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Abstract In this paper, we present a novel approach for

supervised codebook learning and optimization for bag-of-

words models. This type of models is frequently used in

visual recognition tasks like object class recognition or

human action recognition. An entity is represented as a

histogram of codewords, which are traditionally clustered

with unsupervised methods like k-means or random forests

and then classified in a supervised way. We propose a new

supervised method for joint codebook creation and class

learning, which learns the cluster centers of the codebook

in a goal-directed way using the class labels of the training

set. As a result, the codebook is highly correlated to the

recognition problem, leading to a more discriminative

codebook. We propose two different learning algorithms,

one based on error backpropagation and the other based on

cluster label reassignment. We apply the proposed method

to human action recognition from video sequences and

evaluate it on the KTH data set, reporting very promising

results. The proposed technique allows us to improve the

discriminative power of an unsupervised learned codebook

or to keep the discriminative power while decreasing the

size of the learned codebook, thus decreasing the compu-

tational complexity due to the nearest neighbor search.

Keywords Bag-of-words models � Supervised learning �
Neural networks � Action recognition

Introduction

The bag-of-words (BoW) model has been widely used in

computer vision applications such as object class [1, 2] or

human action recognition [3]. In these applications, the

objective is to recognize high-level information (objects,

actions) from a large quantity of low-level data, for

example, image or video pixels. BoW has proved to be an

efficient representation in this context. This popular model

was first introduced in natural language processing, in

which each document is expressed as a histogram of fre-

quencies of orderless words. In order to employ the BoW

model in computer vision applications, an image or a video

is treated as a document, which can be considered as a

collection of interesting local events often called visual

concepts [1]. Information on the presence of these visual

concepts, that is, whether each one of them is present or

not, and with which frequency, serves as an indicator of the

contents.

Visual concepts can be generated in different ways,

usually through the extraction of discriminant and invariant

descriptors (features) around local primitives like interest

points, patches, regions, edges, followed by clustering in

order to identify clusters in feature space of descriptors.

The thus-obtained clusters are considered as visual con-

cepts or visual codewords. A set of such visual codewords

produces a visual codebook.

Traditionally, a visual codebook is learned by unsuper-

vised clustering or vector quantization of feature vectors

extracted from the local primitives in the image or video,

often with algorithms such as k-means [1] or random
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forests [4]. The BoW for a new image or video is calcu-

lated in a similar way: extraction of descriptors on local

primitives, projection of the descriptors on the codebook

precalculated on a training set, and calculation of a histo-

gram of the occurrences of each codeword of the codebook.

An image or a video is classified passing the BoW model to

any learning machine, for instance, a support vector

machine (SVM) or a neural network (NN).

The traditional method of codebook creation through

unsupervised clustering ignores the class labels of the fea-

ture vectors in the training set. Of course, the labels are used

for the classification of the BoW models, but not for the

creation of the codebook. As a consequence, the visual

codebook is less discriminative. In order to create a more

discriminative codebook, several attempts have been made

to reveal the semantic relations between the codewords of

k-means. In the work of Liu [5], they iteratively obtain an

optimal and compact codebook via maximal mutual infor-

mation. At each iteration, they merge two clusters that have

minimum loss in mutual information. The iterative proce-

dure continues until a threshold of maximal mutual infor-

mation or minimum cluster number is achieved. The

optimal codebook size is found by unsupervised learning. In

[6], Liu uses a diffusion map to embed a mid-level code-

book in a semantic codebook. However, it is not appropriate

to measure semantic distances using diffusion distances. In

recent work, Saghafi [7] proposes a concept space to illus-

trate the semantic relations between the visual codewords.

They apply generative models such as latent semantic

analysis (LSA) and probabilistic latent semantic analysis

(pLSA) to discover the latent semantic relations between

the initial codewords. In contrast to the unsupervised pLSA

learning framework in which the number of latent topics is

equal to the number of classes [8], the number of topics is

variable in this method. In all methods mentioned above,

the codebooks are created by unsupervised methods, and the

label information of feature vectors is ignored in the

codebook creation. Intuitively, the discriminative power of

the codewords could be increased by learning using the

label information, as we propose in this paper.

