Skip to main content
Log in

Spatial Memory Sequence Encoding and Replay During Modeled Theta and Ripple Oscillations

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Spatial learning involves the storage and replay of temporally ordered spatial information. The hippocampus is a key brain structure involved in spatial learning in rats. Temporally ordered spatial memories are encoded and replayed by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta and ripple oscillations paced by intra- and extrahippocampal areas. Theta oscillations (4–7 Hz) may contribute to memory formation, whereas fast ripple oscillations to temporally compressed forward and reverse replay of previously stored memories. Different classes of CA1 excitatory and inhibitory neurons and medial septal inhibitory neurons have been shown to differentially phase their activities with respect to theta and ripples. Understanding how the different hippocampal and extrahippocampal areas and their neuronal classes interact during these network oscillations and how they facilitate the storage and replay of spatiotemporal memories is of great importance. A computational model of the hippocampal CA1 microcircuit that uses biophysical representations of the major cell types, including pyramidal cells and four types of inhibitory interneurons, is extended. Inputs to the network come from the entorhinal cortex (EC), the CA3 Schaffer collaterals and the medial septum. A biophysical mechanism of spike timing-dependent plasticity (STDP) is used for learning spatial memory patterns in the correct order. The model addresses two important issues: (1) How are the storage and replay (forward and reverse) of temporally ordered memory patterns controlled in the CA1 microcircuit during theta and ripples? (2) What roles do the various types of inhibitory interneurons play in these processes?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amit DJ. Modeling brain function: the world of attractor neural networks. New York: Cambridge University Press; 1989.

    Google Scholar 

  2. Ascoli GA, Alonso-Nanclares L, Anderson SA, Barionuevo G, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008;9(7):557–68.

    Article  PubMed  CAS  Google Scholar 

  3. Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T. Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cerebral Cortex. 2007;17(9):2094–107.

    Article  PubMed  Google Scholar 

  4. Borhegyi Z, Varga V, Szilagyi N, Fabo D, Freund TF. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J Neurosci. 2004;24(39):8470–9.

    Article  PubMed  CAS  Google Scholar 

  5. Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, Moser MB. Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron. 2008;57(2):290–302.

    Article  PubMed  CAS  Google Scholar 

  6. Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science. 2002;296(5576):2243–6.

    Article  PubMed  CAS  Google Scholar 

  7. Buzsaki G. Two stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31(3):551–70.

    Article  PubMed  CAS  Google Scholar 

  8. Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–40.

    Article  PubMed  CAS  Google Scholar 

  9. Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science. 1992;25:1025–7.

    Article  Google Scholar 

  10. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378(6552):75–8.

    Article  PubMed  CAS  Google Scholar 

  11. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 2009;462(19):353–8.

    Article  PubMed  CAS  Google Scholar 

  12. Cutsuridis V, Cobb S, Graham BP. Encoding and retrieval in a CA1 microcircuit model of the hippocampus. In: Kurkova V, et al., editors. Lecture notes in computer science 5164. Berlin: Springer; 2008. p. 238–47.

    Google Scholar 

  13. Cutsuridis V, Cobb S, Graham BP. Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus. 2010;20(3):423–46.

    PubMed  CAS  Google Scholar 

  14. Cutsuridis V, Graham BP, Cobb S, Vida I. Hippocampal microcircuits: a computational modeler’s resource book. Springer; 2010.

  15. Cutsuridis V, Hasselmo M. Dynamics and function of a CA1 model of the hippocampus during theta and ripples. In: Diamantaras K, Duch W, Iliadis LS, editors. ICANN 2010, part I, LNCS 6352. Berlin: Springer; 2010. p. 230–40.

    Google Scholar 

  16. Cutsuridis V, Kahramanoglou I, Smyrnis N, Evdokimidis I, Perantonis S. A neural variable integrator model of decision making in an antisaccade task. Neurocomputing. 2007;70(7–9):1390–402.

    Article  Google Scholar 

  17. Cutsuridis V, Wennekers T. Hippocampus, microcircuits and associative memory. Neural Netw. 2009;22(8):1120–8.

    Article  PubMed  Google Scholar 

  18. Diba K, Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci. 2007;10(10):1241–2.

    Article  PubMed  CAS  Google Scholar 

  19. Dickson C, Magistretti J, Shalinsky M, Fransen E, Hasselmo M, Alonso A. Properties and role of I h in the pacing of sub-threshold oscillations in the entorhinal cortex layer II neurons. J Neurophysiol. 2000;83:2562–79.

    PubMed  CAS  Google Scholar 

  20. Dragoi G, Carpi D, Recce M, Csicsvari J, Buzsaki G. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J Neurosci. 1999;19(14):6191–9.

    PubMed  CAS  Google Scholar 

  21. Dragoi G, Tonegawa S. Preplay of future place cell sequences by hippocampal cell assemblies. Nature. 2011;469(7330):397–401.

    Article  PubMed  CAS  Google Scholar 

  22. Ellender TJ, Nissen W, Colgin LL, Mann EO, Paulsen O. Priming of hippocampal population bursts by individual perisomatic-targeting interneurons. J Neurosci. 2010;30(17):5979–91.

    Article  PubMed  CAS  Google Scholar 

  23. Ermentrout B. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM; 2002.

    Book  Google Scholar 

  24. Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440:680–3.

    Article  PubMed  CAS  Google Scholar 

  25. Fransen E, Alonso A, Dickson C, Magistretti J, Hasselmo M. Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus. 2004;14:368–84.

    Article  PubMed  CAS  Google Scholar 

  26. Fransen E, Alonso A, Hasselmo M. Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. J Neurosci. 2002;22:1081–97.

    PubMed  CAS  Google Scholar 

  27. Freund TF. GABAergic septohippocampal neurons contain parvalbumin. Brain Res. 1989;478:375–81.

    Article  PubMed  CAS  Google Scholar 

  28. Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 1988;336:170–3.

    Article  PubMed  CAS  Google Scholar 

  29. Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, Thomson A, Somogyi P, Klausberger T. Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron. 2008;57(6):917–29.

    Article  PubMed  CAS  Google Scholar 

  30. Fuentealba P, Klausberger T, Karayannis T, Suen WY, Huck J, Tomioka R, Rockland K, Capogna M, Studer M, Morales M, Somogyi P. Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus. J Neurosci. 2010;30(5):1595–609.

