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Abstract In earlier work, we developed the Selective

Attention for Identification Model (SAIM [16]). SAIM

models the human ability to perform translation-invariant

object identification in multiple object scenes. SAIM sug-

gests that central for this ability is an interaction between

parallel competitive processes in a selection stage and a

object identification stage. In this paper, we applied the

model to visual search experiments involving simple lines

and letters. We presented successful simulation results for

asymmetric and symmetric searches and for the influence

of background line orientations. Search asymmetry refers

to changes in search performance when the roles of target

item and non-target item (distractor) are swapped. In line

with other models of visual search, the results suggest that

a large part of the empirical evidence can be explained by

competitive processes in the brain, which are modulated by

the similarity between target and distractor. The simula-

tions also suggest that another important factor is the fea-

ture properties of distractors. Finally, the simulations

indicate that search asymmetries can be the outcome of

interactions between top-down (knowledge about search

items) and bottom-up (feature of search items) processing.

This interaction in VS-SAIM is dominated by a novel

mechanism, the knowledge-based on-centre-off-surround

receptive field. This receptive field is reminiscent of the

classical receptive fields but the exact shape is modulated

by both, top-down and bottom-up processes. The paper

discusses supporting evidence for the existence of this

novel concept.

Keywords Visual attention � Visual search �
Computational modelling � Search asymmetry

Introduction

The visual search task is a commonly used experimental

procedure to study human processing of multiple object

scenes. In a standard visual search task, participants are

asked to determine whether a pre-defined target item

among non-targets (distractors) is present or absent. During

the course of the experiments the number of distractors

(display size) is varied. Typically, the time it takes par-

ticipants to make this decision (reaction time) is measured

as a function of the display size (search function). The

slope of the search function is interpreted as indicator for

the search efficiency for particular target-distractor pair-

ings. For instance, search for a diagonal line among vertical

lines is highly efficient with a slope close to 0ms/item

whereas search for a ’T’ among ’L’s is inefficient with a

slope of around 25 ms/item. Over 40 years or so, visual

search tasks have produced a plethora of experimental

evidence (see [31, 41] for reviews). There have been

numerous attempts to develop qualitative theories of visual

search, e.g. most prominently the Feature Integration

Theory (FIT) by Treisman et al. [37] or the Attentional

Engagement Theory (AET [12]). This article presents a

connectionist model of visual search. This model is an

extension of the Selective Attention for Identification

Model (SAIM; [16, 19, 20]) adopted to simulate visual

search and therefor is termed VS-SAIM.
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SAIM was developed in a connectionist framework and

aims to explain human behaviour in terms of the underly-

ing neurophysiological processes in the brain. However,

SAIM avoids the full complexity of neurophysiological

processes, e.g. the dynamics of different neurotransmitters

and employs rate-coded neuron models. On the other hand,

this simplification is balanced with SAIM’s objective to

unify a broad range of behavioural data in one model (see

[17]; for extensive discussions on the relationship between

models of the neural substrate and modelling behavioural

data). SAIM’s starting point is the human ability to identify

objects in multiple object scenes. SAIM suggests that

central for this ability is an interaction between parallel

competitive processes in a selection stage and a object

identification stage. Based on this assumption, SAIM was

able to simulate a broad range of experimental evidence

usually associated with normal operation of attention and

with dysfunctional attention [16]. The simulations of nor-

mal attention covered two-object costs on selection, global

precedence, spatial cueing both within and between

objects, and inhibition of return. The effects of disordered

attention included view-centred and object-centred visual

neglect. In Heinke et al. [19], SAIM was successfully

applied to simulate a few visual search experiments. These

studies showed that the search functions in visual search

can be an emerged property of the competitive processes in

the brain. The slopes of the search functions were influ-

enced by the similarity between distractors and target.

However, when we attempted to simulate a broader range

of visual search experiments, it became clear that this

initial version of VS-SAIM was not able to mimic this

additional data. Consequently, we modified some opera-

tions within VS-SAIM. Especially, we replaced the original

similarity measure, the scalar product, with the Euclidian

distance. The present article reports on a first set of results

of this extension.

For the first set of results we chose experimental evi-

dence that, on the face of it, is particularly challenging to

VS-SAIM’s similarity-based approach, the search asym-

metry (see [43]; for a review). In search asymmetries

search slopes differ when the roles of target item and dis-

tractor item are swapped. For instance, it is easier to find a

tilted line among vertical lines then vice versa [37]; a

diagonal line among vertical lines than the reverse [3].

Other examples are: orange item (easier) versus red item

[36], moving item (easier) versus static item [11, 34]. For a

similarity-based approach these data are particular chal-

lenging, as the target-distractor similarity simply does not

change when target and distractor are swaped around.

A theoretical account needs to introduce an additional

factor to explain these findings.

On a wider note, there is no satisfactory theoretical

account for the occurrence of search asymmetry at present.

Initially, Treisman and Gormican [37] suggested that

search asymmetries are indicative for the existence of

feature maps assuming that detection of the presence of a

feature is better than the detection of its absence [37].

However, subsequent evidence has not supported their

theory. For instance, their assumption does not fit with the

findings on diagonal line versus vertical line [3], as there

are well-known feature maps for diagonal lines in the

brain. Moreover, recent evidence showed that search for an

‘‘inverted elephant’’ among upright elephants is more

efficient than the other way around [43] pointing towards

the involvement of object knowledge in search asymme-

tries. The current paper aims to develop a first coherent

account of search asymmetries. It focuses on the search

asymmetries with line orientations.

The reminder of the paper is organized as follows. After

introducing VS-SAIM in detail, we discuss how VS-SAIM

relates to other important models and theories of visual

search. Then we illustrate how the search process in

VS-SAIM plays out in detail (Study 1). Study 2 demonstrates

that VS-SAIM mimic the experimental findings of asym-

metries of line orientation for both diagonal versus vertical

line and titled versus vertical line. We also present detailed

explanations for this success. The explanation also suggests

that VS-SAIM’s search efficiency depends not only on

target-distractor similarity but also on the orientations of

the distractors. Study 3 confirms this point through simu-

lating findings by Foster and Westland [14]. To complete

the picture, Study 4 shows that VS-SAIM can also simulate

a visual search task with symmetric results [13]. The

general discussion discusses the theoretical implications

and present supporting evidence for VS-SAIM’s explana-

tion of search asymmetries.

VS-SAIM

Overview

This short description gives an overview of the interactions

between VS-SAIM’s modules. Afterwards the model will

be explained in more details. The mathematics behind

VS-SAIM are documented in the ‘‘Appendix’’. Figure 1

illustrates VS-SAIM’s architecture. Overall VS-SAIM

implements a translation-invariant object identification in

multiple object scenes. VS-SAIM’s first stage, the early

visual processing stage (EVPS), extracts simple features,

e.g. orientations, from the visual field. In the bottom-up

path, the contents network maps a spatial selection of these

feature through to the ’Focus of Attention’ (FOA). This

mapping is translation-invariant, meaning that the contents

of any location in the input image can be mapped through

to the FOA. The mapping is controlled by the selection
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network. The selection network, on one hand, chooses the

location from which the contents network takes its input

and, on the other hand, ensures that the mapping does not

distort the original input. These functions are implemented

through competitive and co-operative interactions between

units in the selection network. VS-SAIM also contains

object knowledge stored in the knowledge network with

template units. The knowledge network identifies the

content of the FOA by matching it with the templates. The

template matching utilizes a Euclidian distance as simi-

larity measure. In addition, the knowledge network biases

the selection process in VS-SAIM towards ’known/rele-

vant’ over ’unknown/irrelevant’ objects. This is done via

the top-down pathway from the knowledge network to the

selection network mediated via the matching network. The

role of the matching network is to compare the template

information (matching template) with the output from the

EVPS. Consistent with the bottom-up path, this comparison

utilizes a Euclidian distance and is translation-invariant.

It is important to note that, as in the previous versions of

SAIM, VS-SAIM was designed with the help of the prin-

ciple of minimization of energy function. This idea was

first introduced into connectionism by Hopfield and Tank

[21] and implements a soft-constraint satisfaction. The

design principle follows the following steps: First the

problem is formulated as constraint satisfaction problem

which defines the constraints a solution has to fulfil. These

solutions are translated into activation patterns in a con-

nectionist network. Then an energy function is designed in

which these activation patterns are minimal energy values.