In contrast to unsupervised codebook learning, we pro-

pose a supervised learning and codebook optimization

framework. The whole sequence, codebook creation and

class learning, is formulated as an artificial NN, and the

error gradient information is used to update the codebook

cluster centers as well as the classical multilayer perceptron

(MLP) weights for class recognition.

The learning and optimization framework we present in

this work are well suited for any application for which bag-

of-words models can be successfully used. We restrict

ourselves here to human action recognition in videos, for

which BoW models and extensions are widely used [3, 8–

11]. The improvements we propose make the codebook

more discriminative and, therefore, are likely to improve

many of the existing extensions of the basic BoW model,

such as, for instance, correlograms [5], topic models

[8], local grouping and compound features [9], spatial

co-occurrences of pairs of features [12–14] and parts-based

models [15].

To the best of our knowledge, this is the first attempt to

combine codebook learning with action classification in a

unified framework.

The amount of literature on action recognition skyroc-

keted in the last years, and it is not possible anymore to give

an exhaustive account in this restricted space. We refer the

interested reader to some very recently published surveys

[16–18]. While early work on modeling human activities

focused on articulated motion (e.g., [19]), most recent work

on activity and event recognition does not explicitly model

the human body. Instead, the current state of the art focuses

on sparse local features like interest points and space-time

interest points, as the work cited above, or on motion seg-

mentation through background subtraction [20–22], dense

optical flow [23] or other holistic features [24, 25], with

possible hybrid methods [26–28] and classification through

dense matching [29, 30]. Fully taking into account spatial

relationships through graph matching has recently been

proposed [31], but this requires matching against several

graph models per action class.

Pure statistical and unstructured machine learning

without feature extraction is difficult in this context due to

several reasons as follows: (1) the non-rigid nature of the

relevant information, (2) the mixture of relevant motion

information and irrelevant texture information in the signal

and (3) the high dimension of the feature space in which

the data are embedded. For these reasons, machine learning

of human actions has been dominated by methods learning

the temporal evolution of features like HMMs, semi-Mar-

kov models and dynamic belief networks [32–39]. Typi-

cally, a vectorial description is created frame per frame,

and its temporal evolution is modeled and learned. Other

learning-based methods include biologically inspired ones

[40], convolutional deep learning [41, 42], methods based

on topic models [8], boosting low-level features [43], tra-

jectory matching [44], statistics calculated on the results of

tracking [45], learning of spatiotemporal predicates and

grammars [13, 46, 47] and other probabilistic graphical

models [48].

The paper is organized as follows. Our formulation of

the BoW model and the subsequent classification phase as

a unique global neural model is presented in Sect. ‘‘The

Neural Model’’. Section ‘‘Joint Codebook and Class Label

Learning’’ describes the integrated and joint learning

algorithm that updates the cluster centers as well as the

MLP weights discriminating between the targeted classes.

Two different learning algorithms are presented, a classical
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backpropagation algorithm and cluster reassignment algo-

rithm specific to the BoW model. In Sect. ‘‘Experimental

Results,’’ we evaluate the proposed approach on the public

KTH human action data set [11]. Section ‘‘Conclusion’’

gives a conclusion.

The Neural Model

In our application, space-time interest points are calculated

on each video, and discriminant and invariant features are

calculated on a space-time cuboid around each interest

point location. Initially, a video is therefore described as a

collection of feature vectors. In traditional ways to translate

this description into a BoW model, codebook creation and

learning of the BoW models of the training set are treated

as two different phases addressed with two different

methods. Here, we present a novel formulation as a single

artificial NN.

In classical NNs, each entity is classified separately by

the learned NN after a stimulation phase. In our proposed

model, for each video, multiple feature vectors (one per

interest point) are presented sequentially while the NN

integrates this information internally. Classification is done

after all feature vectors have been presented. The scheme

in Fig. 1 illustrates this concept. We first give an overview

of its purpose before explaining each layer in detail.

