaptation and generalization from both a rabotiidated.

and biological perspective. Reaching can be executed in many different situational
and environmental contexts but, as a general rule, it occurs
immediately after saccade to the target object and the sub-
1 Introduction sequent determination of the object location in eye-cexter
coordinates. It has previously been considered that a com-
Cross-modal development describes the integration of semon reference frame between hand and eye is required to
sory systems to create a unified view of the sensory worlderive a movement vector, which can be achieved by either
[23]. The transition from inaccurate pre-reaching to accua) coding both the target and hand in body-centered coordi-
rate reaching observed in infants [22] is considered to be anates or b) coding hand position in eye-centered coordinate
example of this phenomenon, whereby links are establishedsing single neuron cell recordings within the part of the
between the different coordinate reference frames of hanbrain responsible for reach (posterior parietal cortex} du
and eye. Once established, the relationship between the#gy various reach paradigms, data has suggested a common
mapping systems also has the ability to change, for examplepding with regard to the latter [4]. However, the mechanism
as the hand-eye relationship alters during child growth [2]may also contain greater flexibility than this and other stud
suggesting long-term plastic attributes of the systemdit-fa ies have suggested that different modalities (visual, prop
itate adaptive processes. Investigating the mechaniserund oceptive, auditory) have their own spatial maps and that the
lying these mapping and remapping processes may conferedominating reference frame can change depending on the
context [2,23,16]. From a developmental perspectiveyearl
learning to reach is associated with error of target locatio
This occurs up to 3-5 months of age and is often referred
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that it is not dependent on visual guidance and that after vian accurate representation of of the aforementioned devel-
sual or even auditory location of the target, proprioceptiv opmental mapping but rather a secondary adaptive remap-
information about hand position is sufficient to attain an ac ping process more in line with the changes in eye-hand re-
curate reaching action [6]. However, it is also known thatlationship that take place during childhood growth [2]. Red
the onset of reaching in blind infants in response to audiding and Wallace [16] have postulated that adaptation can
tory cues is delayed (8-11 months compared to 3-4 monthse divided into two separate components, calibration and
in sighted infants) [9], which may suggest that there is aalignment. Calibration is the result of cognitive learnprg-
predominant role of vision in the initial development of a cesses and can operate through a range of available modali-
common mapping system between modalities. In this conties in order to make the required short-term strategicsadju
text, the inability to accurately determine the locationaof ments at the time of the task. Alignment describes the rela-
target during the prereaching stage may be the result of Yjonship of the various modality-specific and common topo-
inaccurate proprioceptive information about hand positio graphical reference maps where the relationships between
2) inaccurate transformation of this data within the commorthese maps can change as a result of perceptual discrepan-
reference frame (i.e. poor mapping between one referenages (perceptual learning). The latter is considered tdbe t
frame and the other) and/or 3) inaccurate motor commandsimary process that occurs during childhood growth as a
to realize the derived movement vector. Although propriotesult of slow and unperceived changes in the relationship
ceptive development starts prenatally [17], predomin@ati between hand and eye [2]. An interesting and potentially
plementation of this system concurs with the onset of acuseful characteristic of alignment from a robotic perspec-
curate reaching [20], thus this may account for some of théve is that it appears to generalize across space i.e. alglob
initial pre-reaching motor error. Early development isoals shift in the relationship between maps occurs as a result of
associated with immense dampening and fine tuning of mgperceptual learning at one point [2,16]. Alignment (or re-
tor action [3] which may also explain some of the transitionalignment), may therefore be an extremely efficient method
to accurate reaching. Relatively less work has been carrieaf readaptation whereby not all points in space have to be re-
out in the second factor listed above, the developmental prdearnt if the arm-eye relationship changes. The second aim
prioceptive and visual feedback mechanisms that log cbrreof this study, therefore, was to investigate realignmerd as
and incorrect kinematic sequences at the point of accuragotential form of readaptation and in particular to idgntif

or inaccurate reach to target respectively. Research by Thevhat factors need to be characterized as part of the imple-
len et al. (see [19] for review) has suggested that thisaihiti mentation process.

mapping by infants occurs through a 'trial and error’ pro-

cess where a wide range of movement parameters and solu- i

tions in different contexts and modalities are exploreckove2 Robot systems, control and realignment test

time in order to calibrate reach movements. For example
mapping between modalities could occur when 1) an objec

is touched and then saccaded to, 2) when an object is IOI=he robot hand-arm system, the active vision system and

cated through wsgal or auditory stimuli and then touCheqheir spatial organization on and around a table can be seen
or 3) when an object is placed and then saccaded to. BI-

. oo in Figure 1. The arm and active vision systems operate in-
ologically, a calibration process that could account fdr al 9 y b

of these different modalities and situations is still unkmo dependently but are governed by a central unit which we

. . . . . describe later in detail. Hence, both sub-systems are wiitho
One possible method is a simple mapping strategy that links . :

. o o .. any direct connection or have any access to a shared world
the location of the object identified through one modality

with another. This is referred to here as a learnin schemrerzmde"
' 9 Developing robust hand-eye coordination requires that

for cross-modal mapping and the first aim of this study wa . . ; .
. . . . he sensorimotor mapping which represents the relation be-
to examine this strategy (using the aforementioned example

. . ; ) Wween object position (known by the arm, but unknown by
3 [known propnocepuy € location through object placementthe vision system) and tilt-verge configuration of the uisio
mapped to eye-coordinates through saccade), from the pesfi/stem (unknown by the arm) is somehow learnt. Both, the
spective of robotic efficiency (rate of learning) but also to ' .

o ) ) . . ) location of the object on the table and the tilt-verge configu
critically assess it as a putative biological mechanism un

derlving the bhenomenon of cross-modal manpin ration are the interaction outcomes of the two indepengent|
ying P ppINng. working sensorimotor systems or modalities (arm, active vi

In parallel to developmental mapping, adults can also bsion system). The learning outcome should enable the com-
forced to make mapping adjustments within prism and forcglete system to “reach and grasp where it looks” and to “look
field experiments. This readaptation is obviously in the-conwhere it reaches to.” In other words, the system needs to
text of an established visuo-motor map and, thus, althaugh learn its hand-eye coordination based on already estahblish
is sometimes referred to as early learning, it is probabty nobut “unconnected” reach- and gaze-control.

.1 Introduction
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Fig. 2 Example for the reduction (top right) of the original imagey(
left) and the resulting filtered image date, before (botteft) And after
triggering gaze-control (bottom right).

Fig. 1 Active vision and hand-arm system.