Finally, to find these energy minima starting from pre-

defined activation pattern, a gradient decent procedure is

applied to the energy function. The gradient decent pro-

cedure results in nonlinear differential equations which, in

turn, define a biologically plausible network topology,

including the weights between connections. The advantage

of this approach is that the energy minima defines a stable

state or attractor state for the nonlinear differential equa-

tions. This property makes this approach appealing to the

design of connectionist models. However, while designing

the model in such a way, we found that some of the terms

in the equations did not lead to a successful object selection

and identification. Subsequently, we relaxed the minimi-

zation approach. The details of this relaxation are discussed

in the ‘‘Appendix’’. Nevertheless, the topology of the

model is still directly motivated by the energy minimiza-

tion approach.

Early Visual Processing Stage (EVPS)

VS-SAIM’s early visual processing stage consists of

Gabor-filters tuned to four orientations, 0�, 90�, 45� and

135�. Gabor-filters have been widely used to model

receptive fields of orientation-selective simple cell in the

primary visual cortex V1 (e.g. [9]). Details about the

implementation of the filters and the parameters can be

found in the ‘‘Appendix’’.

The output of the EVPS consists of five feature maps,

intensity feature map and four orientation feature maps.

Figure 2 shows an example of the feature maps for a search

display with a ’L’ among ’T’s. In order to take into account

random noise in the brain, a quasi-stochastic behaviour is

added to each feature map (see ‘‘Appendix’’ for details).

Finally, before the feature maps are fed into the remainder

of the model, the activation of the maps is weighted.

Horizontal and vertical orientations are weighted higher

than diagonal features, as suggested by physiological evi-

dence (e.g. [7]). As we will show later, these different

weightings are important for simulating the line search

asymmetries.

Contents Network

The contents network aims to enable a translation-invariant

mapping from the output of the EVPS to the smaller focus

of attention (FOA). The core mechanism of this mapping is

Fig. 1 Architecture of VS-SAIM (see text for details)

Fig. 2 Feature maps in the

early visual processing stage

(EVPS). The display on the left
shows an example of an input

image. The four images on the

right show the resulting feature

maps
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a gating mechanism implemented with sigma-pi units [26]

which are controlled by layers in the selection network (see

Fig. 3 for an illustration and ‘‘Appendix’’ for details on the

operations of the contents network). Sigma-pi units pro-

duce an output activation by combining input activations

with two operations, multiplications and additions. In

Fig. 3, these two operations are illustrated separately. The

circles illustrate the multiplications and the squares depict

the additions. The multiplication operation combines the

output activation from a layer in the selection network with

the output of the feature maps at spatially corresponding

locations. The addition produces the output activation of a

sigma-pi unit by summing up the result of the multiplica-

tion. The output of each sigma-pi unit represents a pixel in

the FOA. Hence, each layer in the selection network con-

trols the activation of one pixel in the FOA. Figure 3

illustrates this gating mechanism for three locations in the

visual field and three pixels in the FOA. For instance, in the

central layer the unit corresponding to a pixel of the ver-

tical T-stroke is switched on (filled circle). This activation

gates this pixel through to the FOA, as indicated by the

open circle in the contents network.

It is important to note that the content network can

implement an arbitrary mapping which depends on the

activation pattern in the selection network. For instance, if

the unit in the centre of each layer in selection network had

a high activation and all other units in the selection

network were set to zero, the content of the centre of the

input image would be represented in all FOA pixels.

Hence, translation-invariant mapping is a special case that

is achieved, if two constraints on the activation pattern in

the selection network are fulfilled: First, only one unit in

the each layer should be activated. With this restriction

only the content of one image location is routed into the

FOA, because the multiplication allows only one location

to be passed into the FOA. Second, only units across the

selection network that map neighbouring locations in input

image onto neighbouring locations in FOA are allowed to

be active. The constraint ensures that the FOA forms

veridical representation of the selected object in the input

image and is implemented through a ‘‘diagonal’’ activation

pattern in the selection network. The necessity of ‘‘diago-

nality’’ arises from the following rational: If one unit in one

layer is activated, the layer that controls the adjacent FOA-

pixel has to activated the unit adjacent to the first unit. In

this way, two locations adjacent in the input image are

mapped into adjacent pixels in the FOA. The connections

in the selection network implement the corresponding

constraint satisfaction process.

Selection Network

The selection network aims to select a stimulus in the input

image by producing an appropriate activation pattern.

Since the selection network controls the mapping in the

contents network this activation pattern has to ensure a

veridical representation of this stimulus in the FOA. The

selection network is structured in layers whereby every

layer controls the routing for one of the FOA pixels in the

contents network (see Fig. 4 for an illustration). To ensure

a veridical stimulus representation in the FOA, the acti-

vation pattern in these layer has to fulfil two constraints

(see also section on contents network): (1) Only one unit in

each layer is allowed to become active. (2) Units in layers

controlling adjacent FOA-units has to become activate only

if they are adjacent with respect to image locations. This

constraint implements the neighbourhood preserving

mapping in the content network. The ‘‘Appendix’’ docu-

ments the mathematical implementation of these con-

straints within the framework of the energy minimization

approach. The resulting connections are illustrated in

Fig. 4. Each layer has an overall inhibitory connections

between units implemented the first constraint (competitive

process). Units between layers are connected via excitatory

connections along the diagonals implementing the second

constraint (co-operative process). In addition, the gradient

procedure applied to the overall energy function introduces

the input from the matching network. This input results

from terms in the energy function which ensure that

VS-SAIM’s behaviour including the behaviour of the

Fig. 3 Mapping in the contents network. The mapping is illustrated

for three input locations and three FOA-locations. The contents

network consists of sigma-pi units which combine two operations:

multiplication (filled circles) and addition (squares). The multiplica-

tions combine the output of the selection network with the output of

the feature maps at spatially corresponding locations. The addition

produces the output activation of the sigma-pi units by summing up

the results of the multiplications. The output of each sigma-pi unit

represents a pixel in the FOA. The filled circles in the selection

network indicate activated units. These activated units map the

content of the corresponding location of the feature maps to the FOA

via the sigma-pi units (see text for more details)
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selection network is constraint by the input image and

the template-knowledge implemented in the knowledge

network.

Knowledge Network

The knowledge network implements the object identifica-

tion in VS-SAIM. A unit in the knowledge network rep-

resents an object by being associated with a template of this

object. The template is a copy of the object, as it would

appear in the FOA. In order to determine which object is

represented in the FOA, the template units compare their

template with the FOA activation in a matching process.

The similarity measure in this template matching is based

on the Euclidian distance commonly used in connectionist

networks. In order to determine which of the template units

represents the best matching template, the units interact in

a competitive process similar to the one implemented in the

selection network (see ‘‘Appendix’’ for mathematical

details). The output activation of the template units repre-

sent the output of VS-SAIM. A high output activation

indicates that VS-SAIM has successfully identified the

content of the FOA.

In VS-SAIM the knowledge network introduces not only

a identification stage as an output stage, but also adds a

general knowledge-based constraint on VS-SAIM’s

behaviour. In order to fully integrate this additional con-

straint the knowledge network also influences the behav-

iour of the selection network via the matching network.

This top-down pathway is a direct outcome of the energy

minimization procedure employed in VS-SAIM (see

‘‘Appendix’’ for details). In general, this knowledge biases

the VS-SAIM’s behaviour towards selecting locations in

the input image that matches best the templates. Moreover,

if the initial activation in the knowledge network is biased

towards one template unit, VS-SAIM’s overall behaviour is

biased towards selecting the item associated with this

template. In this paper, we use this property to implement

the fact that the visual search experiment requires the

search for a set target. Hence, we will bias VS-SAIM

towards the selection of the target item. If the target is not

present, VS-SAIM is expected to overcome the initial bias

and select a distractor item.

Matching Network

The function of the matching network is to mediate the

feedback from the knowledge network to the selection

network. It implements this function in two stages

(see Fig. 5). First a weighted representation of the tem-

plates is formed, termed matching template. The weighting

is determined by the output activation of the template units.

As a consequence of the energy minimization approach

(see ‘‘Appendix’’ for details), the weighted representation

slowly builds up starting from an unbiased overlay of all

templates. As a simulation progresses the template reflects

more and more a biased overlay between the templates

determined by the output activation of the template units.

For instance, if the L template units has an output activa-

tion of 0.4 and the T template unit an output of 0.6, the

resulting matching template is made up of 40% of an L and

60% of an T.

In the second stage, the matching template is compared

with the feature maps from the EVPS and the result of this

comparison feeds into the selection network. Again, like in

the knowledge network the matching is based on the

Euclidian distance. The usage of this distance is a direct

outcome of the energy function minimization approach. It

reflects the necessity that the matching in the bottom-up

pathway needs to be consistent with the matching in the

Fig. 4 The structure of the selection network. The selection network

consists of several layers. There are inhibitory connections within

each layer and excitatory connections between the layers. As

explained in the text, connections ensure that the selection network

forms a veridical representation of objects in the FOA. Note that for

illustration purposes adjacent pixels are depicted further apart
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top-down pathway to ensure an overall consistent behav-

iour. Note that the matching network also mirrors the

translation-invariant mapping of the bottom-up pathway by

implementing the comparison between matching template

and feature maps in a location-by-location fashion.