The NN consists of two parts: an initial part at the left

that processes feature vectors and projects them to a

codebook. The cluster centers of this codebook are stored

as ‘‘weights’’ of this part of the NN. While passing through

the left part of the network, the feature vector is translated

into a binary vector indicating which cluster center it

activates. When several feature vectors are presented, this

information is integrated into a BoW model. The second

part of the NN is a classical MLP that takes a decision on

the action class for each BoW model.

The Layers of the Proposed NN Model

The input layer consists of a set a of M input nodes a ¼
½a1; . . .; aM�T corresponding to the feature values assigned

to a single local primitive, that is, an interest point.

The N nodes of the second layer b ¼ ½b1; . . .; bN �T cor-

respond to the distances of the input feature vectors to each

of N cluster centers. To each node i and each distance bi is

thus assigned a cluster center wi
cc, that is, a vector of

dimension M, which is involved in the distance

computation:

bi ¼ jja� wcc
i jj ð1Þ

The N nodes of the third layer compute an indicator of

the nearest cluster center. The nearest corresponding node

will be assigned 1, the other nodes 0. The minimum

distance will result in the largest value. This is

approximated through a softmin function, similar to the

classical softmax:

ci ¼ gbðbiÞ ¼
exp ð�bi=TÞ
P

j exp ð�bj=TÞ ð2Þ

where T is a parameter controlling the stability of the

softmin function.

The network layers described above propagate the

stimulation of a single feature vector corresponding to a

single local primitive. As mentioned before, in our stimu-

lation strategy, multiple feature vectors of the same entity

(a video in our case) are presented iteratively, resulting in

different values for different feature vector p, which we

will denote as ci
p. The nodes of the next layer integrate the

responses for a single video over all P points:

di ¼
XP

p¼1

cp
i ð3Þ

The next two layers, e and f, are a classical MLP with

weights we and wf and activation function g(x):

Fig. 1 A scheme of the

different layers of the neural

network. The left part is

stimulated per interest point.

The right part is a classical

MLP taking decisions for each

video
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�ei ¼
X

j

we
ijdj; ei ¼ gð�eiÞ ð4Þ

�fi ¼
X

j

wf
ijej; fi ¼ gð�fiÞ ð5Þ

The last layer is thus the output layer with the set of nodes

f ¼ ½f1; . . .; fC�T ; one for each of the C actions.

Joint Codebook and Class Label Learning

Assuming a set of video files with interest points and their

corresponding feature vectors, as well as a groundtruth

action label per video, backpropagation propagates the error

between the stimulated response and the groundtruth back

to the input layers, adjusting weights during the process. In

our case, this means adjusting two different types of

parameters, namely the weights we,f of the MLP and the

cluster centers wcc. The weights we,f of the MLP are updated

with a classical error backpropagation scheme, which is

recalled in Sect. ‘‘MLP Learning’’. The cluster centers can

be updated by two algorithms, which are, respectively,

addressed in Sects. ‘‘Supervised Codebook Learning with

Error Backpropagation’’ and ‘‘Supervised Codebook

Learning Through Cluster Reassignment’’. These two dif-

ferent types of weights are sequentially and iteratively

learned in our framework. At any time, the proposed system

only learns one type of weights. The former is used to learn

an optimal MLP model, and the latter makes use of the

backward errors of the optimal MLP. The pseudocode of the

proposed framework is shown in Algorithm 1.

MLP Learning

In the proposed framework, we adopt a MLP network with

one output unit for each class. Sigmoid and softmax

activation functions are, respectively, employed in the

hidden layer and output layer. The errors are computed by

the cross-entropy function [49]. An 1-of-c coding scheme

is used to describe the target output. The weights we,f are

adjusted in the classical way:

1. The input vector a forward propagates through the

network, until all the input vectors over the whole

video are summed in the integration layer, and then the

activations of all hidden and output layer units are

computed.