    Article  PubMed  CAS  Google Scholar 

  31. Gillies MJ, Traub RD, LeBeau FEN, Davies CH, Gloveli T, Buhl EH, Whittington MA. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J Physiol. 2002;543:779–93.

    Article  PubMed  CAS  Google Scholar 

  32. Graham BP. Dynamics of storage and recall in hippocampal associative memory networks. In: Erdi P, Esposito A, Marinaro M, Scarpetta S, editors. Computational neuroscience: cortical dynamics. Berlin: Springer; 2003. p. 1–23.

    Google Scholar 

  33. Graham BP, Cutsuridis V, Hunter R. Associative memory models of hippocampal areas CA1 and CA3. In: Cutsuridis V, et al., editors. Hippocampal microcircuits: a computational modeller’s resource book. USA: Springer; 2010. p. 461–94.

    Google Scholar 

  34. Harris KD, Henze DA, Hirase H, Leinekugel Z, Dragoi G, Czurko A, Buzsaki G. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature. 2002;417:738–41.

    Article  PubMed  CAS  Google Scholar 

  35. Hasselmo M, Bodelon C, Wyble B. A proposed function of the hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 2002;14:793–817.

    Article  PubMed  Google Scholar 

  36. Hasselmo ME, McClelland JL. Neural models of memory. Curr Opinion Neurobiol. 1999;9:184–8.

    Article  CAS  Google Scholar 

  37. Hasselmo M, Schnell E. Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modelling and brain slice physiology. J Neurosci. 1994;14:3898–914.

    PubMed  CAS  Google Scholar 

  38. Hasselmo ME, Wyble BP. Simulation of the effects of scopolamine on free recall and recognition in a network model of the hippocampus. Behav Brain Res. 1997;89:1–34.

    Article  PubMed  CAS  Google Scholar 

  39. Hoang L, Kesner RP. Dorsal hippocampus, CA3 and CA1 lesions disrupt temporal sequence completion. Behav Neurosci. 2008;122:9–15.

    Article  PubMed  Google Scholar 

  40. Houser CR. Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog Brain Res. 2007;163:217–32.

    Article  PubMed  CAS  Google Scholar 

  41. Hunsaker M, Mooy GG, Swift JS, Kesner RP. Dissociation of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing. Behav Neurosci. 2007;121:742–50.

    Article  PubMed  Google Scholar 

  42. Jarsky T, Roxin A, Kath WL, Spruston N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci. 2005;8(12):1667–76.

    Article  PubMed  CAS  Google Scholar 

  43. Kamondi A, Acsady L, Wang XJ, Buzsaki G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase precession of action potentials. Hippocampus. 1998;8:244–61.

    Article  PubMed  CAS  Google Scholar 

  44. Klausberger T, Magill PJ, Marton LF, David J, Roberts B, Cobden PM, Buzsaki G, Somogyi P. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 2003;421:844–8.

    Article  PubMed  CAS  Google Scholar 

  45. Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci. 2004;7(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  46. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008;321:53–7.

    Article  PubMed  CAS  Google Scholar 

  47. Koene RA, Hasselmo ME. Reversed and forward buffering of behavioral spike sequences enables retrospective and prospective retrieval in hippocampal regions CA3 and CA1. Neural Netw. 2007;21:276–88.

    Article  PubMed  Google Scholar 

  48. Kramis R, Vanderwolf CH, Bland BH. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Brain Res. 1975;49(1 Pt 1):58–85.

    Google Scholar 

  49. Kunec S, Hasselmo ME, Kopell N. Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. J Neurophysiol. 2005;94(1):70–82.

    Article  PubMed  Google Scholar 

  50. Lee I, Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci. 2002;5:162–8.

    Article  PubMed  CAS  Google Scholar 

  51. Lee I, Kesner RP. Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual-fear conditioning. Hippocampus. 2004;14:301–10.

    Article  PubMed  Google Scholar 

  52. Levy W. A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus. 1996;6:579–90.

    Article  PubMed  CAS  Google Scholar 

  53. Manns JR, Zilli EA, Ong KC, Hasselmo ME, Eichenbaum H. Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase. Neurobiol Learn Mem. 2007;87(1):9–20.

    Article  PubMed  Google Scholar 

  54. Mehta MR, Lee AK, Wilson MA. Role of experience and oscillations in transforming a rate code into a temporal code. Nature. 2002;417:741–6.

    Article  PubMed  CAS  Google Scholar 

  55. Mizuseki K, Sirota A, Pastalkova E, Buzsaki G. Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron. 2009;64:267–80.

    Article  PubMed  CAS  Google Scholar 

  56. Molyneaux BJ, Hasselmo M. GABAB presynaptic inhibition has an in vivo time constant sufficiently rapid to allow modulation at theta frequency. J Neurophys. 2002;87(3):1196–205.

    CAS  Google Scholar 

  57. O’Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford: Oxford University Press; 1978.

    Google Scholar 

  58. O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3(3):317–30.

    Article  PubMed  Google Scholar 

  59. Orbán G, Kiss T, Érdi P. Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. J Neurophysiol. 2006;96(6):2889–904.

    Article  PubMed  Google Scholar 

  60. O’Reilly R, McClelland JL. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus. 1994;4:661–82.

    Article  PubMed  Google Scholar 

  61. Poirazi P, Brannon T, Mel BW. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 2003;37:977–87.

    Article  PubMed  CAS  Google Scholar 

  62. Rizzuto DS, Madsen JR, Bromfield EB, Schulze-Bonhage A, Kahana MJ. Human neocortical oscillations exhibit theta phase differences between encoding and retrieval. Neuroimage. 2006;31(3):1352–8.

    Article  PubMed  Google Scholar 

  63. Rolls ET. Spatial view cells and the representation of place in the primate hippocampus. Hippocampus. 1999;9(4):467–80.

    Article  PubMed  CAS  Google Scholar 

  64. Rolls ET, Treves A. Neural networks in the brain involved in memory and recall. Prog Brain Res. 1994;102:335–41.

    Article  PubMed  CAS  Google Scholar 

  65. Rotstein HG, Pervouchine DD, Acker CD, Gillies MJ, White JA, Buhl EH, Whittington MA, Kopell N. Slow and fast inhibition and an h-current interact to create a theta rhythm in a model of CA1 interneuron network. J Neurophysiol. 2005;94:1509–18.

    Article  PubMed  Google Scholar 

  66. Rubin JE, Gerkin RC, Bi GQ, Chow CC. Calcium time course as signal for spike-timing-dependent plasticity. J Neurophysiol. 2005;93:2600–13.