Figure 5 illustrates this implementation for ’L’ and ’T’ as

templates and an ’L’ and ’T’ in the input image. Figure 5

also shows the result of the matching process. Since the

outcome plays an important role in this paper we intro-

duced a special term, the matching surface. Bright pixels

stand for highly matching locations and dark pixels rep-

resent no matching. The matching surface forms the input

to the selection network, where the competitive processes

activate units at locations with high matching values.

Discussion

This section presented details on how VS-SAIM achieves

translation-invariant object identification in a multiple

object display. Crucial for achieving this objective are

three mechanisms: competitive interactions for selection

and identification of items; similarity-based matching in

the bottom-up and top-down pathway to direct the selection

process and identify the selected item; and an interaction

between top-down and bottom-up pathways to ensure

consistency between both levels. To implement the search

for a target in visual search, the initial activation in the

knowledge network is biased towards one template unit,

biasing VS-SAIM’s overall behaviour towards selecting

the target.

It should be noted that VS-SAIM is part of an ongoing

project. Some of the mechanisms presented here have

already been validated against experimental evidence other

than data from visual search. For instance, the layered

structure in the selection network, turned out to be crucial

for simulating attentional disorder, such as extinction and

object-based neglect [16]. The excitatory connections in

the selection network were useful in simulating proximity-

based grouping [16]. A first step towards the integration of

similarity-based grouping was presented in [18]. Also,

SAIM proved robust enough to process natural images

[20]. Compared to the version published in 2003, the

main extensions here are a different similarity measure

(Euclidian distance instead of scalar product) and the

introduction of an early visual processing stage.

VS-SAIM falls into a class of models that conceptualize

visual attention as mapping details of an input image into a

new representation. The most prominent representative of

this class is the Selective Tuning (ST)-model by Tsotsos

et al. [38]. Similar to VS-SAIM, the ST-model uses com-

petitive processes controlled by bottom-up and top-down

pathways to guide the mapping process. Interestingly, in

a recent extension of the ST-model Tsotsos et al. [39]

stressed the importance of considering interactions

between recognition and attention when modelling visual

attention. This type of integrative approach is also taken by

VS-SAIM and its earlier version, SAIM.

However, for the remainder of this discussion and in

keeping with the theme of this paper we will focus on the

most prominent theories and models of visual search in

experimental psychology. Similar to VS-SAIM, all these

models and theories postulate that an interaction between

top-down and bottom-up influences plays a role in human

performance in visual search. Moreover, all models suggest

that at some stage a ‘‘featureless’’ encoding of the search

display. For instance, in the Guided-search model [40] this

representation is called ‘‘saliency map’’ or ‘‘master map’’.

In MORSEL [30] the input to the attentional module rep-

resents the contents at locations in search display ‘‘fea-

tureless’’. In Deco and Zihl’s biased-competition model of

visual attention [10] a location map receives inputs from all

feature maps in a retinotopic fashion. In VS-SAIM the

selection network and its input, the matching surface, are

‘‘featureless’’ maps. However, the Guided-search model

and MORSEL suggest that this ‘‘featureless’’ map is static

and is no longer modified during the search process. In

contrast, Deco and Zihl’s model [10] and VS-SAIM pos-

tulate that the ‘‘featureless’’ map is dynamic and changes

during the selection process. Especially, in VS-SAIM the

dynamic ‘‘featureless’’ map, the matching surface, is an

Fig. 5 Structure of the matching network. The matching network

implements the top-down modulation of the selection network from

the knowledge network. The top-down modulation is implemented in

two stages: First the matching template is formed (top right). Second

the matching template is compared with the feature maps (’’minus

circles’’). This comparison is translation-invariant. This is illustrated

by depicting copies of matching templates in the block of layers on

the right. Also note that the output of the matching process, termed

matching surface, plays an important role in VS-SAIM’s capability to

simulate the experimental findings
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integral part of interactions between the selection process

and the identification process.1 Intuitively, this seems to be

a more biologically plausible approach to modelling pro-

cesses during visual search tasks. Finally, VS-SAIM also

shares with the seminal Attentional Engagement Theory

(AET [12]) the assumption that similarity-based matching

plays a crucial role.

Another point to note is that VS-SAIM implements

visual search in completely parallel manner. This contrasts

with earlier versions of SAIM [16, 19] and also with most

other models of visual search. For instance and most

prominently the Guide-Search model postulates an entirely

serial search process. Even the models with a competitive

approach assume that there is some sort of serial

rechecking mechanism (see the Search via Recursive

Rejection (SERR)-model, [22]; for an example). However,

our implementation of VS-SAIM does not imply that visual

search is performed entirely in parallel. Instead, the work

of VS-SAIM focuses on contributions of competitive pro-

cesses to visual search which we, nevertheless, consider to

play a crucial part in visual search. On the same token, the

visual search mechanism proposed in this paper are

assumed still to play an important role even when a serial

mechanism is added to VS-SAIM in future versions.

Study 1: Basic Behaviour

This study does not primarily aim at simulating experi-

mental results but to illustrate the interworking of

VS-SAIM, such as time courses of activations in the

selection network, knowledge network and matching

network (see Figs. 6, 7). These time courses are represen-

tative of the processes in all simulations in this paper. The

simulations used ’L’ as target and ’T’ as distractor (see

[12]; for corresponding experimental results). The search

display contained 5 items. To encode the target, the ’L’

template unit was initialized with higher activation (0.506)

than the distractor unit (0.494). Also, it is important to note

that the reaction time (RT) of the model is the simulation

time it takes for one template unit to pass a set threshold.

Passing the threshold is interpreted as the model having

recognized an item. Moreover, VS-SAIM does not make

any mistakes. Compared to human performance in visual

search this assumption is not realistic. However, often error

rates are not statically significant in visual search tasks and

human performance is typically influenced in terms of

reaction times. Therefore the simulations focus on reaction

times as dependent variable.

Figure 6 shows the simulation result with target being

present. The simulation was terminated after the knowl-

edge network produced a clear-cut winner (see time plot of

the knowledge network). At this point of time, activations

in VS-SAIM were dominated by the target item. FOA and

matching template show a stronger representation of ’L’

than of ’T’. The time plot of the selection network (top left)

shows only the time course of the activations in the centre

layer at the central locations of the items in the search

display. The time plot illustrates that the target item

(Item 5) in the visual field won the competition. This

successful selection of the target item began in knowledge

network where the initial activation of the two template

units is biased towards the target item. This bias drove the

matching network from a unbiased matching template

(both templates are equally weighted) towards a matching
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Fig. 6 Time course of activations for a target-present display. The

image at the bottom-right shows the search display with ’’L’’ as target

and ’’T’’ as distractor. Note that the numbers in the visual field display

are not presented. They correspond to the number in the legend of the

time course plot of the selection network. This plot shows the time

course of the activation of units in the central layer at the centre of the

items. A detailed discussion of this figure can be found in the text

1 Indeed simulations not included in this paper suggest that the

concept of a ’’dynamic saliency map’’ can improve our understanding

of visual search tasks.
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template that is biased towards the target template. This, in

turn, led to better matching values at the target location in

the matching surface. Therefore, the selection network

began selecting the target item which resulted in a stronger

representation of the target item in the FOA. This

improvement reinforced the initial bias in the knowledge

network, eventually making the target template unit the

winner unit.

When the target is absent (Fig. 7), the initial bias

towards the target unit is overcome and the distractor

template eventually wins the competition. Analogous to the

present trial, the identity of this winner item was eventually

reflected in all parts of the model. However, VS-SAIM

reaches this state later than in the present trial. Hence, the

initial bias in the knowledge network contributes to the

delay of reaction times compared to the present trials.

Moreover, in the absent condition the matching surface

does not produce a clear winner early on, as in the present

condition. Instead, the noise added in the EVPS generates a

small difference between distractor items which, eventu-

ally, allows the selection network to randomly chose an

item.

It is interesting to note that the delay in VS-SAIM’s

reaction time in the target presence condition compared to

the absent condition mimics typical experimental findings

in visual search tasks [42]. However, these simulation

results go beyond the focus of the present paper. The

strategy with which participants treat absent trials repre-

sents a entirely different issue (see [5]; for a rare example

of modelling absent trials). Further simulations will need to

explore whether this treatment of absent trials constitutes a

valid approach.