2.2 Vision and hand-arm system driven into the image center. To achieve reasonable perfor-
mance,RGB image data of resolution 1032x500 were cap-
The active vision system integrates two cameras (both prdured and reduced to 129x62. Each RGB color value in the
vide RGB image data, 1032x778, 25 frames per secondpduced image represents the mean value of the color val-
mounted on a pan-tilt-verge unit. In this experiment we didn ues in the corresponding 8x8 sub-field in the original image.
use the pan movement. Hence, the active vision system hasi®e reduced RGB images were filtered with respect to a de-
degrees of freedom (DOF), that is, one verge movement fdined color, here blue. Non-zero values (grey pixels) in the
each camera and one tilt which moves both cameras. Eadittered data indicate the appearance of the filtered color in
motor can be controlled by determining the values for speethe image. Thex andy positions of the non-zero values in
or position, given in radiansdd). relation to the image centexy yc), relate to specific speed
The robot arm and hand systems (SCHUNK GmbH &valuess, ands,. These values are used to specify the speed
Co. KG) have 7 DOF each. We make use of only five DOF ofvalues of the motors controlling verge and tilt (Fig. 2). The
the arm in order to place the robot hand at certain positiongelation between andy and speed values is linear:
on the table. The hand system has three fingers. All fingers

have two segments each equipped with a pressure sensitive S = M,
sensor pad. Since the control of the grasping is out of the 2%

scope of this paper we won't give any further details about 2(y—Ye)
the hand system and its control. S = T

where X and 3/. are the horizontal and vertical resolutions
2.3 Reaching and gaze-control of filtered image, respectively. The actual speed values of
the vergev and tiltvy motors are calculated as follows:

The domain of the reach movement, referred to hereach
space is represented as a 2-dimensional polar coordinate Vi 1= G- S,
system because the objects are only located on a table, a R
2-dimensional space. Taking the base of the arm as refer- W= Gy
ence, a table location is fully determined by the distatice wherecyy are constants for normalization whig ands,
(cm) and the planar angle of the armn(rad) (see Fig. 1). represent the mean values of all non-zero values ahds,
The inverse kinematics mapping between the 2-dimension&hlues in the color filtered image data, respectively.
reach space and the 5-dimensional joint space of the arm is In order to avoid conflicts between different tilt values
solved analytically which won’t be described further. It is resulting from the different visual input of left and right
important to note that arm-control only places the hand orwamera, the left camera controls two DOF (its verge and the
the table with respect to a given distance and relative artilt) whilst the right camera determines only its own verge
gle (d,a). The actual table space the system is operating imovement. The consequence of this is that the right cam-
is defined by the range of distandeand anglea, here we era cannot always drive the visual stimuli completely into
have:—1.4 < a < 1.4(rad) and 30< d < 60(cm) spanning its center.
an area of 3944n?. The signals coming from the gaze control drive the mo-

The purpose of the gaze-control is to move the camera®rs of the tilt and verge axis directly until the stimulus is
in such a way that the visual stimuli, a colored ball, will be shifted into the image center. At this point, the motor signa



Learning the cross-modal mapping between two spaces
is provided by a form of case-based learning strategy. As-
learning scheme suming two spaceX C R" andY C R™ of arbitrary dimen-
sion, where

central unit

A X=(X1,X2,---,%) € X

® 'R R ) and
........... e y=(Y1,¥2,---,Ym) €.

|

: A mapping.# stores the pair¢,yt] representing concrete

: examples at timeéindicating how one point in one spaie

[ is related to spacé. This is referred to aslank. Since there

: is direct coding between links we also have an additional
: property of bi-directionality i.ex' refers toy! and vice versa.

I This learning scheme is inspired by a previous methodology
: [15] used to learn the sensorimotor mapping for saccadic eye
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movements in a robot system.

Itis important to note at this stage that, to achieve a stan-
dardized relationship betweehandY, a metric is required
for both spaces. Stored links within the mapping are unjikel
to occur again, thus, a definition of distance (i.e. a metric)
between the points in space is required to allow a search for
the 'closest neighbor’ stored in the mapping (where 'closes
neighbor’ leads to the best estimation of the corresponding
point the mapping can provide).

For each space in a mapping a different metric can be
become zero and the system comes to a standstill indicatir@PPlied. Within the system described here, the distance mea
that it has focused on the stimulus. Such a halt position i§Ure in the reach space is based on a transformation from po-
fully determined by the motor positions of the tilt, left and lar coordinate system to the 2-dimensional Euclidean space

right verge axis, pir , PuL, Pvr), and is referred to here as representing the table. This measure ensures that the dis-
thevision space tance between two points in reach space represents the ac-

tual distance on the table. In the vision space, however, it i
harder to derive priori a metric which matches with the
actual distance in table domain. Moreover, because it is the
simplest and most commonly used metric, all three dimen-

. . . ._sions of the vision space were represented by the same phys-
Figure 3 illustrates the general system architecture WhICR:al dimension. radians

combines the arm and the active vision systems. Each sys-

tem acts independently and thus can be seen as separate sen-

sorimotor systems. Coordination between them is achieveg Two computational architectures for learning and

by the central unit which provides the substrate for leagnin realignment

the relation between arm and vision system. In the case of

the arm system, the central unit can set target coordinates the following, we introduce the two computational archi-

(d, a) in the reach space which triggers specific hand movetectures. Both provide the facility to learn the robotic than

ments. In addition, it can request state information, for exeye coordination and also its re-adaption or realignment if

ample, the current hand states or whether the target positiahe physical hand-eye configuration or other external enti-

has been reached. Regarding the active vision system thies change.

central unit switches on and off the gaze-control and can In the first architecturéd, (Fig. 4) vision and reach

read and set positions of the motors driving the tilt, leid an space are directly coupled by mappi#y Starting with the

right verge axis(piit » PvL, PvR)- fixation of an object on the table, the gaze-control deliv-
Bridging the arm and vision system, the central unit esers a concrete point in vision spacei , pvL, pvr). For this

tablishes hand-eye coordination by learning the relaten b point, the mapping? provides an estimation in reach space

tween the reach and vision space resulting from the intera¢d®, aF) which determines the target for the next reach ac-

tion of the vision and arm systems in their shared environtion. Once the robot arm has reached the target coordinates,

ment, the table. it executes the grasping routine, i.e. it picks up the object

o
s
c
o
(&)

joint—control |
camera righ

©
c
@
=

arm system

Fig. 3 System architecture

2.4 Overall system architecture and learning substrate
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Fig. 4 Computational architectus&, which directly links vision and (I (R * DRy BLHD B R A P
reach space.

reach and vision space mappirlg %
In other words the robot picks up objects which the vision I 1(dE, af)
system has previously saccaded to. o do)y) oy
Because of the bi-directionality of the mapping, the arm } arm system

system can also guide the vision system. If the arm places éi’—ri]g. 5 Computational architecturAs which learns the alteration of

objecton the table then the corresponding coordin@es)  the vision and arm system configuration via the relativet shithe
in the reach space can be used to generate an estimationvafual space.