    Article  PubMed  Google Scholar 

  67. Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271:1870–3.

    Article  PubMed  CAS  Google Scholar 

  68. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6:149–72.

    Article  PubMed  CAS  Google Scholar 

  69. Toth K, Borhegyi Z, Freund TF. Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of Broca complex. J Neurosci. 1993;13:3712–24.

    PubMed  CAS  Google Scholar 

  70. Traub RD, Draguhn A, Whittington MA, Baldeweg T, Bibbig A, Buhl EH, Schmitz D. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev Neurosci. 2002;13:1–30.

    Article  PubMed  Google Scholar 

  71. Traub RD, Jefferys JG, Miles R, Whittington MA, Toth K. A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol. 1994;481:79–95.

    PubMed  CAS  Google Scholar 

  72. Treves A. Computational constraints between retrieving the past and predicting the future, and the CA3-CA1 differentiation. Hippocampus. 2004;14:539–56.

    Article  PubMed  Google Scholar 

  73. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26:407–18.

    Article  PubMed  CAS  Google Scholar 

  74. Vida I. Morphology of hippocampal neurons. In: Cutsuridis V, et al., editors. Hippocampal microcircuits: a computational modeler's resource book. USA: Springer; 2010. p. 27–67.

  75. Vinogradova O. Hippocampus as a comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus. 2001;11:578–98.

    Article  PubMed  CAS  Google Scholar 

  76. White J, Klink R, Alonso A, Kay A. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J Neurophysiol. 1998;80:262–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NSF Science of Learning Center CELEST grant SMA 0835976.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Cutsuridis.

Appendix: Mathematical Formalism

Appendix: Mathematical Formalism

This Appendix contains the mathematical formalisms of the model cell types. Simulations were performed using the XPPAUT [23]. Data analysis was performed by MATLAB. Parameter units are measured in mV for potentials, μA/cm2 for applied currents, mS/cm2 for maximal conductances, and μF/cm2 for capacitances.

CA1 Pyramidal Cell

The axonic (ax), somatic (s), proximal dendritic (pd) and distal dendritic (dd) compartments of the pyramidal neuron obey the following current balance equations

$$ C_{\text{m}} \frac{{{\text{d}}V_{\text{ax}} }}{{{\text{d}}t}} = I_{\text{L}} + I_{\text{Na,ax}} + I_{\text{K,ax}} + I_{\text{coup}} + I_{\text{syn}} + I_{\text{in}} $$
(4)
$$ C_{\text{m}} \frac{{{\text{d}}V_{\text{s}} }}{{{\text{d}}t}} = I_{\text{L}} + I_{\text{Na,s}} + I_{{{\text{K}}_{\text{dr,s}} }} + I_{\text{A,s}} + I_{\text{m,AHAP,s}} + I_{\text{CaL,s}} + I_{\text{coup}} + I_{\text{syn}} + I_{\text{in}} $$
(5)
$$ C_{\text{m}} \frac{{{\text{d}}V_{\text{pd}} }}{{{\text{d}}t}} = I_{\text{L}} + I_{\text{Na,d}} + I_{{{\text{K}}_{\text{dr,d}} }} + I_{\text{A,d}} + I_{\text{CaL,d}} + I_{\text{coup}} + I_{\text{syn}} + I_{\text{in}} $$
(6)
$$ C_{m} \frac{{{\text{d}}V_{\text{dd}} }}{{{\text{d}}t}} = I_{\text{L}} + I_{\text{Na,d}} + I_{{{\text{K}}_{\text{dr,d}} }} + I_{\text{A,d}} + I_{\text{CaL,d}} + I_{\text{coup}} + I_{\text{syn}} + I_{\text{in}} $$
(7)

where I L is the leak current, I Na is the sodium current, I K is the delayed rectifier potassium current, I A is the type-A potassium current [61], I m,AHP is the medium Ca2+-activated K+ after-hyperpolarization current [61], I CaL is the L-type Ca2+ current [61], I coup is the electrical coupling between compartments, I in is the injected current and I syn is the synaptic current. Table 1 displays the ionic parameter values of the CA1 pyramidal cell.

Table 1 Pyramidal cell parameter values

The coupling currents for all compartments are

$$ I_{\text{coup}}^{\text{axon}} = g_{\text{axon,soma}} \cdot (V_{\text{soma}} - V_{\text{axon}} ) $$
(8)
$$ I_{\text{coup}}^{\text{soma}} = g_{\text{soma,axon}} \cdot (V_{\text{axon}} - V_{\text{soma}} ) + g_{{{\text{soma,dend}}_{\text{prox}} }} \cdot (V_{\text{pd}} - V_{\text{soma}} ) $$
(9)
$$ I_{\text{coup}}^{{{\text{dend}}_{\text{prox}} }} = g_{{{\text{soma,dend}}_{\text{prox}} }} \cdot (V_{\text{soma}} - V_{\text{pd}} ) + g_{{{\text{dend}}_{\text{dist}} , {\text{dend}}_{\text{prox}} }} (V_{\text{dd}} - V_{\text{pd}} ) $$
(10)
$$ I_{\text{coup}}^{{{\text{dend}}_{\text{dist}} }} = g_{{{\text{dend}}_{\text{prox}} , {\text{dend}}_{\text{dist}} }} (V_{\text{pd}} - V_{\text{dd}} ). $$
(11)

The leak current is described by

$$ I_{\text{L}} = g_{\text{L}} \cdot (V - V_{\text{L}} ) $$
(12)

where g L is the leak conductance and V L is the leak reversal potential.