2. Given a desired output tj from the groundtruth,

compute the error in the output layer:

df
j ¼ ðfj � tjÞ

3. Backpropagate the error into the hidden layer:

de
j ¼ g0ð�ejÞ

X

k

wf
jkd

f
k

4. Backpropagate the error to the input layer:

dd
j ¼

X

k

we
jkd

e
k

5. Compute the increments for all the weights:

Dwf
ij ¼ gdf

j �ei Dwe
ij ¼ gde

j
�di;

where g is a learning parameter.

Supervised Codebook Learning with Error

Backpropagation

The classical error backpropagation algorithm can be

adapted to our novel formulation. In particular, the errors in

layer d are continued backpropagating into layers b, which

can directly act on the cluster centers. A particularity of our

model is the integrator between the per-feature-vector part

and the per-video part. The errors in layer c (nearest dis-

tance indicator for each feature point) can be approximated

by taking the error of layer d (bag-of-words) and equally

distributing it over the corresponding feature points:

dc
i ¼

dd
i

di
: ð6Þ

Subsequently, the error can be further backpropagated to

the previous layer and the cluster centers wcc can be

updated in the same manner as the weights of the MLP. In

the above, the distance of each node i of layer b can be

computed as follows:

bi ¼ jja� wcc
i jj

2 ¼
X

j

ðaj � wcc
ij Þ

2: ð7Þ

In traditional MLP, the discriminant function consists of a

nonlinear combination (activation function) that acts on the

Algorithm 1 The iterative codebook learning framework

Input: Ftr (training features), Fval (validation features)

Output: wcc (optimal codebook)

1 wcc/k-means;

2 repeat

3 Btr/Bags-of-words computation (wcc, Ftr)

4 Bval/Bags-of-words computation (wcc, Fval)

5 we, f/random;

6 we, f/MLP learning (we, f, wcc, Btr, Ltr)

7 wcc/Cluster center learning (we, f, Btr, Ltr) (Sect. ‘‘Supervised

Codebook Learning with Error Backpropagation’’ or

‘‘Supervised Codebook Learning Through Cluster

Reassignment’’);

8 E/Validation error (we, f, wcc, Bval, Lval);

9 Until convergence (E)
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linear sum of the input variables, and the coefficients are

the parameters of the model. In this case, our discriminant

function is a nonlinear activation function which acts on a

sum of a two-order polynomial of input variables. Since bi

is differentiable with respect to wij
cc and the activation

function (softmin function) is also differentiable, we thus

can resort to gradient descent to adjust the cluster centers.

Let us first note that sum of error is used at layer c:

E ¼
X

m

Em ¼
X

m

X

i

1

2
ðcm

i �fcm
i Þ

2 ð8Þ

where m corresponds to the index of the input feature

vector and ci
m is the forward response of the network for

feature m, fcm
i is the optimal value for the best cluster center

according to the groundtruth, which can be approximated

using Eq. (6). According to gradient descent:

oE

owcc
ij

¼
X

m

oEm

owcc
ij

¼
X

m

oEm

obm
i

obm
i

owcc
ij

ð9Þ

In the following, only the values for a single feature m will be

considered. For clarity we therefore remove the superscript

m from the notation, in particular Em will be noted as E.

In order to evaluate the derivative of the softmin func-

tion, we should consider the input to all the outputs units

(layer c). So we have

oE

obi
¼
X

i0

oE

oci0

oci0

obi
: ð10Þ

From Eq. (6), we can get

oE

oci0
¼ dc

i0 : ð11Þ

Applying the quotient rule to Eq. (2), we get

oci0

obi
¼ � 1

T
ðci0dii0 � ci0ciÞ ð12Þ

where dii0 is Kronecker delta function with dii0 = 1 if i = i0

and 0 else. It can be seen that the computations of the

partial derivatives of ci0 with respect to bi are not complex,

which only need the current values of layer c.