Study 2: Search Asymmetry

This paper focuses on two asymmetries found in oriented

line searches. First, if a tilted line is searched among ver-

tical lines, search is more efficient than a vertical line

among tilted lines [37]. Second, if a diagonal line is sear-

ched among vertical lines, search is more efficient than a

vertical line among diagonal lines [3].

Method

Stimuli

The input display were grey-value pixel pattern of value

range of [0;1]. All items were 9 9 9 pixels of size and

were placed in a fixed 3 9 3 grid within the input display

evenly spaced. The total pixel size of the input display was

43 9 43. The search items were a vertical line, 30�-line

and 45�-line (see Fig. 8 for examples). To generate the

tilted lines, a vertical line of seven pixels was rotated using

the Matlab function imrotate with a bi-linear interpolation

method.

Procedure

Displays were generated with set-sizes of 2, 3, 4, 5, 6, 7

and 8 items. Each condition was run 5 times amounting to

70 trails in total. Only templates for the items present in a

particular experiment were included in the knowledge

network. At the beginning of each simulation run the

template unit of the target was biased to a higher activation

0.506 than the distractor unit 0.494.
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Fig. 7 Time course of activations for a target-absent display. The

image at the bottom-right shows the search display with ’’T’’ as

distractor and ’’L’’ as target if it were present. Note that the numbers

in the visual field display are not presented. They correspond to the

number in the legend of the time course plot of the selection network.

This plot shows the time course of the activation of units in the central

layer at the centre of the items. A detailed discussion of this

simulation result can be found in the text
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Reaction Time

The reaction time (RT) of the model is the simulation time

it takes for one template unit to pass a set threshold 0.7.

Passing the threshold was interpreted as the model having

recognized an item.

Data Analysis

VS-SAIM’s reaction times were analysed with an ANOVA

as well as a linear regression to obtain search slope and

intercept. In the search function plots, the search slope is

depicted next to the average reaction time for highest set-

size.

Results

Figure 8a, b show the RT functions for both orientation

differences, 30� and 45�. For each orientation difference a

separate two-way ANOVA with set-size and target-type as

independent variables was carried out. The ANOVA for

30�-difference revealed significant main effects of set-size

(F(6, 69) = 2631.6, p \ 0.001) and target-type (F(1, 69) =

49939.0, p \ 0.001) The interaction between the two factors

was also significant (F(6, 69) = 812.45, p \ 0.001).

Figure 8a shows that overall reaction times increased with

increasing set-size and that search for a vertical target was

slower compared to search for the tilted target. The sig-

nificant interaction resulted from a higher search efficiency

when the tilted line was the target compared to when the

vertical line was the target. This finding is also confirmed

by the different slopes shown in Fig. 8a.

The results for the 45�-orientation difference were simi-

lar. The main effects of set-size (F(6, 279) = 90355.0,

p \ 0.001) and target-type (F(1, 69) = 16700.0, p \ 0.001)

were both significant. Also, the interaction between the two

factors was significant (F(6, 69) = 4755.4, p \ 0.001).

Figure 8b shows that overall reaction times increased

with increasing set-size and that search for a vertical

target was slower compared to search for the diagonal

target. The significant interaction resulted from a higher

search efficiency when the diagonal line was the target

compared to when the vertical line was the target. This

finding is also confirmed by the different slopes shown in

Fig. 8b.

Discussion

The simulation results show that VS-SAIM is able to

qualitatively reproduce the central result of asymmetric

visual search tasks, that of an altered search efficiency

when target and distractor roles are swapped. A vertical

line target among tilted lines is searched less efficient

compared to a tilted line among vertical lines. There are

three interesting aspects of these results. First the results

demonstrate that the competition processes can produce

set-size effects. Second the set-size effect is modulated by

target-distractor similarity. Third target-distractor similar-

ity is not the only factor influencing search efficient as

otherwise search asymmetry would not have been possible.
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Fig. 8 Search asymmetries of line orientations. The search functions

document the simulation results for a tilted line and vertical line, and

for b diagonal line and vertical line. The results show that search is

more efficient when the oriented line (diagonal or title) is the search

target compared to a search with the vertical line as target. These

effects constitute a search asymmetry and mimics experimental

findings with the same search times (see text for details)
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The first two results were expected and are briefly dis-

cussed here. The third finding needs more explanation and

will be discussed in the best part of this discussion.

As discussed earlier, the fact that competition process

can produce set-size effects has been by our earlier work

[19] by other such as a biased-competition model of visual

search [10] and MORSEL [30]. A good way of conceptu-

alizing the reason for this behaviour is that the speed of

convergence of the competitive process in the selection

network by and large determines the VS-SAIM’s reaction

times.2 Moreover, the speed of convergence is proportional

to the contrast between activations in the matching surface.

The contrast is the difference between the highest input

activation (target position) and all other input activations

(distractor locations and background). For instance, the

contrast would be highest, if there was only one item in the

display. The contrast diminishes the more items are present

in the search display leading to the set-size effect. Fur-

thermore, the search slope depends on the target-distractor

similarity, because the more similar target and distractor are

the more the contrast diminishes with each additional item.

However, it is not obvious why the search asymmetry is

simulated by VS-SAIM as well. In order to explain this

result, it is necessary to examine the matching surface

closer. Figure 9 shows two illustrations of a matching

surface. The input stimuli were a vertical line and a titled

line. The matching template for both illustrations was

constructed from a equally weighted vertical and titled line.

The resulting matching surface has three important char-

acteristics: First, the highest match is obtained at the item’s

central location. This is to be expected, as the matching

template and the item are aligned at this location. Second,

the display background has a lower match than the central

locations. Thirdly and interestingly, the area in the imme-

diate vicinity of the items exhibits an even lower match

than the background. This ’’mismatch’’ surrounding the

item plays an important role in VS-SAIM’s behaviour and

is a direct consequence of the matching process in the

matching network. Figure 10 shows a schematic illustra-

tion of the matching process. The graphs at the top show a

one-dimensional illustration of the matching surface as

found in real simulations (e.g. Fig. 9). The illustration at

the bottom of the figure depicts three positions of the

matching template (framed ’L’) and relates them to the

resulting matching values in the matching surface. Cru-

cially, the mismatch occurs at the second location where

there is only a partial overlap between matching template

and item. The left part of the matching template is com-

pared to the display background whereas the right part

(background in the matching template) is compared to parts

of the L. So the left part produces the same matching value

compared to when the matching template is entirely located

on the background, but the right part generates a lower

matching value than on the background leading to an

overall matching value lower than the match against the

background. Interestingly the shape of the matching sur-

face is reminiscent of recent findings of behavioral per-

formances surrounding the focus of attention (e.g. [2, 4, 8,

29, 32]) and on-centre-off-surround receptive fields in the

early visual system (e.g. [1, 6, 23, 35]). However, in con-

trast to the mismatch occurring in the matching network the

on-centre-off-surround effect in these early visual areas is

assumed to be unaffected by knowledge-based influences.

We will return to this interesting aspect in the general

discussion of this paper.

It is also important to note that the amplitude of the

mismatch is influenced by the absolute activation in the

feature maps, as opposed to the relative activation resulting

from the matching between matching template and item.

This is illustrated in Fig. 10. For simplicity this effect is

depicted for the intensity feature map. However, it should

be noted that each feature map leads to the same effect. In

Fig. 10 b) the input item is brighter than in Fig. 10 a).

Hence, when matching template and input item partially

overlap, the mismatch is larger when the input item is

brighter than when the input item is dimmer since the match

is mainly performed against the background in the matching

template. In VS-SAIM, this matching is implemented with

the Euclidian distance. Returning to the simulation results, it

is important to note that this Euclidian distance for the

(b)(a)

Fig. 9 Examples of two matching surfaces. The matching template

consisted of two equally weighted template items (top row). This

matching template was matched with the single vertical line and tilted

line. The centre of the matching surfaces has the highest matching

value consistent with the location of the respective items. Importantly

the area surrounding the location of the best match shows a strong

mismatch. This mismatch area plays an important role VS-SAIM’s

behaviour (see text for details)

2 In fact, the dynamics of the activations in the matching surface also

play a role, but are not crucial for the simulation results in this paper.
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vertical line is larger than for the diagonal and tilted line.

This results from the fact that the diagonal feature map is

less weighted than the feature map for vertical orientations.

In turn this difference leads to a smaller mismatch for the

diagonal line compared to the vertical line. Moreover this

leads to a smaller decrease in contrast in the matching

surface for the vertical line as distractor compared to the

diagonal line as distractor. Therefore the property of the

mismatch surround a search item explains the search

asymmetry found in the simulations.

Study 3: Background Orientation

The explanation of the previous simulations highlighted

that VS-SAIM’s search efficiency depends not only on

target-distractor similarity but also on the orientations of the

distractors. Interestingly there is experimental evidence

supporting this assumption. Foster and Westland [14]

reported that search performance was also modulated by the

absolute distractor orientation (’background orientation’).