saccadd p, , p5 , p&). This point in vision space tells the
vision system where to “look” for the object. Hence, sac-

cadic eye movements can be modulated proprioceptively byhe a_\s_sumption behﬁnd this architecture is that the ofisets
the arm system. In the following, we will use symb@las the vision space which are needed to compensate changes

a general reference for mappings linking reach and visiof arm-vision configuration are highly structured and thus

space directly. Links of such mappings are written as: potentially constant across space. Theoretically theefo
mapping.7 will contain fewer links compared wit®# and
[(d,a), (Pl , PvL, PvR)]- therefore realignment for A would be expected to be much

faster with fewer learning examples required.
With regard to realignment, whereby the spatial relation  the general data flow of this architecture starts with a
between active vision and arm system has altered, the COMBpecific active vision system configuratiopr , PuL, PvR)-
plete mappingZ must be re-learned. In an attempt to over-hjs s the input for” generating the estimated offset for

come the problem, a second architecture is introduced whiclpe three vision system components tilt, verge left andeverg
allows the system to learn the shift in visual space only anﬁjiﬁht:

thus compensate for the changed relationship between reac
and vision space. This architecture, referred toAgs is (A ptEnt aAPSLaAPSR)-
based on the already learned and fixed sensorimotor ma
pingZ, but works in conjunction with a second mappi#g
which provides the substrate to learn the relative shiftian t
vision space. (Pritt + A Pt » PV + A Pe, PR+ APGR),

The second architectuey is illustrated in Figure 5, it
contains the two mappings” and# where the latteZZ re-  is the input for the fixed mapping, leading to the final
mains unchanged (grey box). Mappixg (white box) links  position estimation in the reach space.

?'_he sum of offset and current configuration

absolute tilt-verge values with tilt-verge offsets valaesl The links for mapping”, however, are derived from the
thus essentially maps between two 3-dimensional spacesurrent absolute tilt-verge configuratiop , pv., pvr) and
The corresponding links are written as: the estimated absolute tilt-verge configuratipf, , pE; , p5r).-
The latter is derived from the fixed mappiggin relation to
[(Ptite, PuLs PvR), (A Pritt s A PuL, A PR)]- the current arm positiofd, a), i.e. the proprioception of the

The summation of the tilt-verge values representing the currObOtIC system:

rent configuration of the active vision system and the offset £

values, determine a new poiRtin the vision spaceP is the Apit ptgt Prilt
point in Z which relates to the point in reach space repre- Apw | = p\éL — | Pw
senting an estimate of the required reach posit@n af). Apr Pvr PR



4 Schema for permanently adapting mappings

Box 1. Protocol for learning and re-learning mappings:

In order to enable the system to learn or to build up au-
tonomously the mappings that link reach and vision space
without human intervention, the arm system ‘presents’ to
the vision system an object at a known position (i.e. propri-
oception) and initiates the gaze control leading to a specifi
tilt-verge configuration. This true or absolute link betwee
the vision and reach space is the cornerstone for develop
ing the mapping for both computational architecturag (
or A~). In the following we introduce the complete proto-
col for the simpler architecturéy,. This protocol (see Box
1) is able to adapt to changes of the environment because
a) combines the acquisition and the evaluation of new links
and b) alters or deletes links already present in the mapping
depending on their ag€)j.

In the first step of the protocol a mappidgg is initial-
ized. MappingZ can either be empty or it can already con-
tain links. Additionally, the tolerance value for the mini-

mum allowable error between the estimated and actual obt

ject position and the minimum ag@ of links are set.T
defines the threshold which determines whether a new link

needs to be added to the mapping in order to improve mapt

ping accuracy. Estimation errors beyond this threshold ar¢
counted as wrong estimations and are removed.

After initialization the arm picks up the object from a
pre-defined position on the table (st&pand selects a target
position(d, a). The selection strategy we apply guarantees
equal distribution of links in reach space. This is achidwed
taking into account the minimum distance to all links within
the current mapping [13].

Having selected a new target positioth a), the arm
reaches to this position, places the object on the table an
initiates the gaze-controB(and4). The execution of the
gaze-control results in fixation of the object which is repre
sented by a specific tilt-verge configuratiomi , pvL, Pvr)-
This process creates a new example of how vision and reac

space are related and is represented in form of a link:

[(d,a), (Pt , PvL, PVR)]-

1 Initialize mapping #
1.1 set tolerance level T and
m ni num age Q of %,
2 Pick up object
2.1 nove armto pre-defined object
posi tion;
2.2 pick up object;
2.3 nove arm away;
3 Select a target position in reach spacéd, a)
4 Execution of reach and gaze
t4.1 nove the armto the target
position (d,a);
y 4.2 put the object on the table;
4.3 nove the arm away;
4.4 start the gaze control;
4.5 wait until vision system has
fixated the object on the table;
4.6 read the active-vision system
configuration (P, PvL, PvR) ;
4.7 stop gaze control;
5 Learning
5.1 (d5,af) :=E(Z, prt, P, WR);
5.2 calculate estimation error zthe
di stance between estimted and
actual position (df,a®)and (d,a);
5.3 for each link in £ increase its
age by 1,
5.4 if(z<T)
then: set age of the link to 0 which
has provi ded the good estinmation;
esecadd new link [(d,a),(pit, P, PVR)]
to %,
5.5 renove link in £ with highest age
’ value, if its age is larger thanQ;
6 Pick up the object
6.1 nove armto the target position;
6.2 pick up object;
h6. 3  nove arm away,
7 Go backto3

At this point, however, it is not confirmed that the new link is increased by 1 (step. 3) and evaluated with respect to

will be added to mapping’. This occurs at step where the

the allowed tolerance (5. 4). If errorzis smaller than the

system evaluates this new link according to the error valudefined tolerance, then no link is added, however, the age

z (5. 2) which is the distance between actudl, a) and

value of the link generating the 'good’ estimation is setlbac

estimated(d®, aF) table position. The estimation is basedto zero. If the mapping delivers an insufficient estimation,
on the current mapping’ and the tilt-verge configuration z > T then the new link[(d,a), (pit, Pv., Pvr)] is added

(Ptiit » PvL, PvR), Written in stegb. 1 as:

(dEaaE) = E(f@a p[”t ) pVLa pVR)

Hencezindicates the current performanceZffor this con-

crete example.

having age value zero.

After evaluating and performing the corresponding up-
dates, the oldest link it is examined. If its age value is
larger than the minimum age val@g it will be removed
from Z. This process guarantees that all links are removed

Having calculated the discrepancy between estimated afrdm the mapping which haven’t been contributing to the

actual table positionz], the age value of each link i

mapping’s performance over the l&3tearning cycles.