Substituting Eqs. (11), (12) into Eq. (10) we obtain

oE

obi
¼ �

X

i0

dc
i0

T
ðci0dii0 � ci0ciÞ: ð13Þ

From Eq. (7), we can get the derivative of bi with respect to

wij
cc:

obi

owcc
ij

¼ �2ðaj � wcc
ij Þ: ð14Þ

Now Eqs. (13), (14) are substituted into Eq. (9), which

gives us the derivatives of the backward error of layer c

with respect to the cluster centers wij
cc:

oE

owcc
ij

¼ 2

T
ðaj � wcc

ij Þ
X

i0

dc
i0

T
ðci0dii0 � ci0ciÞ: ð15Þ

So far we have given the evaluation of the derivative of the

backward error of layer c with respect to the weights

(cluster centers) in the network. In order to update the

weights, the gradient descent algorithm is applied as

follows:

Dwcc
ij ðtÞ ¼ aDwcc

ij ðt � 1Þ � gb

X

m

oEm

owcc
ij

ð16Þ

where a and gb are learning parameters and the feature

vector index m has been used again to distinguish the batch

entries. The cluster centers are adjusted after stimulation

for each input feature vector.

Supervised Codebook Learning Through Cluster

Reassignment

In the previous subsection, we have presented a learning

algorithm which adopted gradient descent after classical

error backpropagation to the particular functional form of

our NN architecture. The BoW in layer d was interpreted as

a general numerical vector without any special structure.

In this subsection, we propose another algorithm that

uses our prior knowledge that the information stored in

layer d is a BoW, that is, a histogram. Instead of simply

backprojecting an error of this layer through the softmin

function which, after all, is an approximation of the

required minimum function, we change it by moving input

feature vectors from one histogram bin to another one.

This strategy is illustrated in Fig. 2. Supposing the error

for cluster A is positive (too many feature vectors), and the

error for cluster center B is negative (not enough feature

B

A P

Fig. 2 Codebook learning through cluster reassignment: a Voronoi

diagram of the feature space, for simplicity in 2D. Cluster centers are

green and large; training points are blue and small (Color figure online)
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vectors), at each weight update a single feature vector is

moved from the Voronoi cell of A into the Voronoi cell of

B, followed by an update of the cluster centers as a cal-

culation of the mean of the assigned training points.

It is generally required to move several feature vectors

in order to significantly change the errors of the BoW layer

d, denoted as dd ¼ fdd
0; d

d
1; . . .; dd

Ng: A positive error of a

value (histogram bin) of the BoW, for example, di
d [ 0,

indicates that at least one feature vector has been assigned

to the cluster center corresponding to this bin which should

been assigned to a different cluster according to the

groundtruth. In the same sense, a negative error dj
d \ 0

indicates that at least one feature vector should be added to

this histogram bin of the BoW. In the following, we sup-

pose that the solution to this problem is specified as a

multiset x ¼ fx1; x2; . . .; xDg of indices indicating from

where a vector is moved, and a multiset y ¼
fy1; y2; . . .; yDg of indices indicating to which cluster a

vector is moved. For instance, x1 = 5 and y1 = 7 indicate

that the first move will go from cluster 5 to cluster 7.

A good solution should minimize two criteria. First, the

error should be low; that is, we should minimize

min
x;y

X

k

dd
k � jfxs : xs ¼ kgj þ jfys : ys ¼ kgj

" #

ð17Þ

where |{xs:xs = k}| is the number of source indices equal to

k, and the second expression can be understood in a similar

way. Secondly, the feature vector movements performed by

the solution should be minimal; that is, we should minimize

min
x;y

XD

s¼1

jbxs
� bys

j
" #

ð18Þ

One possibility would be to minimize an energy function

consisting of a weighted linear combination of (17) and

(18). Instead, we opted for an iterative greedy solution,

where cluster pairs (i, j) are chosen decreasing (17), and

then for each pair of clusters, a feature vector is chosen

such that its move from cluster i to cluster j minimizes (18).

We added an additional constraint requiring that the chosen

feature vector to move—which is (naturally) closest to

cluster center A—also be second closest to cluster center

B. The details of the update algorithm are given as follows:

1. Randomly choose a pair (i, j) of histogram bins (thus

of cluster centers), where the error of one bin is

positive and the other is negative, i.e. di
d [ 0 ^ dj

d \ 0.

2. Calculate the Voronoi diagram of the cluster centers in

feature space and determine all the feature vectors of

the training set falling into the sets of wi
cc and

wj
cc, respectively.