Search performance peaked at horizontal and vertical dis-

tractor orientations and fell towards oblique orientations,

while the relative orientation between target and distractor

was kept constant. In contrast an increase in the relative

orientation only improved the overall performance (see

Fig. 11 for an illustration). This study tests whether

VS-SAIM is able to simulate this specific modulation of

search performance through the background orientation.

Method

In this simulation, the distractor item was one out of 0 to

180� rotated counter clockwise from the vertical rotated

lines, with a step-size of 30�. The target object was either a

30� or 45� counter clockwise from the vertical rotated line

with respect to the background orientation. All distractors

in a display had the same orientation. The rotated lines

were created with Matlab routine imrotate and a bi-linear

interpolation. Display size was five.

Results and Discussion

Figure 12 shows the mean reaction times across all back-

ground orientations for both relative orientation conditions

successfully mimicking the findings by Foster and West-

land [14]. Hence, VS-SAIM can generalize to additional

orientations compared to Study 2. They also suggest that

the way the mismatch area surrounding the distractors

changes (Euclidian distance of the distractor features from

the background) represents a good approximation of factors

influencing visual search performance.

Study 4: Symmetric Search

So far the simulations concentrated on mimicking asym-

metric search patterns. Indeed, the simulations seem to

imply that the asymmetric search pattern is the standard

finding and there should be no symmetric search pattern.

(a) (b)

Fig. 10 Mismatch area in the matching surface. These two graphs

explain the origin and the properties of the mismatch surrounding

search items. The bottom row illustrate the matching process for three

spatial distances from for input items a dim L on the left side and a

dark L (without frame) on the right side. The matching template is

depicted as a framed L. The top row shows one-dimensional

illustrations of the outcome of the matching process (see main text

for further explanations)

Fig. 11 Illustration of visual search results from Foster and West-

land14].Foster & Westland [14] varied line orientations of targets and

distractors. They manipulated orientation difference between target

and distractors together with the orientation of the distractors

(background orientation). They found that both factors affect search

performance
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However, there is some empirical evidence for symmetric

search as well. For instance, Egeth and Dagenach [13]

showed that in a search with ’L’ and ’T’ items, the swap of

target and distractor has no significant effect on the par-

ticipants’ search performance. These simulations tests

whether VS-SAIM can also simulate these symmetric

experimental results.

Method

The same method as in Study 2 was used. The only dif-

ference were the search items. In this simulation ’L’ and

’T’ were used (see Fig. 13).

Results and Discussion

Figure 13 shows the search function produced by the

model. A three-way ANOVA revealed a significant main

effect of set-size (F(6, 69) = 455.9, p \ 0.001) and no

significant main effect in target-type (F(1, 69) = 1.07,

p = 0.31) reflecting the symmetric search behaviour. The

interaction between set-size and target-type was not sig-

nificant (F(6, 69) = 0.84, p = 0.55). The results show that

there is no modulation of search efficiency by swapping the

target and distractor roles of the items. The reason for the

successful simulation of the symmetric search pattern is

that both, L and T, are mainly made up of vertical and
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Fig. 12 General orientation search for 5 items. There were five

distractor orientation (’background orientation’) and two orientation

differences between target and distractor (30� and 45�). The top row

shows examples of search displays for the 30�-differences. These

results mimic experimental findings ([14]; see also Fig. 11)

2 3 4 5 6 7 8
680

690

700

710

720

730

740

750

10.0

set−size

re
ac

tio
n 

tim
e

target L
target T

Fig. 13 Search symmetry. The search function show the simulation

results for ’’T’’ and ’’L’’ as search items. In line with experimental

findings VS-SAIM shows that search efficiency does not depend on

whether the ’’L’’ or the ’’T’’ is the target item. These results are

important as they highlight that not all simulations exhibit asymme-

tries. The reasons for this result and the theoretical implications are

discussed in the text
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horizontal strokes. Only at cross points and end points the

diagonal feature map shows some responses (see Fig. 2 for

an illustration). Therefore, the mismatch area does not

change much when L and T are swaped because the

Euclidian distance from the background for both items

does not differ. In other words, VS-SAIM suggests that

when the item are predominately made of similarly

weighted features, e.g. vertical and horizontal strokes, the

search results should be symmetrical.

General Discussion

The Selective Attention for Identification Model

(VS-SAIM) is a model of translation-invariant object rec-

ognition in a multiple object scene. In a first step, a early

visual processing stage generates feature maps of vertical,

horizontal and diagonal orientations. Then translation-

invariance is achieved by mapping the content of the fea-

ture maps through to an attention window (FOA). Object

recognition is implemented by a similarity-based (Euclid-

ian distance) matching between stored templates for

objects and activation in the FOA. With the issue of mul-

tiple objects, VS-SAIM deals with a mix of competitive

and co-operative processes which are controlled by bot-

tom-up and top-down influences. In the present paper, we

simulated important findings from visual search experi-

ments. Study 2 utilized search displays consisting of ori-

ented lines (vertical, diagonal and titled lines). Each of

these lines were either target or distractor in the simula-

tions. The simulations demonstrated that VS-SAIM was

able to mimic the typical increase in reaction times with

increasing numbers of items (search slope). This result

originates from the competitive processes in the selection

network. As discussed in the introduction, this explanation

has been put forward by several biologically plausible

models, e.g. MORSEL [30], a biased-competition model of

visual search [10] and our own work (e.g. [19]). Compared

to these earlier works, the main progress is that, despite

complex interactions between several competitive layers,

VS-SAIM still produces a linear increase in reaction times.

Hence, VS-SAIM suggests that, despite the fact that several

competitive processes must interact in the brain, it is still

possible that linear search function can emerge from these

interactions. Furthermore, the slope of the search function

is proportional to the similarity between target and dis-

tractor, in terms of orientation. For instance, search for the

diagonal line among vertical lines is more efficient than

search for a titled line among vertical lines. This is not

unexpected as similarity-based matching plays a large role

in VS-SAIM’s behaviour. This outcome also fits to one of

the central hypotheses put forward by the Attentional

Engagement Theory [12].

Finally and most unexpectedly for a similarity-based

approach, the simulation results mimicked the experimen-

tal findings of search asymmetries for oriented lines. For

instance, search for a diagonal line among vertical lines is

more efficient than search for a vertical line among diag-

onal lines. As explained in detail in the result section,

crucial for these results are the contrast in VS-SAIM’s

matching surface which is modulated by the mismatch

surrounding each item. Because the profile of the activation

is reminiscent of receptive fields found in early visual

processing in the brain and the fact that the profile is

generated in the VS-SAIM’s top-down path we termed the

response profile, knowledge-based on-centre-off-surround

receptive field. The centre of this new type of receptive

field is dominated by the influence of the knowledge and

the surround by the featural responses of the input stimuli

(see Fig. 14 for an illustration). We will return this concept

at the end of this discussion. Finally, the analysis revealed

that biologically plausible unbalanced weighting of feature

maps (e.g. [7]) is crucial for simulating search asymmetries

of line orientation, with vertical and horizontal orientation

weighted higher than diagonal orientation. By combining

behavioural findings with this physiological evidence

VS-SAIM’s approach is validated further.

The following two studies tested two implications of

Study 2. Study 3 showed that VS-SAIM cannot only sim-

ulate the influence of distractor orientation on visual search

performance in general, but also the specific modulation

found by Foster and Westland [14]. This success is mainly

due to how the Euclidian distance between distractor items

and background changes with item orientation. Second,

Study 2 seem to imply that search asymmetry is the stan-

dard finding. However, there is also evidence for sym-

metric search pattern [13]. With its successful simulation

VS-SAIM suggests that symmetry occurs when search

items are formed by similarly weighted features, such as

Fig. 14 The knowledge-based on-centre-off-surround receptive field.

The graph illustrates the activation profile in the matching surface

near a search item. The labels above indicate the origin of the

activation levels. The profile is term knowledge-based receptive field

because on one hand the shape of the profile is reminiscent of

classical receptive fields in the early visual system and, on the other

hand, the matching surface is the result of the matching between

feature maps and top-down modulation
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’L’ and ’T’. Future research needs to follow up this pre-

diction. For now it is important to notice the simulations

presented in this paper underline the validity of VS-SAIM.

Moreover, the results go beyond a simple ’’proof of exis-

tence’’ and make a specific prediction of what is crucial for

these simulation results, the knowledge-based centre-

on-surround-off receptive field. Because of its novelty and,

to some extend, its counterintuitivity this concept is dis-

cussed for the remainder of this paper.