Box 2. Protocol for testing a given mapping:

Initialize given mapping #

Pick up object

Select a target positions in reach spacfd, a)
Execution of reach and gaze

Test

1 (d5,aF):=E(Z, pir, L, PR);

2 calculate estimation error zthe
di stance between estimted and
actual position (d¥,af)and (d,a);

3 print z
Pick up the object
Go back to3

qUoTAwWN R

~owu

shifted arm-vision configuration SP

; ; ; ; Fig. 6 Visual input of left and right camera in the centered armevis
At this stage the mapping is updated according to the configurationCP (top) and after the shif6P (bottom) in the starting

given example and its current estimation performance. Thgition, i.e. before triggering gaze-control.

robotic system can then prepare itself for the rleatning

cycleby picking up the object (stef) and restarting at step

3. 2. architecturéd\y; used in both the shifted and centred po-
The protocol for a global test of a learned mapping uti- ~ Sitions to quantitatively describe the offset in space when

lizes the same protocol for learning with some alterations the eye-arm physical relationship is shifted;

(Box 2). For testing the evaluation of the estimation and3. architecturéd; integration and validation of the inde-

the mapping update, processes in shegre obviously not pendently generated offset values;

needed anymore and are therefore removed with only dis4. architecturé\; learning the offset value with an empty

tancez between estimated and actual object position being Mapping#” and optimization of thé\ s, architecture in

calculated. the context of the two variables Q (minimum age of link)
The overall protocol for architectude is the same as and T (tolerance);

that for A, i.e. the evaluation of the estimated object po- 5. architecturéy, andA ; assessment of realignment per-

sition is performed exactly the same way. In addition, the formance for both architectures in the context of already

update of mapping” is also exclusively determined by esti- ~ existing mappings within the architectures and also in

mation of error valug, tolerance value and minimum age the context of the two variables Q (minimum age of link)

Q. However, the estimation of the table position does need and T (tolerance);

an additional step because two mappings are now involved

(¥ and ). The calculation of the links for the adapting

mapping also requires additional processing because it i$.2 Learning with architectur&, andA

now based on the estimated and the actual tilt-verge values

(compare Fig. 5). 5.2.1 Introduction

The following sections detail learning (i.e. without reglt
5 Experiments on learning and realignment ment) of the two position€P andSPusing architecturéy,

in order to obtain a) a baseline measure of accuracy in the
5.1 Introduction context of variable® andT and b) to allow a mathemati-

cal description of the required transformation. The laéer
The sequence of experiments carried out on learning (cofhen used as the offset valug)(within the A~ architecture
struction of an initial map) and realignment (alteratiomof  and this is subsequently compared, in terms of error values,

existing map) are presented in the following sections. Thego the same architecture when offset value(s) are obtained
latter was achieved by moving the vision system to a differthrough the learning process.

ent location (shift of approximately 3¢). Figure 6 illus-
trates the difference in visual input between both pos#jon
referred to here asentered position CBndshifted position
SP. The following set of experiments were carried out:

5.2.2 Learning mapping in Ay

Learning the mapping in a specific position without featur-

1. architecturé\,; optimization of the learning process in ing realignment was done for different parameter settings
the context of the two variables Q (minimum age of link) for capacityQ (minimum age) and tolerandein both arm-
and T (tolerance); vision configuration€P andSP. Each run had 300 learning



cm
Peir = Prit + Avite (Peite ),
Py = PvL+Av(pvi),
PuR = PvR+ AvR(PWR);

Aty vLvry (X) is the function determining the offset for a

specific value position valupyii v vry and p’{tilt VLVR! is

the shifted{tilt,vL,vR}-component ofp’ which is the point

fed intoZ in order to get the estimation for the target coor-

dinates in the reach space (compare Fig. 5). The genefated

values are presented in Appendix B (Fig. 14). Three approx-

imations of the offsets were applied, regression based on

quadratic polynomial, linear function and the overall mean

value. The error values achieved with these approximations

are presented in Table 2. In comparison to the original data

cycles. The results, based on an additional independent teédable 1), each offset approximation shows a drop in perfor-

set of 100 examples, are summarized in Table 1. mance (increased error). However, all approximations were
Figure 7 also presents the average and standard devilill significantly better than having no offset at all; sée t

tion for the run with minimal tolerance and highest mean- N0 realignment” entry in Table 2.

ingful minimum age T = 0.0,Q = 300) for both both arm-

vision configuration€P and SP (respective mapping®. ~ ©-2-4 Leaming the mapping” in A

and Zs). For both mappings, the lowest average error is

achieved after 300 learning cycles, which means the map?'zo investigate the capability of the system to learn theedffs

ping contains 300 links. This concurs with previous findingg" e visual space, several runs were conducted systemati-
[13] where the error curve saturated between 250 and 300

2

50 150 250 50 150 250

Fig. 7 Average error (left) and standard deviation (right) of theable
location €m) over the learning cycles for the centered) and the
shifted position #s) for architectureA,.

learning cycles achieving a maximal accuracy of hand-eye learning results foA, error €m)
coordination of 20 +/- 1.2cm .
. ) . . . parameters| arm-vision nmb. of

A visual representation of the relationship between vi- Q T configuration|| avg. dev.|| links
sion and reach can be gained through plotting and colorcod- ~300 0.0 CP 20 1.2 300
ing the points in reach and vision space (i.e. 2-dimensional SP 20 1.2 300
sub-space) (Fig. 8A). The shape of the set of points in the
vision space of the mapping is surprisingly similar to the 2.0 g'; 2'8 ig ggg
actual working space of the robot arm. ' '

Fig. 8B presents the difference bewteen the two map- 4.0 cp 25 14 168
pingsZc and%s in vision space (Fig. 8B). It is interesting SP 26 14\ 175
to see their relation in the vision space and the figure sug- 6.0 cp 29 15 110
gests that a 3-dimensional translation should shift one map sp 33 17 108
onto the other. This observation highly supports the origi-
nal hypothesis that realignment might be provided through 8.0 cp 37 21 68

" U . SP 38 21 76
learning the translation in the vision space only and, that
learning the parameter for this translation and represgnti 10.0 cP 42 2.4 48
it through the mapping” for architectureA »» should sub- SP 40 24 49
stantially reduce the number of links required for accurate 250 0.0 cpP 25 16 250
reaching as compared to complete re-learning of the map- SP 22 14| 250
ping in architecturé,. 200 0.0 cp 27 1.7 200
SP 27 17 200
5.2.3 Approximating mapping” in Ay 100 0.0 cP 41 27 100
SP 41 29 100