3. Pick a single feature vector f such that:

• it falls into the Voronoi cell i (distance between

f and cluster center wi
cc) is minimum, i.e. nearest.

• its distance to cluster center wj
cc is second nearest.

• if several vectors satisfy the above two criteria,

choose the one minimizing the distance to the

border of the two Voronoi cells, i.e. the one

minimizing |bi - bj|.

4. The chosen feature vector f is reassigned from

histogram bin i to histogram bin j with the following

consequences:

– the two centers wi
d and wj

cc are recalculated as the

means of the feature vectors of their respective

Voronoi cells.

– the errors of the BoW layer of the corresponding

bins are updated:

dd ½tþ1�
i ¼ dd ½t�

i � 1

dd ½tþ1�
j ¼ dd ½t�

j þ 1

5. The reassignments are continued (back to step 1) until

the error of layer d is zero or none of the feature

vectors satisfy the above conditions.

Experimental Results

The proposed model and learning algorithms have been

evaluated on the publicly available KTH action data set

[11]. It is one of the largest available published data sets

and contains 6 actions—boxing, hand clapping, hand

waving, jogging, running and walking—performed by 25

subjects in four different scenarios such as indoors,

outdoors, outdoors with scale variation and clothes

changing. It contains 2391 video sequences, and each

sequence lasts four seconds in average. Representative

frames of the data set are shown in Fig. 3. For video

representation, space-time interest points were detected

by the 3D Harris-corner detector proposed by Laptev

[50]. A space-time cuboid was extracted around each

interest point and described by features of type histo-

gram of gradient (HOG) and histogram of oriented flow

(HOF) descriptors, which were obtained from the soft-

ware supplied by Laptev [50].

As usual, a cross-validation scheme and early stopping

strategy are employed to control the learning phase. The

data set is divided into three independent sets: training (12

people), validation (4 people) and test (9 people), as in

[11]. The MLP is trained on the training set and evaluated

on the validation set for stopping to avoid over-fitting.

Unless said otherwise, all errors are reported on the 863 test

instances.
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Different MLP architectures and learning hyper-

parameters were tested, and the best ones were chosen from

the performances on the test set. Values are given below.

Executions times are given for a C?? implementation

running on an Intel Core i7 640 PC under Linux.

Classical Unsupervised Codebook Learning

To demonstrate the discriminative power of classical

codebook and compare with our methods, we created a

baseline with classical unsupervised k-means clustering

and MLP learning of the BoW descriptors. With respect to

Fig. 1, this corresponds to a scheme where the weights wcc

are set without taking into account cluster labels of the

groundtruth and with supervised MLP learning of the

action class decisions.

In our baseline experiments, the cluster centers were

learned by k-means, and then, the MLP part was trained

given the BoW models. To cope for random initialization

of the MLP weights, we repeated our baseline experiments

in order to obtain statistically sound results: First a code-

book is created using k-means clustering. Then, for each

run, the cluster centers were kept fixed and the MLP

weights were randomly initialized between -0.5 and 0.5

and learned. We ran 100 runs for each codebook in our

experiments. Different MLP architectures were explored

with numbers of hidden units of 25, 75, 100 for 50, 150,

300 codewords. Figure 4 shows an example using 150

codewords, where learning stops at the 54th iteration.

Table 1 shows error rates (on the test set) of the learned

MLP with different codebooks. A local running mean filter

was applied to the results. From the table, we can see that

the MLP learning is robust. On the other hand, a larger

codebook is more discriminative, resulting in lower error.