The sodium current at the axon and soma is described by

$$ I_{\text{Na}} = - g_{\text{Na}} \cdot M_{\text{Na}}^{2} \cdot H_{\text{Na}} \cdot (V - V_{\text{Na}} ) $$
(13)

where g Na is the maximal conductance of the Na+ current, M Na and H Na are the activation and inactivation constants and V Na is the reversal potential of the Na+ current. The activation and inactivation constants at the soma are given by

$$ \begin{aligned} M_{\text{Na}} & = \alpha_{\text{M}} (V)/(\alpha_{\text{M}} (V) + \beta {}_{\text{M}}(V)) \\ \alpha_{\text{M}} (V) & = 0.32 \cdot ( - 46.9 - V)/(\exp (( - 46.9 - V)/4.0) - 1.0) \\ \beta_{\text{M}} (V) & = 0.28 \cdot (V + 19.9)/(\exp ((V + 19.9)/5.0) - 1.0) \\ H_{\text{Na}}^{\prime } & = \alpha_{\text{H}} (V) - (\alpha_{\text{H}} (V) + \beta_{\text{H}} (V)) \cdot H_{\text{Na}} \\ \alpha_{\text{H}} (V) & = 0.128 \cdot \exp (( - 43 - V)/18) \\ \beta_{\text{H}} (V) & = 4/(1 + \exp (( - 20 - V)/5) \\ \end{aligned} $$

The sodium current at the dendrite is described by

$$ I_{\text{Na,d}} = - g_{\text{Na,d}} \cdot M_{\text{Na,d}}^{2} \cdot H_{\text{Na,d}} \cdot D_{\text{Na,d}} \cdot (V_{\text{d}} - V_{\text{Na}} ) $$
(14)

where

$$ \begin{aligned} M_{\text{Na,d}}^{\prime } & = \left( {M_{{\infty_{\text{Na,d}} }} - M_{\text{Na,d}} } \right)/\tau_{{{\text{M}}_{\text{Na,d}} }} \\ M_{{\infty_{\text{Na,d}} }} & = 1/(1 + \exp (( - V_{\text{d}} - 40)/3)) \\ \tau_{{{\text{M}}_{\text{Na,d}} }} & = 0.1 \\ H_{\text{Na,d}}^{\prime } & = \left( {H_{{\infty_{\text{Na,d}} }} - H_{\text{Na,d}} } \right)/\tau_{{{\text{H}}_{\text{Na,d}} }} \\ H_{{\infty_{\text{Na,d}} }} & = 1/(1 + \exp ((V_{\text{d}} + 45)/3)) \\ \tau_{{{\text{H}}_{\text{Na,d}} }} & = 0.5 \\ D_{\text{Na,d}}^{\prime } & = \left( {D_{{\infty_{\text{Na,d}} }} - D_{\text{Na,d}} } \right)/\tau_{{{\text{D}}_{\text{Na,d}} }} \\ D_{{\infty_{\text{Na,d}} }} & = (1 + {\text{natt}} \cdot \exp ((V_{\text{d}} + 60)/2))/(1 + \exp ((V_{\text{d}} + 60)/2)) \\ \tau_{{{\text{D}}_{\text{Na,d}} }} & = \max (0.1,(0.00333 \cdot \exp (0.0024 \cdot (V_{\text{d}} + 60) \cdot Q))/(1 + \exp (0.0012 \cdot (V_{\text{d}} + 60) \cdot Q))) \\ Q & = 96,480/(8.315 \cdot (273.16^{^\circ } + T)) \\ \end{aligned} $$

where T is the temperature in Celcius and natt is the Na+ attenuation. The type-A K+ current at the soma and dendrite is given by

$$ I_{{{\text{K}}_{\text{A,d}} }} = - g_{{{\text{K}}_{\text{A,d}} }} \cdot A_{\text{d}} \cdot B_{\text{d}} \cdot (V_{\text{d}} - V_{\text{K}} ) $$
(15)

The activation and inactivation constants are given by

$$ \begin{aligned} A_{\text{d}}^{\prime } & = \left( {A_{{\infty_{\text{d}} }} - A_{\text{d}} } \right)/\tau_{{A_{\text{d}} }} \\ A_{{\infty_{\text{d}} }} & = 1/(1 + A_{{\alpha ,{\text{d}}}} ) \\ A_{{\alpha ,{\text{d}}}} & = \exp ({\text{asap}} \cdot \varsigma (V_{\text{d}} ) \cdot (V_{\text{d}} + 1) \cdot Q) \\ A_{{\beta ,{\text{d}}}} & = \exp (0.00039 \cdot Q \cdot (V_{\text{d}} + 1) \cdot \varsigma_{2} (V_{\text{d}} )) \\ \tau_{{A_{\text{d}} }} & = \max (A_{{\beta ,{\text{d}}}} /((1 + A_{{\alpha ,{\text{d}}}} ) \cdot QT \cdot 0.1),0.1) \\ \varsigma (V_{\text{d}} ) & = - 1.5 - (1/(1 + \exp ((V_{\text{d}} + \varsigma_{\text{p}} )/5))) \\ \varsigma_{2} (V_{\text{d}} ) & = - 1.8 - (1/(1 + \exp ((V_{\text{d}} + 40)/5))) \\ B_{\text{d}}^{\prime } & = (B_{{\infty_{\text{d}} }} - B_{\text{d}} )/\tau_{{B_{\text{d}} }} \\ B_{{\infty_{\text{d}} }} & = 0.3 + 0.7/(1 + \exp ({\text{inact}}_{2} \cdot (V_{\text{s}} + {\text{inact}}) \cdot Q)) \\ \tau_{{B_{\text{d}} }} & = \kappa \cdot \max ({\text{inact}}_{3} \cdot (V_{\text{s}} + {\text{inact}}_{4} ),{\text{inact}}_{5} ) \\ \end{aligned} $$

The delayed rectifier K+ current at the axon and soma is given by

$$ I_{{{\text{K}}_{\text{dr}} }} = - g_{{{\text{K}}_{\text{dr}} }} \cdot N \cdot (V - V_{\text{K}} ) $$
(16)

where g Kds is the maximal conductance. The activation constant N is given by

$$ \begin{aligned} N^{\prime } & = \alpha_{N} (V) - (\alpha_{N} (V) + \beta_{N} (V)) \cdot N \\ \alpha_{N} (V) & = 0.016 \cdot ( - 24.9 - V)/(\exp (( - 24.9 - V)/5) - 1) \\ \beta_{N} (V) & = 0.25 \cdot \exp ( - 1 - 0.025 \cdot V) \\ \end{aligned} $$

The delayed rectifier K+ current at the dendrite is given by

$$ I_{{{\text{K}}_{\text{dr,d}} }} = - g_{{{\text{K}}_{\text{dr,d}} }} \cdot N_{\text{d}}^{2} \cdot (V_{\text{d}} - V_{\text{K}} ) $$
(17)

where g Kdr,d is the maximal conductance. The activation constant N d is given by

$$ \begin{aligned} N_{\text{d}}^{\prime } & = (N_{{\infty_{\text{d}} }} - N_{\text{d}} )/\tau_{{N_{\text{d}} }} \\ N_{{\infty_{\text{d}} }} & = 1/(1 + \exp (( - V_{\text{d}} - 42)/2) \\ \tau_{{N_{\text{d}} }} & = 2.2 \\ \end{aligned} $$