Based on data provided by the two mappit¥gs and%s  Table 1 Average error and standard deviation of the estimatiorr erro
resulting from architecturd, we manually derived an ap- (in cm) after 300 learning cycles for different learning paramett-
proximation of the offset value\) for all three components m‘f fc;:] a':r'ltei‘\:gesfwgl addition number of links in the resulting
(pilt , PvL, Pvr) that determine the vision space. pPINg are g '



tilt

verge right

B -0.4 0.0 04

Fig. 8 A: Points in reach (left) vision space (right) establishing th
links in Zc. The same color indicates the same liBkPoints in vision
space establishing the links of the learned mappiziggblue) andZs
(red). Both mappings are plotted in the same reference fidazely
indicating the different location in the vision space.

cally using parameter values for(tolerance) and (mini-
mum age). Since the learned mappi#gin Ay is also de-
termined by the underlying mappig in this architecture,
each parameter setting was tested in both arm-vision config-
urations, centered and shifted i.e. when the system learned
the offsets in the centered positicks was used and con-
versely, when the system learned the offsets in the shifted
positionZc was used.

mapping¥ . During the test phase, 100 examples were used.
Learning results using low values for age (Q=10, 30, 60)
and lowest possible tolerance £ 0.0) are illustrated in Fig-

learning results foA » error cm)
parameters| arm-vision nmb. of
Q T configuration|| avg. dev. links
100 0.0 SP 5.0 47 100
CP 53 46 100
200 SP 53 49 200
CP 5.0 42 200
250 SP 56 55 250
CP 51 43 250
300 0.0 SP 6.0 57 300
CP 46 3.8 300
2.0 SP 57 56 255
CP 45 3.6 248
4.0 SP 50 53 156
CP 48 4.2 164
6.0 SP 5.0 42 107
CP 42 33 70
8.0 SP 35 18 21
CP 36 17 10
10.0 SP 55 3.0 12
CP 46 24 6
100 8.0 SP 36 19 16
CP 36 17 9
50 SP 35 18 12
CP 36 17 8
40 SP 36 1.8 9
CP 40 21 9
30 SP 40 22 8
CP 41 23 7

Table 3 Average error and standard deviation of the estimatiorr erro
300 learning cycles were conducted during the learningin cm) after 300 learning cycles for different learning parametat-

phase of the experimentwith each run starting with an empt jng for architectureA . In addition number of links in the resulting
(g'lapping are given as well.

ure 9. One can see that the smaller @e&alue, the higher

the fluctuations of the average error over the whole lear
ing process. Moreover, the final estimation performance
ter 300 cycles doesn't indicate any improvement compare

approximation results iA & error cm)
avg. dev.
. quadratic 3.7 2.2
linear 41 21
mean value 45 2.2
no realignment 294 85

Table 2 Average error and standard deviation of the estimatiortresu
ing from the approximation of mapping” in architectureAs. For
comparison error values are provided if the system is ngptauato

the new configuration at all (“no realignment”).

with earlier learning cycles in these runs. Increasihee-

nduced substantially the number of fluctuations but average
aferror remained high (see Table 3). In contrast, starting wit

§ = 300 and increasing the tolerance value lead to small
improvements of the average error (Table 3). Interestingly
there appeared to be an optimal value To(8cm for both
configurations) with the average error significantly smalle
compared to other tolerance values.

With the tolerance value fixed &t= 8.0, reducing th&)
resulted in a drop in estimation performance but only@or
values less than 50 (Table 3). Using these optimahdQ
values T = 8.0, Q =50), the learning process was assessed
(in terms of average error and number of links) for both
(centered configuratio@P) and.”s (shifted configuration
SP. Both mappings are presented in Figure 10A and it is
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10 ) S 120 s
cm #
cm —
6 | ys 8
4 8
2 e
4 4
50 100 150 200 250
Fig. 9 Average error of different learning of architectukg-. Each run 0 0
is over 300 learning cycles for differe@@values whileT = 0.0. A 100 200 100 200
evident that, in both cases, the final mapping contains only -0.5 ‘ ‘ )
a very few links (8 inc and 12 in.%s) but that it requires - rad!
between 50 and 100 learning cycles to attain this optimal =
arrangement. The points in visual space required to establi -04F ©
the links in.%¢ and.%s are also plotted in relation to the ®® © Q
points in the mapping¥c andZs (Fig. 10B, C). I ® @
-0.3 : : : : :
-0.4 0.0 0.4 rad
5.3 Experiments on realignment B verge left
Having established optimal parameter settings for both ar- -0.5 ‘ ®
chitectures we come to the experiments on realignment. For ~ _ rgd | @
all of the following experiments it is important to understa =
that the alteration of the arm-vision configuration is an ex- -0.4; ® © O® |
ternal event. The robotic system doesn’'t have any trigger °
telling the process that something has changed. Internally I © ®® g ©
the external change is going to manifest itself by the occur- -03 ‘ ‘ ‘ ‘ ‘
rence of poor estimations only. These poor estimation re- -04 0.0 0.4 rad
sults determine specific alterations@fin A, or.# in Ay, C verge left

respectively. Hence, the mapping is permanently driven t@ig 10 A Learning process o#% and.#s (T = 8.0 cm Q — 50) in-

self-adjustment according to the match of internal predicsdicated by the average estimation error (left) and theirtemof links

tion and actual object position. (right) over the learning cycle®, C: The points in visual space (black
circles) that establish the mapping.itt (B) and.s (C) in relation
to those points (black dots) establishing the mappi#ggB) and #s

5.3.1 Realignment in A (©).

In applying architecturéy, for realignment, the same pro- ) o

tocol as used for the experiments above were implemented AS Previously observed, the minimum a@eand toler-
except that the arm-vision system configuration changed afNce values determine the level of accuracy; loQemlues
ter 200 learning cycles and there were 450 learning cycles iRroduced higher average error whilst settingsTdrad the

total over both the learning and realignment phases. Lear/®PPosite effect.

ing took place using six permutations ®fand Q values ~ However, more importantly is the impact &f on re-
(2.0, 40, and 60; 100 and 200) that were then subsequentlyalignment. After the shift, it is apparent that the system re
tested using 100 test samples as before. quires exacthyQ learning cycles to reattain the minimal error

Figure 11 illustrates the development of average errotevel. This is clearly indicated by the drop of the standard
and standard deviation of the table position estimation fofleviation at learning cycle 400 or 300 (for Q=200 and 100
the six different parameter settings. The jump to much largerespectively) despite the fact that at the point of shifaie
average error values at learning cycle 200 indicates tlie shiing cycle 200) the number of links is very different for each
in arm-vision relationship. Driven by the estimation es;or mapping (see Fig. 12).