Supervised Codebook Learning with Error

Backpropagation

Results with supervised learning through the backpropa-

gation method (Sect. ‘‘Supervised Codebook Learning with

Error Backpropagation’’) are shown in Fig. 5. We repeated

Fig. 3 The KTH data set [11]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

54 0  20  40  60  80  100

er
ro

r 
ra

te
(*

10
0%

)

iterations

errors on the training set
errors on the validation set

iteration with minimum error

Fig. 4 A schematic illustration of the early stopping strategy during

MLP learning with 150 codewords
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the above experiments with the same architecture, except

that the cluster centers were adjusted by using a gradient

descent algorithm according to the backpropagated errors

of the optimal MLP in each iteration and the BoW entities

of the videos were recomputed. We tried several values and

selected the best parameters for gradient descent. a was set

to 0.00001 for all the codebooks and gb varied for different

codebooks. The MLP was retrained, and the error rates are

depicted in Fig. 5, again after applying a local running

mean to smooth the data. It can be seen that the error

decreases at the beginning and converges for 50 codewords

and for 150 codewords. However, for 300 codewords, the

error oscillates after 120 iterations due to the non-adaptive

characteristics of gradient descent. Comparative results are

presented in Table 2. We can see that supervised learning

codebook through error backpropagation approximately

gains 2.1 % for 50 codewords and 0.8 % for 300 code-

words with respect to the baseline codebooks obtained with

k-means clustering.

Supervised Codebook Learning with Cluster

Reassignment

Results with supervised learning through the cluster

reassignment method (Sect. ‘‘Supervised Codebook

Learning Through Cluster Reassignment’’) are shown in

Fig. 6. We again repeated the above experiments with the

same neural architecture. At each iteration, the cluster

centers were adjusted using the Voronoi cell updates, and

then the MLP is retrained. Figure 6 shows the results,

which are obtained by applying a local running mean. As

we can see, the classification accuracy on the test set

increases as the cluster centers are adjusted. The

improvement is higher with smaller codebook, which is

also observed from Fig. 5. The learned codebooks through

cluster reassignment therefore improve by 1.7 % for 50

codewords and 0.8 % for 300 codewords with respect to

the baseline codebooks obtained with k-means clustering.

From Table 2, we can see that both methods clearly

improve the discriminative quality of the codebook when

the codebook size is small. This is an important advantage

since larger codebooks significantly increase the compu-

tational complexity of the classification algorithm due to

the nearest neighbor search necessary when the feature

vectors are projected on the codebook. Indexed data

structures like KD-trees are not always helpful in these

situations since visual data are generally embedded in

feature spaces of very high dimensions—162 dimensions

for the HoG/HoF features we employed in our experiments.

The performance improvement can be explained by the

nature of the features it creates. The k-means algorithm

clusters features based on the appearance of the cuboids

only. When the codebook is small, the intra-cluster

Table 1 Errors in (%) on the test with classical unsupervised learn-

ing of the MLP: mean and standard deviation over 100 independent

runs

Codebook size 50 150 300

Error rate 20.86 (±0.06) 18.34 (±0.02) 16.86 (±0.05)
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Fig. 5 Supervised learning with error backpropagation (Sect.

‘‘Supervised Codebook Learning with Error Backpropagation’’):

errors on the test set over different iterations

Table 2 Error in (%) on the test with different methods, different classifiers and different codebook sizes: mean and standard deviation over 3

independent runs

Classifier Codebook size 50 150 300

MLP k-means 19.31 (±0.26) 17.44 (±0.31) 16.98 (±0.64)

Error backpropagation 17.19 (±0.51) 16.56 (±0.07) 16.13 (±0.12)

Cluster reassignment 17.57 (±0.11) 16.29 (±0.53) 16.18 (±0.07)

Recognition time per video (ms) 1.679 4.696 9.294

SVM k-means 17.16 (±0.66) 15.47 (±1.06) 15.7 (±0.24)

Error backpropagation 15.94 (±0.25) 15.30 (±0.33) 14.54 (±0.41)

Cluster reassignment 16.80 (±0.16) 14.89 (±0.24) 14.89 (±0.24)

Recognition time per video (ms) 1.797 4.905 10.488
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variance is large, which lowers discriminative power. Our

methods regroup the feature vectors into different clusters

based on class labels of the groundtruth, thus choosing

optimal codewords.

Retraining with SVM Classifiers

The experiments above show that the combined codebook

and MLP learning outperforms the classical sequential

steps k-means clustering followed by MLP learning.