The medium Ca2+-activated K+ after-hyperpolarization current at the soma is given by

$$ I_{\text{mAHP}} = - g_{\text{mAHP}} \cdot Q_{\text{m}} \cdot (V_{\text{s}} - V_{\text{K}} ) $$
(18)

where g KmAHP is the maximal conductance. The activation constant Q m is given by

$$ \begin{aligned} Q_{\text{m}}^{\prime } & = \left( {Q_{{{\text{m}}_{\infty } }} - Q_{\text{m}} } \right)/\tau_{{Q_{\text{m}} }} \\ Q_{{{\text{m}}_{\infty } }} & = {\text{qhat}} \cdot Q_{{{\text{m}}_{{{\upalpha}}} }} \cdot \tau_{{Q_{\text{m}} }} \\ Q_{{{\text{m}}_{{{\upalpha}}} }} & = {\text{qma}} \cdot \chi_{\text{s}} /(0.001 \cdot \chi_{\text{s}} + 0.18 \cdot \exp ( - 1.68 \cdot V_{\text{s}} \cdot Q)) \\ Q_{{{\text{m}}_{{{\upbeta}}} }} & = ({\text{qmb}} \cdot \exp ( - 0.022 \cdot V_{\text{s}} \cdot Q))/(\exp ( - 0.022 \cdot V_{\text{s}} \cdot Q) + 0.001 \cdot \chi_{\text{s}} ) \\ \tau_{{Q_{\text{m}} }} & = 1/\left( {Q_{{{\text{m}}_{{{\upalpha}}} }} + Q_{{{\text{m}}_{{{\upbeta}}} }} } \right) \\ \end{aligned} $$

The h-current [13, 14] at the soma and dendrite is described by

$$ I_{\text{h}} = - g_{\text{h}} \cdot tt \cdot (V - E_{\text{h}} ) $$
(19)
$$ \begin{aligned} \frac{{{\text{d}}tt}}{{{\text{d}}t}} & = \frac{{tt_{\infty } - tt}}{{\tau_{tt} }} \\ tt_{\infty } & = \frac{1}{{1 + {\text{e}}^{{ - (V - V_{\text{half}} )/k_{l} }} }}\quad \tau_{tt} = \frac{{{\text{e}}^{{0.0378 \cdot \varsigma \cdot {\text{gmt}} \cdot (V - V_{\text{halft}} )}} }}{{qtl \cdot q10^{(T - 33)/10} \cdot a0t \cdot (1 + a_{tt} )}} \\ a_{tt} & = {\text{e}}^{{0.00378 \cdot \varsigma \cdot (V - V_{\text{halft}} )}} \\ \end{aligned} $$

where gh is the maximal conductance of the h-current and E h is the reversal potential. The L-type Ca2+ current at the soma is described by

$$ I_{{{\text{CaL}}_{\text{s}} }} = - g_{{{\text{CaL}}_{\text{s}} }} \cdot S_{\text{s}} \cdot g_{\text{hk}} (V_{\text{s}} ,\chi_{\text{s}} ) \cdot (1/(1 + \chi_{\text{s}} )) $$
(20)

where g CaL,s is the maximal conductance and

$$ \begin{aligned} S_{\text{s}}^{\prime } & = \left( {S_{{\infty_{\text{s}} }} - S_{\text{s}} } \right)/\tau_{{s_{\text{s}} }} \\ S_{{\infty_{\text{s}} }} & = \alpha_{\text{s}} (V_{\text{s}} )/(\alpha_{\text{a}} (V_{\text{s}} ) + \beta_{\text{s}} (V_{\text{s}} )) \\ \tau_{{S_{\text{s}} }} & = 1/(5 \cdot (\alpha_{\text{s}} (V_{\text{s}} ) + \beta_{\text{s}} (V_{\text{s}} ))) \\ \alpha_{\text{s}} (V_{\text{s}} ) & = - 0.055 \cdot (V_{\text{s}} + 27.01)/(\exp (( - V_{\text{s}} - 27.01)/3.8) - 1) \\ \beta_{\text{s}} (V_{\text{s}} ) & = 0.94 \cdot \exp (( - V_{\text{s}} - 63.01)/17) \\ xx & = 0.0853 \cdot (273.16 + T)/2 \\ f(z) & = (1 - z/2) \cdot f_{2} (z) + (z/(\exp (z) - 1)) \cdot f_{3} (z) \\ f_{2} (z) & = H(0.0001 - \left| z \right|) \\ f_{3} (z) & = H(\left| z \right| - 0.0001) \\ g_{\text{hk}} & = - xx \cdot (1 - ((\chi_{\text{s}} /{\text{Ca}}) \cdot \exp (V_{\text{s}} /xx))) \cdot f(V_{\text{s}} /xx) \\ \end{aligned} $$

The Ca2+ concentrations in the soma and dendrites [71] are given by

$$ \chi_{\text{s}}^{\prime } = \phi_{\text{s}} \cdot I_{{{\text{CaL}}_{\text{s}} }} - (\beta_{\text{s}} \cdot (\chi_{\text{s}} - \chi_{{0,{\text{s}}}} )) + (\chi_{\text{pd}} - \chi_{\text{s}} )/{\text{Ca}}_{\tau } - (\beta_{\text{s}} /{\text{nonc}}) \cdot \chi_{\text{s}}^{2} $$
(21)
$$ \chi_{\text{pd}}^{\prime } = \phi_{\text{d}} \cdot (I_{{{\text{CaL}}_{\text{d}} }} + I_{\text{Ca,NMDA}} ) - \beta_{\text{d}} \cdot (\chi_{\text{pd}} - \chi_{{0,{\text{d}}}} ) - (\beta_{\text{d}} /{\text{nonc}}) \cdot \chi_{\text{pd}}^{2} - {\text{buff}} \cdot \chi_{\text{pd}} $$
(22)
$$ \chi_{\text{dd}}^{\prime } = \phi_{\text{d}} \cdot \left( {I_{{{\text{CaL}}_{\text{d}} }} + I_{\text{Ca,NMDA}} } \right) - \beta_{\text{d}} \cdot (\chi_{\text{dd}} - \chi_{{0,{\text{d}}}} ) - (\beta_{\text{d}} /{\text{nonc}}) \cdot \chi_{\text{dd}}^{2} - {\text{buff}} \cdot \chi_{\text{dd}} $$
(23)