Z is updated, and step by step, the system is adapted to the Tolerance and minimum age also influence the growth of
new relationship between reach and vision space. links in a mapping. For example, whéhis set at 200 (see
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%m, . T=20 %m, ST T T=20 20 . 1=20
H _ - Hr ! =100 |
20 i Q=100 o4 Q=100 'Q
£ L 100 T=20
1 .
lOX \ 10, ™~ ' Q =200
[ ¢ M— 5 0 1
Oo 200 400 % 200 400 0 200 400 400
0T T T T=40 | 30 T T T T T T=40 20 !
cmp x Y 4 comp o #
20k i Q=100 o0t Q=100 | .
: \ 1t — 109 , T=40
10 | 10 ""\.\* ' Q=200
r : " % h 1
Op 200  4oc %0 200 4o 0 200 400
— — 20 20
301 v T=60 | 30 T=6.0 | M M
20+ i Q=100] oot Q=100 |
‘ o | 10 10 T=6.0
10f{ | 10+ "\2 , ' Q=200
L 4 ’5\ x 1 !
0555400 %0 — 200 400 0 200 400 0 200 400
Fig. 12 Number of links and its evolution over 450 cycles of the re-
%2 T T=20 %2 T T T T=20 alignment protocol for differer® andT values, same runs as in Figure
I y — | I - | 11.
20! i Q=200 oot Q=200 |
R N s -
OL | 05 - 5.3.2 Realignmentin A
0 200 400 -0 200 400 Experiments on realignment for architectdte were con-
30 T T=40 ] 30 T T T T=z0 ducted for optimal’ andQ values T = 8.0, Q=50) derived
cmt ; 1 m 1 . :
20+ i Q=200 ;0, Q =200 | from the experiments on learning above (average error val-
k ] , ] ues of~ 3.5 cm)(section 5.2.3). The system started in the
10L | 100 ’_\\x 1 centered arm-vision configuration with an empty mapping
0’ —— 0"-— —_— ] for .7 while Z was initialized withZc. For 1800 learning
0 200 400 0 200 400 cycles the arm-vision configuration was changed every 300
T FZe0 ] 30 F-65 cycles with the system repeatedly altered between the same
cm | H Q; 2-00 1 emt Q; 2'00 ] configurations: centered, shifted, centered and so forth.
20; i | 20: | The results for the average error and number of links
10f \— 10} f’\,'._ are presented in Fig. 13. The dark grey regions in the dia-
— ] g L gram indicate the shifts in arm- vision configuration and the
—— bt dicate the shift li t dth
00 200 400 00 200 400 subsequent 50 learning cycles. The light grey regions indi-

Fig. 11 Average error (left) and standard deviation (right) of tfie o C&t€ that the robot system is acting in the shifted position
table location ¢m) and its evolution over 450 cycles of the re-learning (SP) where it learns the the non-zero offsets. Whilst in the
protocol for differentQ and T values. The arm-vision confi'g'uration white regions, it is within the centred positicBR) and thus
e e er 200 ks Toese yalhes et fom AW shoud develop a mapping generating ofset values of zero
indicates the error level of @ cm since the underlying mappingi&c. This should, therefore,
also provide an equivalent estimation performance to that
previously reported for architectudgy (2.0 +/- 1.2 cm).
Fig. 12) the difference in the number of links for the threeHowever, the results show that the system isn’t able to learn
T values is very distinct during the first 200 learning cycles;a mapping with zero offset values after a shift; error val-
the largerT values producing slower increases in the num-ues of 35 +/- 1.8 cm for bothCP and SP. The plots also
ber of links. In addition, comparin@ = 100 versu€® =200  show that reaching this error level requires more tQan
whenT is set at 6, the number of links saturates betwee®0 learning cycles, in contrast #,. Similar results were
learning cycle 100 and 200 for the former but continues toecorded wherA was initialized using mapping/s and
increase in the latter. Hence, tii@values determines the thus are not presented here.
increase of links in the mappings before and during realign-  Finally, the data also show that, in contrast tofhgar-
ment. chitecture, the number of learning cycles required to reach
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| | task where an empty mapping is exposed to a non-changing
30 | + ; arm-vision configuration which doesn’t need to involve an
cm | i element of ‘forgetting’. Thus, the similarity of the mean er
20 . | . s rors for learning and realignment show that it is the archite
[ ¥ | i ture and not necessarily the context that determines tleé¢ lev
10 i *’\k X of accuracy that hand-eye coordination can achieve.
PO ~
0~ |
600 1200 1801 62 T_he impact off andQ on accuracy and speed of
learning
# Regarding architectur&, where a direct coupling of vision
30 and reach space is implemented, the experiments show that
i tolerancel and minimum age valu@ directly influence the
20 final accuracy of the mapping. Overall, lowErand higher
I Q values produced lower mean errors. This relation holds
10 ' because each additional link # increases the average ac-
0 ‘ ] curacy and, the number of links is in turn determined by

600 | | 1-200‘ | 180C T (link addition) andQ (link subtraction) values. This is the

Fia. 13 Evolution of averade error (ton) and number of links (boftom case for both learning and realignmenfip. However, with
re{gﬁlting }/rorlillarchite::/turrgy te[stin(g rg)alignm(l;nt ovrer 1;300SI((aarr%ing partlcular regard to speed of learning 9'“””9 realignmient,
cycles forT = 8.0 andQ = 50 in theCP andSP. The base line inthe IS @lso apparent that larger values@fincrease the over-
top diagram indicates the value53cm White regions represent the all number of links (and thereby reduce the speed of learn-
CP, light grey theSP. ing). This is because increasiqincreases the number of
learning cycles required for links to reach the minimum age

minimum error is not determined by ti@value, with sig- therel?y increasing the length of t!me Fhat they are helden _th
mapping. Because link removal is critical to the readaption

nificantly more than 50 learning cycles required. Moreover, _ e .
the number of learning cycles and the number of links reProcess (i.e only when the last link in the mapping represent

quired to obtain the minimum error value are substantiaII))ng the old / wrong arm-vision configuration is deleted is the
higher forSPcompared t€P configuration system completely adapted to the new situation) this means

that there will always be a tradeoff between between accu-
racy and number of learning cycles during the realignment
process.