However, the question arises whether the improvement is

due to a better codebook or to the integration of the two

methods. We therefore performed an additional experiment

with a two-step learning process:

1. Codebook learning according to one of the three

methods (k-means; supervised codebook learning with

error backpropagation; supervised codebook learning

with cluster reassignment).

2. Class label retraining with SVMs on the learned

codebook.

We trained an SVM with a radial basis function kernel

on the training set and validation set, which were the same

with the ones used in the above experiments [52]. The

errors are shown in the lower block of Table 2. Classifi-

cation time includes the projection of feature vectors on the

codebook and the classification with MLP and SVM clas-

sifiers. The SVM outperforms the MLP by up to 2 % with

different codebooks. However, the recognition of the MLP

is faster due to its simple calculations, which do not need

inner-products of high-dimensional vectors. As shown in

Table 3, the MLP gains more benefits from computational

complexity with respect to the costs from error with two

codebooks when compared to the SVM. We can also see

that the classification performance of our two joint super-

vised methods is maintained after retraining with a differ-

ent classifier, indicating a real gain in discriminative power

of the codebooks.

Figure 7 shows the recognition results for different

learning methods on 150 codewords and after retraining

with the SVM classifier. Not surprisingly, the largest error

is between the classes running and jogging, which are

indeed very similar in behavior. The supervised codebook

learning methods can achieve significant gains on some of

these classes, as the recognition rate jumps from 65 to 78

for jogging with error backpropagation—confirmed by a

z test as described in [51].

In this paper we proposed two different joint supervised

learning algorithms. The reformulated backpropagation

algorithm adjusts the cluster centers directly through gra-

dient descent algorithm. In contrast to cluster reassignment,

two more parameters besides the learning rate g in MLP

learning need to be set: the momentum coefficient a and

the learning rate gb. The drawback of a gradient descent

algorithm applied to a nonlinear system is well-known: it is

difficult to learn a set of optimal parameters, the algorithms

mostly converge to local minima and sometimes even

diverge. As shown in Fig. 5, the error with 300 codewords

began to converge after 60 iterations, but it begin to

diverge from 120 iterations.

In comparison, the cluster reassignment algorithm

adjusts the cluster centers indirectly by rearranging the

cluster labels for all the feature vectors. It does not need

any more learning parameters except g in MLP learning

and is easier to control, but needs more iterations to con-

verge, fortunately often to a better solution. From Fig. 6 we

can see that the errors converge after 100 iterations. This

can also be observed for the errors on 300 codewords—it

becomes constant after 140 iterations compared with the

errors on 300 codewords in Fig. 5.
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Fig. 6 Supervised learning with cluster reassignment (Sect. ‘‘Super-

vised Codebook Learning Through Cluster Reassignment’’): errors on

the test set over different iterations

Table 3 Cost–benefit table (in %) of the MLP compared to the SVM with the results of cluster reassignment method

Codebook size 50 150 300

Classifier SVM MLP SVM MLP SVM MLP

Error 100 107 100 109 100 105

Time 100 88 100 96 100 93
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Conclusion

In this paper, we proposed a joint supervised codebook

learning and optimization framework, which can be applied

to any method based on bag-of-words models such as object

class recognition or human action recognition. The code-

book learning process and the recognition phase are inte-

grated into a uniform framework. The codebook therefore is

created in a goal-directed way and is more discriminative

than classical ones. We have presented two algorithms to

update the cluster centers (codewords) through the back-

propagated errors: one is based on classical error back-

propagation, in which the codewords are adjusted using a

gradient descent algorithm. The other is based on cluster

reassignments, in which we reassign the cluster labels for all

the feature vectors based on the errors. Our framework has

been tested on the public KTH action data set, and we have

obtained very promising and close results for both methods.

At the same time, they demonstrated that error backpropa-

gation learned the optimal codebook faster than cluster

reassignment. However, it may suffer more from over-fit-

ting, while cluster reassignment is easier to control. The

experiments on the KTH human action data set have con-

firmed that our framework is able to optimize the codebooks

and that it makes them more discriminative. It is also able to

increase the speed of a method by decreasing the codebook

size while keeping its discriminative power.
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