In general VS-SAIM suggests that search asymmetries

can be the outcome of knowledge-based influence. Inter-

estingly, this is consistent with behavioral evidence that

can be interpreted as knowledge-based influences, e.g.

mirrored letters versus normal letters [24] or ’’inverted

elephants’’ versus normal elephants [43]. On the other

hand, search asymmetries are often seen as diagnostic for

the existence of feature maps (e.g. [37]). However, this

apparent contradiction is resolved in VS-SAIM by the fact

that the top-down influence is modulated by the featural

properties. Moreover, the simulations presented here sug-

gest that this Euclidian-based modulation in VS-SAIM

presents a good approximation for searches among lines.

But in how far are the spatial properties of this top-down

modulation, the knowledge-based on-centre-off-surround

receptive field, plausible? To begin with, it is intuitive to

suggest that top-down influence effects search not only

exactly at locations of items but also in the vicinity of

items. If this top-down influence consists of some kind of

matching processes as assumed in VS-SAIM, this matching

should not drop off rapidly, as the system has to be robust

against noise, distortion, etc. Now, the matching could

either tail off to the level of the background level or go

below the background level and then increase again as it is

the case in our simulation results. The latter option has the

advantages that it improves the contrast against the back-

ground and makes it more detectable for following pro-

cessing stages. Moreover and importantly, apart from these

theoretical considerations, there is also empirical support

for the on-centre-off-surround shape of the matching sur-

face: the well-known response characteristic of receptive

fields in the early visual system (e.g. [1, 6, 23, 35]) and

recent findings of behavioral performances surrounding the

focus of attention (e.g. [2, 4, 8, 29, 32]). The classical

findings on on-centre-off-surround receptive fields are

usually interpreted as a purely feature-based process loca-

ted in the retina or the LGN. VS-SAIM generalizes this

type of spatial response to a knowledge-based on-centre-

off-surround receptive field. The location of such receptive

fields in the brain is unclear. It could be that the receptive

fields in the early visual field indeed are influenced by

knowledge. This has not been tested, but there are indica-

tions that responses in early visual processing are influ-

enced by top-down modulation (e.g. see [25] for evidence

on the effect of spatial attention in V1 in an animal study).

An obvious alternative could be regions in which fMRI

studies have shown indication of object processing, e.g.

lateral occipital cortex (e.g. [15]). It is also worth noting

that such a generalization from a model of low-level pro-

cesses to higher-level processes is not uncommon. For

instance, models based on the principle component analysis

(PCA) have been applied to model the formation of low-

level receptive fields (e.g. [33]) and human face recogni-

tion (see [27]; for a recent example). A similar transfer of a

mechanism from low-level processes to high-level process

is suggested by VS-SAIM for the on-centre-off-surround

receptive field.

The second supporting evidence for VS-SAIM’s on-

centre-off-surround receptive field comes from behavioural

experiments on visual attention. In these experiments, the

location of the focus of attention is manipulated by target

locations in visual search [2, 4, 29], spatial cue [8] or

identification of letters at a pre-defined location [32]. The

spatial profile of the focus of attention is determined by

measuring the success of detecting a simple probe stimulus

[2, 4], comparing the identity of the probe letter (same

colour) with the target letter [8] and identifying the probe

stimulus [29, 32]. The experiments show that the probe

performance exhibits a similar on-centre-off-surround

profile as VS-SAIM. Interestingly, even some details of the

response characteristics are consistent with VS-SAIM’s

profile. The profile is influenced by the saliency of the

target whereby the inhibitory zone is deeper when the

target is more salient [29]. Second, Boehler et al. [2]

showed that the exact shape of the profile depends on the

task performed, i.a. simple target detection vs. detecting a

feature on the target. This finding can be interpreted that

the profile is affected by top-down processes as in

VS-SAIM. However, future research needs to test whether

this attentional profile is affected only by the task setting or

whether properties of distractors influence the profile, e.g.

by applying a probe task to asymmetric and symmetric

search tasks. Furthermore, these experimental findings are

normally conceptualized as profiling the focus of attention.

Hence in VS-SAIM this can be construed as activation

profile in the selection network. On the other hand these

experiments can also be interpreted as tapping into the

control mechanism of attention (see [29] for a similar

point). This interpretation is consistent with VS-SAIM’s

prediction that the centre-on-surround-off profile is pro-

duced by the matching network. Future experiments need

to tease these two hypotheses apart.

Finally, the simulations with VS-SAIM suggest that

search is strongly influenced by bottom-up properties of the

distractors, especially highlighted by Study 3. In other

words VS-SAIM’s simulations suggest that, apart from the

target-distractor similarity, the properties of distractors
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play an important role in the efficiency of visual search.

This point is interesting, because it is in contrast to most

classical theories on visual search, where the focus is on

the properties of the target rather than the distractors. In

some sense VS-SAIM’s suggestion seems intuitively

plausible as there are simply more distractors present in the

search display, consequently, exerting stronger influence

on human behaviour. Future experiments need to explore

this novel suggestion.
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Appendix: Mathematical Details of VS-SAIM

General Modelling Principle

As explained in the main text, VS-SAIM’s design is based

on the principle of minimization of an energy function in

order to implement a soft-constraint satisfaction. The core

idea is that activation patterns fulfilling a set of constraints

constitute minima in an energy function. In order to

determine the minimum, VS-SAIM performs a gradient

descent in the energy function following a suggestion by

Hopfield and Tank [21]:

s _xk ¼ �g
oE yð Þ
oyk

; yk ¼ f ðxkÞ ð1Þ

where s is a time constant, g a gain factor, x the inner

activation of the model and y the model output activation.

f(x) is the output function of the individual units. In VS-

SAIM each module, knowledge network, contents network,

etc. pursuits a different set of constraints depending on its

task, e.g. identifying objects in the knowledge network.

Hence, for each network an energy function is defined with

different minima reflecting a correct completion of its task.

In order ensure that VS-SAIM, as a whole, satisfies all

constraints at the same time, the individual energy

functions are added together to a overall energy function.

Apart from the energy function as such, the choice of the

output function f(x) depends on the implemented

constraints. Here, we used either the sigmoid function,

f ðxÞ ¼ 1

1þ exp �m x� sð Þð Þ ð2Þ

or a linear function

f ðxÞ ¼ m � x� s: ð3Þ

whereby m is the slope and s the intercept. The sigmoid

function is more suitable if the attractor states have to be

either zero or one. In contrast, the linear function is

appropriate, if the final state should reflect continuous

values, e.g. the activation in the feature maps. Therefore,

the sigmoid function was used in the selection network and

the knowledge network. The linear function was used in the

content network and the matching network. Finally, to

achieve some degree of biologically plausible in

VS-SAIM, the differential equations can also include a

leaky integrator so that the resulting differential equation

turns into:

s _xk ¼ �xk � g
oE yð Þ
oyk

ð4Þ

Before the equations of the individual networks are intro-

duced, we will present the equations for a simple WTA-

network in a separate section. This illustrates the energy

function approach in a simple example and also introduces

the central building block for VS-SAIM.

Winner Take All (WTA)

The WTA energy function was suggested by [28]:

EWTAðyÞ ¼ a
XK

k¼1

yk � 1

 !2

�b
XK

k¼1

Ikyk ð5Þ

where yk is the output activation of the kth neuron and Ik its

input. Every neuron has an internal activation xk and its

output activation yk is calculated via the sigmoid function.

The WTA energy function is minimal when all yis are zero

except one (first term), and the corresponding Ii has the

maximal value of all Iis (second term). The parameter a
and b weights the two terms or constraints against each

other. The gradient descent together with a leaky integrator

for each neuron results in the following equations:

s _xk ¼ �xk �
oEWTA yð Þ

oyk
¼ �xk � 2a

XK

k¼1

yk � 1

 !
þ bIk

ð6Þ

Finally, note that the term
PK

k¼1 yk implements a global

inhibition in the WTA- network.

Early visual processing stage (EVPS)

The early visual processing stage (EVPS) consists of

Gabor-filters with four orientations (0�, 90�, 45� and 135�),

modelling V1 operations. The following equation describes

the normalization:
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Inorm
ij ¼ IijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPU

u¼�U

PV
v¼�V I2

iþu;jþv

q ð7Þ

with a window size of (2U ? 1) 9 (2V ? 1). The term Iij

represents the input image while Inorm
ij is the normalized

intensity image. The Gabor-filter implementation follows

the model of the receptive field of simple cells in the visual

cortex proposed by [9]:

xðs; rÞ ¼ s � cos hþ r � sin h ð8Þ
yðs; rÞ ¼ r � cos h� s � sin h ð9Þ

G s; r; h; kð Þ ¼ 1

A
exp �0:5

xðs; rÞ
r

� �2

þ yðs; rÞ
r

� �2
 ! !