The L-type Ca2+ current at the dendrite is described by

$$ I_{{{\text{CaL}}_{\text{d}} }} = - g_{{{\text{CaL}}_{\text{d}} }} \cdot S_{\text{d}}^{3} \cdot T_{\text{d}} \cdot (V_{\text{d}} - V_{\text{Ca}} ) $$
(24)
$$ \begin{aligned} S_{\text{d}}^{\prime } & = \left( {S_{{\infty_{\text{d}} }} - S_{\text{d}} } \right)/\tau_{{{\text{s}}_{\text{d}} }} \\ S_{{\infty_{\text{d}} }} & = 1/(1 + \exp ( - V_{\text{d}} - 37)) \\ \tau_{{{\text{s}}_{\text{d}} }} & = s_{3} + s_{1} /(1 + \exp (V_{\text{d}} + s_{2} )) \\ T_{\text{d}}^{\prime } & = (T_{{\infty_{\text{d}} }} - T_{\text{d}} )/\tau_{{T_{\text{d}} }} \\ T_{{\infty_{\text{d}} }} & = 1/(1 + \exp ((V_{\text{d}} + 41)/0.5)) \\ \tau_{{T_{\text{d}} }} & = 29 \\ \end{aligned} $$

The calcium detector model is governed by the following six equations:

$$ P^{\prime } = (\phi_{\text{a}} (\chi_{\text{d}} ) - c_{\text{p}} \cdot A \cdot P)/\tau_{\text{p}} $$
(25)
$$ V^{\prime } = (\phi_{\text{b}} (\chi_{\text{d}} ) - V)/\tau_{V} $$
(26)
$$ A^{\prime } = (\phi_{\text{c}} (\chi_{\text{d}} ) - A)/\tau_{A} $$
(27)
$$ B^{\prime } = (\phi_{\text{e}} (A) - B - c_{\text{d}} \cdot B \cdot V)/\tau_{B} $$
(28)
$$ D^{\prime } = (\phi_{\text{d}} (B) - D)/\tau_{D} $$
(29)
$$ W^{\prime } = (\alpha_{\text{w}} /(1 + \exp ((P - a)/p_{a} )) - \beta_{w} /(1 + (\exp ((D - d)/p_{d} )) - W)/\tau_{w} $$
(30)

where P is the potentiation detector dynamics, V is the veto detector dynamics, D is the depression detector dynamics, A and B are the intermediate steps leading up to D and W is the readout variable (see Fig. 2). The Hill equations are

$$ \begin{aligned} \phi_{\text{a}} (x) & = {\text{num}}_{\text{a}} \cdot ((x/{\text{CmHC}})^{\text{CmHN}} )/(1 + (x/{\text{CmHC}})^{\text{CmHN}} ) \\ \phi_{\text{b}} (x) & = {\text{num}}_{\text{b}} \cdot ((x/{\text{CnHC}})^{\text{CnHN}} )/(1 + (x/{\text{CnHC}})^{\text{CnHN}} ) \\ \phi_{\text{c}} (x) & = {\text{num}}_{\text{c}} /(1 + \exp ((x - \theta_{\text{c}} )/\sigma_{\text{c}} )) \\ \phi_{\text{d}} (x) & = {\text{num}}_{\text{d}} /(1 + \exp ((x - \theta_{\text{d}} )/\sigma_{\text{d}} )) \\ \phi_{\text{e}} (x) & = {\text{num}}_{\text{e}} /(1 + \exp ((x - \theta_{\text{e}} )/\sigma_{\text{e}} )) \\ \end{aligned} $$

The calcium detector parameter values are displayed in Table 2.

Table 2 Calcium detector model parameter values

Basket, Axoaxonic and Bistratified Cells

$$ C_{\text{m}} \frac{{{\text{d}}V}}{{{\text{d}}t}} = I_{\text{L}} + I_{\text{Na}} + I_{{{\text{K}}_{\text{dr}} }} + I_{\text{A}} + I_{\text{in}} + I_{\text{syn}} $$
(31)

where C m is the membrane capacitance, V is the membrane potential, I L is the leak current, I Na is the sodium current, I Kdr is the fast delayed rectifier K+ current, I A is the A-type K+ current and I syn is the synaptic current.

The sodium current and its kinetics are described by

$$ I_{\text{Na}} = g_{\text{Na}} m^{3} h(V - E_{\text{Na}} ) $$
(32)
$$ \begin{aligned} \frac{{{\text{d}}m}}{{{\text{d}}t}} & = \alpha_{m} (1 - m) - \beta_{m} m,\quad \alpha_{m} = \frac{0.1(V + 40)}{{(1 - {\text{e}}^{(V + 40)/10} )}},\quad \beta_{\text{m}} = 4 \cdot {\text{e}}^{( - (v + 65)/18)} \\ \frac{{{\text{d}}h}}{{{\text{d}}t}} & = \alpha_{h} (1 - h) - \beta_{h} h,\quad \alpha_{h} = 0.07 \cdot {\text{e}}^{ - (V + 65)/20} ,\quad \beta_{\text{h}} = \frac{1}{{(1 + {\text{e}}^{ - (V + 35)/10} )}}. \\ \end{aligned} $$

The fast delayed rectifier K+ current I Kdr is given by

$$ I_{\text{Kdr}} = g_{\text{Kdr}} n^{4} (V - E_{\text{K}} ) $$
(33)
$$ \frac{{{\text{d}}n}}{{{\text{d}}t}} = \alpha_{n} (1 - n) - \beta_{n} n,\quad \alpha_{n} = \frac{0.01(V + 55)}{{(1 - {\text{e}}^{ - (V + 55)/10} )}},\quad \beta_{n} = 0.125{\text{e}}^{ - (v + 65)/80} . $$

The A-type K+ current I A is described by

$$ I_{\text{A}} = g_{\text{A}} ab(V - E_{\text{k}} ) $$
(34)
$$ \begin{aligned} \frac{{{\text{d}}a}}{{{\text{d}}t}} & = \alpha_{a} (1 - a) - \beta_{a} a,\quad \alpha_{a} = \frac{0.02(13.1 - V)}{{{\text{e}}^{{\left( {\frac{13.1 - V}{10}} \right)}} - 1}},\quad \beta_{a} = \frac{0.0175(V - 40.1)}{{{\text{e}}^{{\left( {\frac{V - 40.1}{10}} \right)}} - 1}} \\ \frac{{{\text{d}}b}}{{{\text{d}}t}} & = \alpha_{b} (1 - b) - \beta_{b} b,\quad \alpha_{b} = 0.0016\,{\text{e}}^{{\left( {\frac{ - 13 - V}{18}} \right)}} ,\quad \beta_{b} = \frac{0.05}{{1 + {\text{e}}^{{\left( {\frac{10.1 - V}{5}} \right)}} }} \\ \end{aligned} $$

The ionic parameter values are depicted in Table 3.