The tolerance valu& in architectureA,, however, has
no direct impact in the number of learning cycles needed
for complete realignment. Therefore, the minimum value

Summarizing the results of robotic hand eye coordination] — 0-0cmcan be applied im providing optimal error
with respect to the achieved error levels (Table 4), archite levels fpr a giverQ without increasing the learning cycles
ture Ay, performed significantly better thaky, for learning for reallgnment. ) ) )

and realignment. The reason tiat did not perform as well Regarding architecturé,;» during the learning phase,
asAy is due to the the combination of the two mappings theré was also an optimal range fb(8cm) andQ (50) in
and.# . Both result from physical measurements and therel€'Ms Of generating the lowest possible mean errors. As pre-
fore they inherently carry uncertainty. The experiments orY!0Usly stated, these same values, although not presented,
learning withA,; indicate an uncertainty of 2 +/-d2cmfor ~ Were also generated from the realignment experiments. In-
2. Having two mappings combined in a way as it is done interestingly, the data derived from the architectéyeexper-

A« is inevitably accompanied by an accumulation of uncer-

6 Discussion

6.1 The architectures and the accumulation of uncertainty

tainty which leads to the increased overall mean errors for | Az Ay

this architecture. learning 20+/-1.2 35+/-1.38
Interestingly, the error values were the same for both realignment 20+/-12 35+-18

learning and realignment for each architecture. This was no approximation x 3.7+-22

expected since realignment requires much more advancééble 4 Mean errors in cm resulting from the two architectures teste

mechanisms in order to ‘get rid’ of the old links in a map- E;'Seeﬂtr;ggf;”;gﬁﬁgg?u”:m' In addition best approxioratiesults as
ping while new links are added. In contrast to a learning
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iments did not predict in anyway the3eandQ values for mapping learned witl) = 300 andT = 2.0 provides bet-
theA s architecture priori. In addition, again in contrastto ter generality (if we accept that fewer links is a measure of
architectured,, setQ values did not predict the number of generalization).
learning cycles for complete realignment using architectu In summary, the tolerance valliedetermines the degree
Az; whilst 50 was the optimdD value, the required number of overfitting which is highly relevant when mappings are
of learning cycles required before the error value platdaueused in combination. Unfortunately, our data did not pro-
(complete realignment), was much greater. vide any evidence as to how to estimate optimalalues
Finally, data for all learning and realignment experimentst priori; even knowing the uncertainty of each single map-
for both architectures demonstrate that the toleranceevialu ping in architectureA s did not allow the question about
does not match directly with the final mean error. For examwhy T = 8.0 cmprovided the optimal error value to be an-
ple, with T = 8.0 cmthe resulting mean errors were3.6  swered. However, having found the optinfahndQ values
+/-2.0 cmfor both architectures. Hence, for large toleranceour mapping learning schema was able to achieve general-
values the final average error will always be much smallerization which generated similar mean errors compared with
Nevertheless, no matter how small the valueTotthe av- the approximation of” for architectureéd» (Table 4).
erage error can never go beyond the error levels which are

determined by the system'’s intrinsic level of uncertainty. _
6.4 Model-free learning

Our learning scheme as a case-based strategy doesn’t come
with any assumptions about a model. Hence, the number of
learning cycles needed for learning and realignment is not

With respect to the error levelgy; performed better than ;.0 by the number of free parameters of an underlying
A . Although there may appear to be an argument for USING10del. Consider, as an example, learning similar sensori-

Ay i th,e number. O].c Igarmng cycles needeq for r(.ealllgnmen}notor mappings with artificial neural networks by optimiz-

is considered, this is in fact not the case since similar ksma|ng the weighted connections. In such cases the number of
Igarnlng cycle numbers can be expectedigrif that same weights to be optimized has a big impact on the amount of
h|ghllevel of error is considered acceptable. Intgresy|f@1 training data needed. In this respect, we can compare our
architecture», data sh_owed that only a feyv links are aq— results for architecturédy, with the work of Hoffmann et
tually necessary (see Fig. 10 and 13) to build up a mapping, [14] who presented a similar robotic setup with learn-

-~ but ur_lfortgnately, many more learning cycles than Iink%ng but not realignment experiments. Using a reach space
are reql_ured in order to discover the !a_tter.(80-200 \_’32_8'1covering an area of 40x30&with 3371 training examples
respectively). Unfortunately because it is not knawpriori Hoffmann et al. achieved a similar level of accuracy. Thus,

which links best represent a specific sensorimotor relation[he ratio between training examples and reach space was
there is no indicator of how many learning cycles are re-3s7isamples 2.8 samples per cfa With regard to our re-

i 3 120C;
quired to f'r?d them. ) . sults forA,, we had 300 samples in a reach space of 3944
The optimal number of links to achieve the best form of

e i . ) cn? and, thus, our learning results were based on a ratio of
generalization for architectusey, like A, was determined 0.08 samples per ctnTherefore, we can say that similar
by theQ andT parameters. However, unlilég,, increasing ’

’ ; ’ i ) Fnrecision was achieved with 35 times less data. Bearing in
the number of links in the architecture did not increase bujing that a single learning run (300 examples) requires al-

rather decreased the accuracy (e.g. 300 links gave an ergf,qt 5 hours, the approach of Hoffmann et al. appears rather
value of 6.0+/-5.7cm versus 3.5+/-1.8cm for an equivalenanjicable for autonomous robot systems and partigularl

12 links) o so if realignment is to be considered.
The data also demonstrated that generalization capabil-

ity is predominantly determined by the tolerance value

The smaller thd value, the more likely the mapping over- 6.5 Cross-modal mapping

fits, i.e. it learns the noise. This issue was highly relefant

architectureA » where the accumulation of uncertainty be- The attraction of case-based learning from a biological per
came higher with loweT values. The high tolerance value spective is that it embraces two central concepts within the
of T = 8.0 cmcompensated for this effect and thus producedield of developmental research; firstly Thelen’s idea of ex-
the the lowest error value. This is also apparent in architegloration and selection [19] and secondly Piaget's origina
tureAy, but to a lesser extent, where we see th® at300 dogma on schemas whereby both case-based learning and
the same level of accuracy is achieved for tolerance valueschemas can be described as non-modality specific, context
0.0 and 20cm The key point here is that the number of links driven opportunities for learning [10]. Although this pro-
are different (300 vs. 283 respectively)(Table 1). Herlee, t vides a strong argument for biological plausibility, it can

6.3 Generalization i\, andA &



14

be logically extended to infer information about the actualing environments. The schema was applied to two compu-
underlying biological mechanism which, due to the non-tational architectures providing learning and realigntraén
neural network nature of the model, is likely to be quitea robotic hand-eye coordination. Systematic robotic exper
different. However, the model may actually suggest greatements have demonstrated the impact of the adaptation pro-
similarities to the biology since the learning speed and theess parameters on fast readaptation, accuracy and gener-
low number of learning cycles are much closer to biologicaklization. The analysis of the data have provided valuable
systems compared to that of neural networks [13]. insights for the application of this schema for other doreain

in robotics where fast adaptation processes are requined. T

data also provides some insights into the factors and param-
6.6 Readaptation eters that might need to be considered to gain a full under-