� cos 2pkxðs; rÞð Þ
ð10Þ

A ¼
X

sr

G s; r; h; kð Þ
�����

����� ð11Þ

with h being the Gabor kernel orientation and k its

frequency.

The Gabor-filters are convolved with the normalized

intensity image. Consequently, the output of the EVPS

consists of a five feature maps: The first feature map,

n = 1, is the normalized intensity image:

f
ð1Þ
ij ¼ pð1ÞInorm

ij ð12Þ

while the other four feature maps n = 2, n = 3, n = 4,

n = 5 are the convolution results of the normalized

intensity input with a Gabor-filter mask:

f
ðnÞ
ij ¼ pðnÞ

XS

s¼�S

XR

r¼�R

G s; r; hn; knð ÞInorm
iþs;jþr

�����

����� ð13Þ

In the cases i ? s or j ? r exceeds the visual field

boundaries, the intensity values are set to zero (boundary

handling). The parameter p(n) weights the feature maps and

were altered in the ‘‘exploration of the parameter space’’.

Noise

In order to model noise in the visual system, noise was added

to the input display and was based on the following equation

implemented in an earlier version of VS-SAIM [19]:

€xþ c _xþ sin x ¼ A cos xt þ pð Þ ð14Þ

This equation was inspired by the motion equation of a

periodically driven pendulum where c is the damping

constant and the right side describes a driving torque with

amplitude A, angular frequency x and phase p.

This equation was chosen on merely technical grounds

and exhibits a chaotic behaviour or quasi-stochastic

temporal behaviour. Since this ’’noise’’ is described

with a differential equation, it fits seamlessly into the

differential equations derived from the energy function

approach.

To ensure that each retinal unit of the input receives a

different signal, each retinal unit has its own pendulum

equation:

€xij þ c _xij þ sin xij ¼ A cos xt þ pij

� �
ð15Þ

For each retinal unit (i, j) an initial state xij(0) and phase pij

is randomly chosen drawn from an equal distribution.

To limit the amplitude of the noise xij was fed into the

following equation:

ynoise
ij ðtÞ ¼ 0:5 max� minð Þ � sin xijðtÞ

� �
þ maxþ minð Þ

� �

ð16Þ

where max and min are the limits of the noise amplitude.

The term ynoise
ij is then added to each feature map f n

ij .

Contents Network

The contents network aims to enable a translation-invariant

mapping from the EPVS to the smaller focus of attention.

The energy function for the contents network is defined as,

ECN yCN ; ySN
� �

¼ aCN
X

lm

X

ij

X

n

yCN
lmn � f

ðnÞ
ij

� 	2

ySN
lmij

� 	q

ð17Þ

where aCN is the weight of the energy term in the overall

energy function of VS-SAIM. The indices i and j refer to

image locations, and the indices l and m refer to FOA-

locations. n indexes the feature map. The variable yCN
lmn is

the output activation of the contents network while ySN
lmij is

the output activation of the selection network.

The term yCN
lmn � f

ðnÞ
ij

� 	2

ensures this energy function is

minimal when the FOA matches the activations of the

features maps. However, because of the multiplication with

the output activations from the selection network ySN
lmij

� 	q

this match is only required at selected locations (ySN
lmij ¼ 1),

whereas deselected locations (ySN
lmij � 0) do not contribute

to the minimization of the energy function. The parameter

q, chosen to a value larger than one, enhances the selection

effect of the selection network, since it decreases small

activations more than larger activations. This implemen-

tation of the contents network was initially design for the

Grouping-SAIM (G-SAIM; [18]). In G-SAIM we simu-

lated simple effects of with- and between-object grouping.

In this version, the contents network was crucial for its

success. However, for the aim of this paper it is only rel-

evant the contents network operates similar to a sigma-pi
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unit, as explained in the main text (see also [16]). Here, we

will demonstrate this equivalence. The differential equa-

tion for the contents network units is described by,

s _xCN
lmn ¼ �xCN

lmn �
oECN ySN ; yCNð Þ

oyCN
lmn

ð18Þ

with the derivation term defined as,

oECN ySN ; yCNð Þ
oyCN

lmn

¼ 2aCN
X

ij

yCN
lmn � f n

ij

� 	
ySN

lmij

� 	q

ð19Þ

The contents network uses a linear output function, so

that yCN
lmn is equal with xCN

lmn. So once the differential

equations are converged, _xCN
lmn is zero and Eq. 18 turns into:

0 ¼ �yCN
lmn � 2aCN

X

ij

yCN
lmn � f n

ij

� 	
ySN

lmij

� 	q

ð20Þ

The solution of this equation for yCN
lmn is:

yCN
lmn ¼ 2aCN

P
ij f n

ij � ySN
lmij

� 	q

1þ
P

ij ySN
lmij

� 	q ð21Þ

Since
P

ij ySN
lmij converges to one (see selection network), the

converged contents network operates like a sigma-pi unit:

yCN
lmn ¼ aCN

X

ij

f n
ij � ySN

lmij

� 	q

ð22Þ

Selection Network

The selection network aims to select an item in the input

image by generating an appropriate activation pattern

which ensures a veridical mapping of this item into the

FOA. The selection network is structured into layers

whereby each layer controls the routing for a different

FOA-pixel. To ensure a veridical representation, the

selection network has to fulfil two constraints (see main

text): (a) one unit in the FOA should not receive an input

from more than one retinal unit and (b) neighbourhood

relations should be preserved during the mapping process.

Constraint (a) is implemented as a WTA:

ESN1ðySNÞ ¼ aSN
X

lm

X

ij

ySN
lmij � 1

 !2

ð23Þ

where aSN weights the constraint. Constraint (b) is realized

with excitatory connections between layers:

ESN2ðySNÞ ¼ �bSN
X

lm

X

ij

XS

s¼�S
s 6¼0

XR

r¼�R
r 6¼0

g s; rð ÞySN
lþs;mþr

iþs;jþr

ySN
lmij

ð24Þ

and is weighted by bSN. The strength of the connection

g(s, r) decreases with the distance between units and

weakens the co-operation between units further apart from

each other (see also [16]). The neighbourhood function

g(s, r) is defined by,

g s; rð Þ ¼ 1

A
e�

s2þr2

r2 ð25Þ

where A is a normalization factor with

A ¼
XS

s¼�S

XR

r¼�R

e�
s2þr2

r2 ð26Þ

The differential equation for a selection network unit is

given with

s _xSN
lmij ¼ �xSN

lmij �
oESN1 ySNð Þ

oySN
lmij

� oESN2 ySNð Þ
oySN

lmij

ð27Þ

where the individual terms are:

oESN1 ySNð Þ
oySN

lmij

¼ 2aSN
X

ij

ySN
lmij � 1

 !
ð28Þ

oESN2 ySNð Þ
oySN

lmij

¼ �bSN
XS

s¼�S
s 6¼0

XR

r¼�R
r 6¼0

gðs; rÞySN
lþs;mþr;iþs;jþr ð29Þ

Knowledge Network

The knowledge network implements the object identifica-

tion in VS-SAIM. The energy function for the knowledge

network is defined as the following,

EKN yKN ; yCN
� �

¼ aKN
XK

k¼1

yKN
k � 1

 !2

þ bKN
XK

k¼1

M yCN ;wk
� ��

� 1

K

XK

k0¼1

M yCN ;wk0
� 	!

yKN
k

ð30Þ

with M(yCN, wk ) being the Euclidean matching function

between the FOA and an individual template,

M yCN ;wk
� �

¼
X

lm

X

n

yCN
lmn � wk

lmn

� �2 ð31Þ

where the index k refers to template units whose template

features are stored in the weights wk
lmn. The parameter K is

the total number of templates in the model. The term
P

k yKN
k � 1

� �2
implements the WTA-constraint. The

matching term
P

lmn yCN
lmn � wk

lmn

� �2
ensures that only the

template unit is activated which gives the best match with

the FOA contents. The term 1
K

PK
k0¼1 M yCN ;wk0

� �
calcu-

lates the mean distance of the FOA from all templates and

will be explained in the context of the differential
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equations. The parameter aKN and bKN weight the con-

straints against each other.

The energy function is differentiated with respect to yKN
k

which creates the following differential equation (without

the leaky integrator) for a knowledge network unit,

s _xKN
k ¼ �oE yKN ; yCNð Þ

oyKN
k

ð32Þ

with the partial derivation term defined as,

oE yKN ; yCNð Þ
oyKN

k

¼ 2aKN
X

k

yKN
k � 1

 !