Table 3 Inhibitory cell parameter values

OLM Cell

$$ C_{\text{m}} \frac{{{\text{d}}V}}{{{\text{d}}t}} = I_{\text{L}} + I_{\text{Na}} + I_{{{\text{K}}_{\text{dr}} }} + I_{\text{NaP}} + I_{\text{H}} + I_{\text{syn}} + I_{\text{in}} $$
(35)

where C m is the membrane capacitance, V is the membrane potential, I L is the leak current, I Na is the sodium current, I Kdr is the fast delayed rectifier K+ current, I NaP is the persistent sodium current, I h is the h-current and I syn is the synaptic current.

The sodium current and its kinetics are described by

$$ I_{\text{Na}} = g_{\text{Na}} m^{3} h(V - E_{\text{Na}} ) $$
(36)
$$ \begin{aligned} \frac{{{\text{d}}m}}{{{\text{d}}t}} & = \alpha_{m} (1 - m) - \beta_{m} m,\quad \alpha_{m} = \frac{0.1(V + 40)}{{(1 - {\text{e}}^{(V + 40)/10} )}},\quad \beta_{m} = 4 \cdot {\text{e}}^{( - (v + 65)/18)} \\ \frac{{{\text{d}}h}}{{{\text{d}}t}} & = \alpha_{h} (1 - h) - \beta_{h} h,\quad \alpha_{h} = 0.07 \cdot {\text{e}}^{ - (V + 65)/20} ,\quad \beta_{h} = \frac{1}{{(1 + {\text{e}}^{ - (V + 35)/10} )}}. \\ \end{aligned} $$

The fast delayed rectifier K+ current I Kdr is given by

$$ I_{\text{Kdr}} = g_{\text{Kdr}} n^{4} (V - E_{\text{K}} ) $$
(37)
$$ \frac{{{\text{d}}n}}{{{\text{d}}t}} = \alpha_{n} (1 - n) - \beta_{n} n,\quad \alpha_{n} = \frac{0.01(V + 55)}{{(1 - {\text{e}}^{ - (V + 55)/10} )}},\quad \beta_{n} = 0.125{\text{e}}^{ - (v + 65)/80} $$

The NaP current was assembled from the Kunec et al.’s [49] and Dickson et al.’s [19, 25, 26, 76] studies, and it was described by

$$ I_{\text{NaP}} = - g_{\text{NaP}} \cdot m_{\text{po}} \cdot (V - V_{\text{Na}} ) $$
(38)
$$ \begin{aligned} \frac{{{\text{d}}m_{\text{po}} }}{{{\text{d}}t}} & = \alpha_{{m_{\text{po}} }} (V)(1 - m_{\text{po}} ) - \beta_{{m_{\text{po}} }} (V) \cdot m_{\text{po}} \\ \alpha_{{m_{\text{po}} }} & = \frac{1}{{0.15(1 + {\text{e}}^{ - (V + 38)/6.5} )}},\quad \beta_{{m_{\text{po}} }} = \frac{{{\text{e}}^{ - (V + 38)/6.5} }}{{0.15(1 + {\text{e}}^{ - (V + 38)/6.5} )}} \\ \end{aligned} $$

Similarly, the h-current was assembled from Kunec et al.’s [49] and Dickson et al.’s [19, 25, 26, 76] studies, and it was described by

$$ I_{\text{h}} = - g_{\text{h}} (0.65\lambda_{\text{fo}} + 0.35\lambda_{\text{so}} )(V - V_{\text{h}} ) $$
(39)
$$ \begin{aligned} \frac{{{\text{d}}\lambda_{\text{fo}} }}{{{\text{d}}t}} & = \frac{{\lambda_{{{\text{f}}\infty }} (V) - \lambda_{\text{fo}} }}{{\tau_{{\lambda {\text{f}}}} (V)}},\quad \lambda_{{{\text{f}}\infty }} (V) = \frac{1}{{(1 + {\text{e}}^{(V + 79.2)/9.78} )}},\quad \tau_{{\lambda {\text{f}}}} (V) = \frac{0.51}{{{\text{e}}^{(v - 1.7)/10} + {\text{e}}^{ - (V + 340)/52} }} + 1 \\ \frac{{{\text{d}}\lambda_{\text{so}} }}{{{\text{d}}t}} & = \frac{{\lambda_{{{\text{s}}\infty }} (V) - \lambda_{\text{so}} }}{{\tau_{{\lambda {\text{s}}}} (V)}},\quad \lambda_{{{\text{s}}\infty }} (V) = \frac{1}{{(1 + {\text{e}}^{(V + 2.83)/15.9} )^{58} }},\quad \tau_{{\lambda {\text{s}}}} (V) = \frac{5.6}{{{\text{e}}^{(v - 1.7)/14} + {\text{e}}^{ - (V + 260)/43} }} + 1. \\ \end{aligned} $$

The ionic parameter values are depicted in Table 3.

Input-to-Cell Synaptic Currents

The Ca2+-NMDA, AMPA, GABAA and NMDA synaptic currents are given by [66] and references therein

$$ I_{\text{Ca,NMDA}} = - g_{\text{syn}} \cdot s_{\text{NMDA}} \cdot m_{\text{Ca,NMDA}} \cdot (V_{\text{d}} - V_{\text{Ca,NMDA}} ) $$
(40)
$$ I_{\text{NMDA}} = - g_{\text{syn}} \cdot s_{\text{NMDA}} \cdot m_{\text{NMDA}} \cdot (V_{\text{d}} - V_{\text{NMDA}} ) $$
(41)
$$ I_{\text{AMPA}} = - g_{\text{syn}} \cdot s_{\text{AMPA}} \cdot (V_{\text{d}} - V_{\text{AMPA}} ) $$
(42)
$$ I_{\text{GABA}} = - g_{\text{syn}} \cdot s_{\text{GABA}} \cdot (V_{\text{d}} - V_{\text{GABA}} ) $$
(43)

