Skip to main content
Log in

Face Recognition with Quantum Associative Networks Using Overcomplete Gabor Wavelet

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Gabor wavelet is considered the best mathematical descriptor for receptive fields in the striate cortex. Besides, as a basis function, it is suitable to sparsely represent natural scenes due to its property in maximizing information. It is argued that Gabor-like receptive fields are emerged by sparseness-enforcing or infomax method. In this paper, we incorporate Gabor overcomplete representation into quantum holography for image recognition tasks, with suggestions in improvements through iterative method for reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bastiaans M. Gabor’s expansion of a signal into gaussian elementary signals. Proc IEEE. 1980;68:538–9.

    Article  Google Scholar 

  2. Bell A, Sejnowski T. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7:1129–59.

    Article  CAS  PubMed  Google Scholar 

  3. Bell A, Sejnowski T. The “independent components” of natural scenes are edge filters. Vision Res. 1997;37:3327–38.

    Article  CAS  PubMed  Google Scholar 

  4. Buser P, Imbert M. Vision. Cambridge, MA: MIT Press; 1992.

    Google Scholar 

  5. Daugman J. Complete discrete 2-D gabor transforms by neural networks for image analysis and compression. IEEE Trans Acoust. 1988;36:1169–79.

    Article  Google Scholar 

  6. Field DJ. Scale-invariance and self-similar ‘wavelet’ transforms: an analysis of natural scenes and mammalian visual systems. In: Wavelets, fractals and fourier transforms: new development and new applications. Oxford: Oxford University Press; 1993.

  7. Grossmann A, Kronland-Martinet R, Morlet J. Reading and understanding continuous wavelet transforms. In: Combes JM, Grossman A, Tchamitchian P, editors. Wavelets. Berlin: Springer; 1989. p. 2–20.

    Google Scholar 

  8. Hubel D, Wiesel T. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J Physiol (Lond). 1962;160:106–54.

    Google Scholar 

  9. Jones J, Palmer L. An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol. 1987;58:1233–58.

    CAS  PubMed  Google Scholar 

  10. Kyrki V, Kamarainen JK. Kälviäinen.: simple Gabor feature space for invariant object recognition. Pattern Recognit Lett. 2004;25:311–8.

    Article  Google Scholar 

  11. Lee T. Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell. 1996;18(10):1–13.

    Google Scholar 

  12. Linsker R. Self-organization in a perceptual network. Computer. 1988;21(3):105–17.

    Article  Google Scholar 

  13. Marcelja S. Mathematical description of the responses of simple cortical cells. J Opt Soc Am. 1980;70:1297–300.

    Article  CAS  PubMed  Google Scholar 

  14. Okajima K. The Gabor function extracts the maximum information from input local signals. Neural Netw. 1998;11:435–9.

    Article  PubMed  Google Scholar 

  15. Olshausen B, Field D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nat Lett. 1996;381:607–9.

    Article  CAS  Google Scholar 

  16. Olshausen B, Field D. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res. 1997;37:3311–25.

    Article  CAS  PubMed  Google Scholar 

  17. Palmer S. Vision science (photons to phenomenology). Cambridge, MA: MIT Press; 1999.

    Google Scholar 

  18. Peruš M. A synthesis of the Pribram Holonomic theory of vision with quantum associative nets after pre-processing using ICA and other computational models. Int J Comput Anticipatory Syst. 2001;10:352–67.

    Google Scholar 

  19. Peruš M. Multi-level synergetic computation in brain. Non-linear phenom. Complex Syst. 2001;4:157–93.

    Google Scholar 

  20. Peruš M, Bischof H, Caulfield HJ, Loo CK. Quantum-implementable selective reconstruction of high-resolution images. Appl Opt. 2004;43(33):6134–8.

    Article  PubMed  Google Scholar 

  21. Peruš M, Bischof H, Loo CK. Bio-computational model of object-recognition: quantum Hebbian processing with neurally shaped Gabor wavelets. Biosystems. 2005;82:116–26.

    Article  PubMed  Google Scholar 

  22. Pollen D, Ronner S. Phase relationships between adjacent simple cells in the visual cortex. Science. 1981;212:1409–11.

    Article  CAS  PubMed  Google Scholar 

  23. Pribram KH. Brain and perception (holonomy and structure in figural processing). Hillsdale, NJ: Lawrence Erlbaum Associates; 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Kiong Loo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tay, N.W., Loo, C.K. & Peruš, M. Face Recognition with Quantum Associative Networks Using Overcomplete Gabor Wavelet. Cogn Comput 2, 297–302 (2010). https://doi.org/10.1007/s12559-010-9047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-010-9047-2

Keywords

Navigation