þ bKN
X

lmn

yCN
lmn � wk

lmn

� �2

 

� 1

K

X

k0

X

lmn

yCN
lmn � wk0

lmn

� 	2

!
ð33Þ

With this implementation, the knowledge network

‘‘waits’’ during the ‘‘first’’ phase of the selection process

until the FOA begins to represent information about the input

image. In other words the knowledge network is only

influenced by the ‘‘real’’ selection process and pilot studies

showed that this approach made VS-SAM’s search

performance more robust. This waiting status ( _xKN
k ¼ 0)

results from the following conditions at the beginning of

simulations: First, the sum of the initial values of the output

activation is one (see parameters), thus, the WTA-term is

zero. Second, the FOA output is initialized with average

between the two templates (unbiased template) and,

consequently, the matching term is zero too, because the

mean matching value is subtracted from the matching values.

Top-Down Feedback and Matching Network

So far, we only discussed the following partial derivatives

of the energy functions:
oE yKN ;yCNð Þ

oyKN
k

;
oECN ySN ;yCNð Þ

oyCN
lmn

. In fact,

these terms define the bottom-up pathway. However, for

the gradient descent approach to be successful, it requires

to consider partial derivatives to all dynamical variables:

oE yKN ;yCNð Þ
oyCN

k

;
oECN ySN ;yCNð Þ

oySN
lmn

. These partial derivative construct

the top-down pathway.

In extensive tests, we found that ‘‘strict’’ application of the

gradient descent procedure showed that does not lead to a

reliable visual search in VS-SAIM. Subsequently, we mod-

ified the network architecture and introduced the ‘‘matching

network’’. Nevertheless, the resulting topology was inspired

by a strict application of the gradient descent method.

Therefore, we will first present its correct application and,

then, introduce and discuss the changes which led to the

network architecture, as it is presented in the main text.

For the knowledge network, the top-down path is

derived by a partial derivative with respect to xCN
lmn:

s _xCN
lmn ¼ �xCN

lmn �
oEKN yCN ; yKNð Þ

oyCN
lmn

ð34Þ

with the derivation termed defined as,

oEKN yCN ; yKNð Þ
oyCN

lmn

¼ 2bKN
X

k

yCN
lmn � wk

lmn

� �
� 1

K

X

k0
yCN

lmn � wk0

lmn

� 	 !
yKN

k

ð35Þ

This term would have been added to Eq. 19 and would

have introduced a direct feedback from the knowledge

network into the contents network. For the contents

network the energy function is derived with respect to ySN
lmij:

oECN ySN ; yCNð Þ
oyCN

lmn

¼

aCN � q
X

lm

X

ij

X

n

yCN
lmn � f n

ij

� 	2

ySN
lmij

� 	ðq�1Þ ð36Þ

This term would have been added to Eq. 27 and would

have introduced a input from the contents network into the

selection network.

The pilot simulations revealed that the direct feedback

from the knowledge network into the contents network

represented a major problem for a successful visual search,

because the directness of the feedback loop made it diffi-

cult to balance bottom-up and top-down influence. There-

fore, we replaced the contents network in the top-down

path with the matching network xMN
lmn , so that the top-down

influence became less immediate and the feedback loop is

closed via the selection network. Expressed in mathemat-

ical terms, Eq. 34 turned into

s _xMN
lmn ¼ �xMN

lmn �
oEKN yMN ; yKNð Þ

oyNM
lmn

ð37Þ

with the derivation termed defined as,

oEKN yMN ; yKNð Þ
oyMN

lmn

¼

2bKN
X

k

yMN
lmn � wk

lmn

� �
� 1

K

X

k0
yMN

lmn � wk0

lmn

� 	 !
yKN

k

ð38Þ

Like the contents network, the initial values of the matching

network were the averaged templates. The way the matching

network projects into the selection network following

Eq. 37. However, our pilot studies showed that the factor

ySN
lmij

� 	ðq�1Þ
often prevented a successful selection, as this
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term is often close to zero and therefore blocks any top-down

modulation from the matching network. There we set q = 1

in the top-down pathway and eliminated this factor.

The pilot studies revealed a further problem with the

matching network. The matching term (yCN
lmn � wk0

lmn) does

not take into account any the spatial neighbourhood rela-

tions between pixels in items. Even though the neigh-

bourhood constraint in the selection network should be able

to solve this problem, the pilot simulations indicated that

this is not sufficient to ensure a successful operation of

VS-SAIM for all items used here. Therefore, we introduced

a spatial matching window for each feature map location

with the same size as the matching template. This heuris-

tics was successfully employed in natural images [20]. The

resulting equation is the following:

EMN ySN ; yMN
� �

¼

aMN
X

lm

X

ij

XS

s¼�S

XR

r¼�R

X

n

yMN
lþs;mþr;n � f n

iþs;jþr

� 	2

 !
ySN

lmij

ð39Þ

The term
PS

s¼�S

PR
r¼�R yMN

lþs;mþr;n � f n
iþs;jþr

� 	2

constitutes

the additional matching window. The partial derivative

with respect to ySN
lmij is

oEMN ySN ; yMNð Þ
oySN

lmij

¼ aMN
X

s;r

X

n

yMN
lþs;mþr;n � f n

iþs;jþr

� 	2

ð40Þ

The pilot studies highlighted a final problem. The activation

amplitudes of the input into the selection
oEMN ySN ;yMNð Þ

oySN
lmij

� �
can

greatly vary depending on the search items. Occasionally,

these activations were too high for the WTA-constraint in the

selection network to work successfully, especially for large

displays. In other words, the global inhibition was not able to

restrict the number of winners to one. This situation

particularly occurred at the beginning of the selection

process, termed Phase 1 in the main text, when the unbiased

matching templates matches equally well all items. A possible

consequence of this failure is that several distractors are being

selected before the knowledge network induces the target

template in the matching template. Therefore, we added a

normalization to input of the selection network:

s _xSN
lmij ¼ �xSN

lmij �
oESN1 ySNð Þ

oySN
lmij

� oESN2 ySNð Þ
oySN

lmij

� normðoEMN ySN ; yMNð Þ
oySN

lmij

Þ ð41Þ

It is important to note the result of the normalization is

termed matching surface in the main text. The function

norm(•) is defined as,

norm zð Þ ¼ m � z� yMNðt ¼ 0Þk k2

yMNðt ¼ 0Þ � w1k k2
þ n ð42Þ

where the term yMN(t = 0) is the activation of the matching

template at initialization (unbiased matching template),

while w1 is the first template in the knowledge network

template. The normalization ensures that the matching

level is n in the background and m ? n at the centre of an

item. n and m were set to 0.5 and 1.0 respectively. The

normalization subtracts the matching value of the unbiased

matching templates with the background yMNðt ¼ 0Þk k2

from the matching levels (z). Hence, the normalization

transforms the matching level in the background to n. The

best matching level at the beginning of the selection pro-

cess is yMNðt ¼ 0Þ � w1


 

2

which, in fact, is the same

value as yMNðt ¼ 0Þ � w2


 

2

, as the unbiased matching

template has the same Euclidian distance from the two

templates. By dividing z� yMNðt ¼ 0Þk k2
through this

highest value the normalization restricts the input activa-

tion to selection network to m ? n.

Simulation Parameter

See Tables 1, 2, 3, 4, 5, and 6.

Table 1 Contents network

Parameter Value Description

f(x) Linear Type of output function

m 1.0

s 0.0

s 1.0 Time constant

aCN 1.0 Mapping factor

q 2.0 Mapping power factor

Table 2 Feature extraction

Parameter Value Description

I 9 J 43 9 43 Size of input

L 9 M 9 9 9 Size of FoA

N 5 Feature dimensions

k 0.3 Gabor frequency

r 3.0 Gabor sigma

h [0, 90, 45, 135] Tuned orientations in [�]

pn [0.3,1.0,1.0,0.1,0.1] Feature weighting

S & R 2 Half window size

Gabor filter
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Table 3 Selection Network

Parameter Value Description

f(x) Sigmoid Type of output function

m 15.0

s 1.0

s 0.5 Time constant

aSN 120.0 Weighting WTA

bSN 20.0 Weighting neighbourhood function

r 7.0 Sigma in neighbourhood function

S & R 4 Half size of neighbourhood function

Table 4 Knowledge network

Parameter Value Description

f(x) Sigmoid Type of output function

m 15.0

s 0.5

s 0.1 Time constant

aKN 0.1 Weighting WTA

bKN 1.0 Weighting matching

Decision - thresh 0.7 Search termination threshold
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Parameter Value Description
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Table 6 Matching network

Parameter Value Description

f(x) Linear Type of output function

m 1.0

s 0.0

s 1.0 Time constant

aMN 1.0 Feedback factor
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n 1.0 Background matching surface

m 0.5 Item location to blank background contrast
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