where g syn is the synaptic conductance expressed either by Eqs. 47 or 13 and

$$ \begin{aligned} m_{\text{NMDA}} & = 1/(1 + 0.3 \cdot {\text{Mg}} \cdot \exp ( - 0.062 \cdot V_{\text{d}} )) \\ m_{\text{Ca,NMDA}} & = 1/(1 + 0.3 \cdot {\text{Mg}} \cdot \exp ( - 0.124 \cdot V_{\text{d}} )) \\ \end{aligned} $$

with Mg2+ = 2 mM. The activation equations for AMPA, NMDA and GABAA currents are

$$ s_{x} = s_{{x_{\text{fast}} }} + s_{{x_{\text{slow}} }} + s_{{x_{\text{rise}} }} $$
(44)

where x stands for AMPA, NMDA, GABA and

$$ \begin{aligned} s_{{{\text{NMDA}}_{\text{rise}} }}^{\prime } & = - 20 \cdot (1 - s_{{{\text{NMDA}}_{\text{fast}} }} - s_{{{\text{NMDA}}_{\text{slow}} }} ) \cdot F_{\text{pre}} - (1/2) \cdot s_{{{\text{NMDA}}_{\text{rise}} }} \\ s_{{{\text{NMDA}}_{\text{fast}} }}^{\prime } & = 20 \cdot (0.527 - s_{{{\text{NMDA}}_{\text{fast}} }} ) \cdot F_{\text{pre}} - (1/10) \cdot s_{{{\text{NMDA}}_{\text{fast}} }} \\ s_{{{\text{NMDA}}_{\text{slow}} }}^{\prime } & = 20 \cdot (0.473 - s_{{{\text{NMDA}}_{\text{slow}} }} ) \cdot F_{\text{pre}} - (1/45) \cdot s_{{{\text{NMDA}}_{\text{slow}} }} , \\ \end{aligned} $$
$$ \begin{aligned} s_{{{\text{AMPA}}_{\text{rise}} }}^{\prime } & = - 20 \cdot (1 - s_{{{\text{AMPA}}_{\text{fast}} }} - s_{{{\text{AMPA}}_{\text{slow}} }} ) \cdot F_{\text{pre}} - (1/0.58) \cdot s_{{{\text{AMPA}}_{\text{rise}} }} \\ s_{{{\text{AMPA}}_{\text{fast}} }}^{\prime } & = 20 \cdot (0.903 - s_{{{\text{AMPA}}_{\text{fast}} }} ) \cdot F_{\text{pre}} - (1/7.6) \cdot s_{{{\text{AMPA}}_{\text{fast}} }} \\ s_{{{\text{AMPA}}_{\text{slow}} }}^{\prime } & = 20 \cdot (0.097 - s_{{{\text{AMPA}}_{\text{slow}} }} ) \cdot F_{\text{pre}} - (1/25.69) \cdot s_{{{\text{AMPA}}_{\text{slow}} }} \\ \end{aligned} $$

and

$$ \begin{aligned} s_{{{\text{GABA}}_{\text{rise}} }}^{\prime } & = - 20 \cdot (1 - s_{{{\text{GABA}}_{\text{fast}} }} - s_{{{\text{GABA}}_{\text{slow}} }} ) \cdot F_{\text{pre}} - (1/1.18) \cdot s_{{{\text{GABA}}_{\text{rise}} }} \\ s_{{{\text{GABA}}_{\text{fast}} }}^{\prime } & = 20 \cdot (0.803 - s_{{{\text{GABA}}_{\text{fast}} }} ) \cdot F_{\text{pre}} - (1/8.5) \cdot s_{{{\text{GABA}}_{\text{fast}} }} \\ s_{{{\text{GABA}}_{\text{slow}} }}^{\prime } & = 20 \cdot (0.197 - s_{{{\text{GABA}}_{\text{slow}} }} ) \cdot F_{\text{pre}} - (1/30.01) \cdot s_{{{\text{GABA}}_{\text{slow}} }} \\ \end{aligned} $$

where F pre is the input spike generator simulating the CA3 Schaffer collateral, the EC perforant path and the MS inputs. The input-to-cell synaptic parameter values are displayed in Table 4.

Table 4 Input-to-cell and cell-to-cell synaptic parameter values
Table 5 Cell-to-cell synaptic parameter values

Input Spike Generator

The input spike generator simulating the CA3 Schaffer collateral, the EC perforant path and the MS inputs were described by

$$ F_{\text{pre}} = H(t - 1) \cdot (H(\sin (2\pi \cdot (t - 2)/T)) \cdot (1 - H(\sin (2\pi \cdot (t - 1)/T)))) $$
(45)

where T is the period of oscillation and H() is the Heaviside function.

Cell-to-Cell Synaptic Currents

The synaptic current is given by

$$ I_{\text{syn}} = g_{\text{syn}} \cdot s \cdot (V - E_{\text{rev}} ) $$
(46)

where g syn is the synaptic conductance and E rev is the reversal potential. The synaptic conductance is expressed by

$$ g_{\text{syn}} = w \cdot g_{\max } $$
(47)

where g max is the maximal synaptic conductance and w is the synaptic strength. The values of the synaptic strengths are given in Table 6. In the model, three synaptic currents are included: AMPA, NMDA and GABAA. The values of the synaptic parameters are displayed in Table 4. The gating variable, s, which represents the fraction of the open synaptic ion channels, obeys the following differential equation

$$ \frac{{{\text{d}}s}}{{{\text{d}}t}} = \alpha \cdot F(V_{\text{pre}} ) \cdot (1 - s) - \beta \cdot s $$
(48)

where the normalized concentration of the postsynaptic transmitter–receptor complex, F(Vpre), is assumed to be an instantaneous and sigmoid functions of the presynaptic membrane potential

$$ F(V_{\text{pre}} ) = 1/\left( {1 + {\text{e}}^{{ - (V_{\text{pre}} - \theta )/2}} } \right) $$
(49)

where θ = 0 mV is high enough so that the transmitter release occurs only when the presynaptic cell emits a spike [16]. The values of the channel opening and closing rates are displayed in Table 5.

Table 6 Synaptic strength parameter values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutsuridis, V., Hasselmo, M. Spatial Memory Sequence Encoding and Replay During Modeled Theta and Ripple Oscillations. Cogn Comput 3, 554–574 (2011). https://doi.org/10.1007/s12559-011-9114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-011-9114-3

Keywords

Navigation