standing of the equivalent biological system, in partictla
Realignment was investigated as a possible readaptive strgnq types of transformation required to deal with non-limea
egy whereby a global transformatio)(could be applied  space and 2) the issue of deleting and creating new links
to the original learnt data based on one estimated error fungeiween mappings as part of a realignment process.
tion. Although graphically it appeared that a linear global  \yjith respect to realignment of hand-eye coordination we
transformation function might be applicable (Fig. 8), ibsu payve shown that complete realignment can be achieved by
sequently became apparent that this was not the case wigp,”y a few examples but to find these examples might re-
both verge left and verge righdj values varying non-linearly qyire a test of as many examples as is needed for relearn-
across the space. A quadratic function improved the fit ofng the complete mapping which directly links reach and
data (Table 2), however, baseline error values could sifll n yision space. The reason for this is that realignment in our
be achieved (3 +/- 22cm vs. 20 +/- 1.2cm). This sug-  ropotic setup requires a highly non-linear mapping in order
gested that realignment based on a global transformation {§ compensate the changes that result from an alteration of
not a completely adequate remapping strategy. Biologicall the arm-vision system configuration. This wasn’t anticpiat
the phenomenon of alignment has been reported to generalice we had started with the assumption that alteratians ca
ize but on a similarly low best-fit linear (r2=0.17) [16]. Red pe represented by linear transformations in the visionepac
ding and Wallace interpreted this error as being indicativeHowever' the application of a physical robotic system has
of untrained corresponding points left over from the or&gin - sown that even simple alterations of the system might re-
mapping. In this sense, for complete and accurate remagire non-linear compensation mechanisms.
ping to take place, the majority of points still have to be  Eyrthermore, the two computational architectures exam-
individually remapped thus embracing a strategy similar tqneq here have also indicated that combinations of learned
the original robotic solution. From an evolutionary peispe sensorimotor mappings can lead to an accumulation of un-
tive, alignment as an adaptive process exists to deal WitBertainty because each mapping itself is a result of phiysica
the changes that occur between sensory and motor systemg.asurements which inherently carry uncertainty. Hence,
during pre-adult growth [2]. However, in this contextincre mechanisms must be developed which compensate for this
mental changes between systems would be relatively smalksact. Continuously adapting sensorimotor mappingstee t
and there would be extended periods of time for percepgore element of our approach towards complex adaptive robot
tual error and learning to occur within all of the egocentricsystems_ Therefore, our robot systems will integrate diffe
space. Thus, although realignment as a phenomenon may; sensorimotor mappings on different levels of abswacti
exist to accelerate the readaptation process, it must @perg; js in this context that generalization and accumulation o
through the majority of egocentric spatial points for aeter ncertainty are highlighted as key issues. Future research

remapping to occur. Biological data in fact suggests that th sensorimotor learning and adaptation for autonomous sys-
readaptation process may lie somewhere between generghms will need to address these issues.

ization and the remapping of every point and may be algo-
rithmically akin to a 'plastic map’ solution where many but
not all points are required for accurate remapping across a
non-linear space [2]. This map may also provide a slightly
more efficient solution for readaptation within robotic sys
tems and thus warrants further investigation.

7 Conclusion

In this paper we have introduced a schema which allows a
permanent adaptation of sensorimotor mappings in chang-
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A Uncertainty of the active vision system

In order to evaluate these results in relation to the uniceytaf the
active vision system the average tilt-verge values for ifipegbject
locations were also derived (Table 5). One can see that Hievsys-
tem has a uncertainty ef 0.002rad in average for tilt and verge mo-
tors. The complete vision domain, however, is approxinysde? rad>.
Therefore, out of 5 x 107 distinguishable samples in the vision space
our method requires only 300 examples to achieve the giveiorpe

B Approximation of . in Ay

The parameters for approximating the shifts in visual spécquadratic
and linear regression as well as the simple mean value anmatrized
in Table 6. The quadratic functions provide the best matdfichvare
plotted in Figure 14 overlaid by the actual offset valuesveer from
the mappings%c and%s.

mance in robotic hand-eye coordination. comp.  grad. coefficients R?
a b ¢ || matching value
tilt quad. || -1.408 -1.165 -0.239 0.07
centered arm-vision configuration lin. 0.0 -0.053 -0.021 0.03
coord. tilt verge left verge right mean 0.0 0.0 0.001
d a avg. dev. avg. dev. avg. dev. vergel. quad.| 0.527 -0.208 -0.24§ 0.30
30 -1.4] -0.319 0.001| -0.183 0.001| -0.364 0.002 lin. 0.0 0.073 -0.257 0.12
-0.7 || -0.365 0.001| -0.116 0.001| -0.333 0.001 mean 0.0 0.0 -0.236
0.0 || -0.395 0.001| 0.064 0.001| -0.178 0.001 verger. quad| 0.478 -0.084 -0.268 0.22
0.7 || -0.367 0.001| 0.216 0.001| -0.005 0.001 lin. -0.019 -0.243 0.010 0.0103
14| -0.324 0.000{ 0.263 0.001| 0.071 0.002 mean 0.0 0.0 -0.244
60 14/ -0.336 0000} 0429 0002} 0249 0001 gy 0¢ Parameters for the functiods(x) = ax? + bx+ ¢ approximat-
0.7 || -0.435 0.001| 0.386 0.001| 0.138 0.000 ing the offset in visual space.
0.0 || -0.496 0.001| 0.086 0.001| -0.224 0.001
-0.7 || -0.430 0.001| -0.266 0.001| -0.496 0.006
-1.4 || -0.330 0.001| -0.346 0.002| -0.513 0.001
shifted arm-vision configuration
coord. tilt verge left verge right 0.08*
d a avg. dev. avg. dev. avg. dev. '
30 -1.4] -0.317 0.001| 0.043 0.001| -0.147 0.001 5004_
-0.7 || -0.361 0.001| 0.126 0.001| -0.095 0.000 5 '
0.0 || -0.390 0.001| 0.311 0.001| 0.079 0.000
0.7 || -0.367 0.001| 0.429 0.002| 0.237 0.022 0.00 —
14| -0.324 0.001| 0.449 0.001| 0.282 0.001 1
60 1.4 -0.333 0.002| 0.594 0.001| 0.445 0.001 -0.04¢
0.7 || -0.431 0.001| 0.596 0.001| 0.396 0.001 - * - .
0.0 || -0.491 0.001| 0.379 0.001| 0.091 0.001 -0.44 -0.4 -0.36 tilt
-0.7 || -0.427 0.001| 0.001 0.001| -0.260 0.001 = ) : ) ‘
-1.4 || -0.327 0.001| -0.134 0.004| -0.331 0.002 2
Table 5 Average and standard deviation of tilt, verge left and verge %
right values delivered by active vision system resultirgnfrthe sac- E
cade towards an object on the table at specific positionseXatples <>]
for each data point.)
0.0 0.2 0.4 verge left
— . . ‘ ‘ ‘ ‘
<
(@)
=-0.2
S
E’ 0.3
<-0.4

-0.2 0.0
Fig. 14 Empirical data representing the offset needed to shift tirete
in visual space in order to compensate the change from thereeh
to the shifted arm-vision configuration. The three diagramsw the
offsets of a component over its absolute value for tilt (togrge left
(middle) and verge right (bottom). In addition the trendebrfor the
guadratic approximation is shown.

0.2 verge right
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