Skip to main content

Advertisement

Log in

Using Human–Computer Interfaces to Investigate ‘Mind-As-It-Could-Be’ from the First-Person Perspective

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

There is a growing community of researchers who are interested in establishing a science of the experiential or ‘lived’ aspects of the human mind. This shift from cognitive science to consciousness science presents a profound challenge to synthetic approaches. To be sure, symbolic artificial intelligence constituted the original foundation of cognitive science; subsequent progress in robotics has helped to pioneer a new understanding of the mind as essentially embodied, situated, and dynamical, while artificial life has informed the concept of biological self-organization. However, with regard to the development of a science of the experienced mind, the relevance of these synthetic approaches still remains uncertain. We propose to address the challenge of first-person experience by designing new human–computer interfaces, which aim to artificially mediate a participant’s sensorimotor loop such that novel kinds of experience can emerge for the user. The advantage of this synthetic approach is that computer interface technology enables us to systematically vary the ways in which participants experience the world and thereby allows us to systematically investigate ‘mind-as-it-could-be’ from the first-person perspective. We illustrate the basic principles of this method by drawing on examples from our research in sensory substitution, virtual reality, and interactive installation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We are aware that all of these major stages in the history of cognitive science have various precursors in the history of the science of life and mind. In the interest of brevity we do not enter into a more comprehensive historical discussion here (but see, e.g., [3, 710]).

  2. The same is true of our biological understanding of life and mind. For instance, whereas cognitive science was originally more influenced by abstract computational models than by the results of actual neuroscience, nowadays neuroscience is clearly a much more prestigious area of research. Similarly, the biological foundations of the enactive approach started out as abstract organizational principles, but they are now being revised according to more realistic constraints [10]. Varela [62] referred to this general trend in cognitive science as a ‘re-enchantment of the concrete’.

  3. The name ‘artificial embodiment’ for this new method is not without ambiguity, especially because it does not explicitly highlight the fact that we are talking about a human-centered synthetic approach. However, for lack of a better phrase, we continue to use it here as a convenient shorthand to denote the method of studying mind-as-it-could-be by artificially varying a person’s embodiment via technological means.

  4. C. G. Langton, http://www.biota.org/papers/cglalife.html.

  5. The extended mind approach to cognitive science [81] probably entails a similar claim, but there are important differences in emphasis. Whereas the enactive account of lived experience assigns a constitutive role to the interactions between brain, body and (technology) world [79, 82], it seems that the extended mind approach is committed to restricting this account to the interactions within the brain alone [83]. Perhaps future research in artificial embodiment can help to resolve this theoretical difference.

  6. Interestingly, the potential role of cross-modal influences was only discovered during a second-person interview, where it turned out that the motor sounds of the vibro-tactile interface modulated the appearance of the perceptual space afforded by the device. The discovery of this unforeseen effect, which emerged without having been designed explicitly as a feature, highlights the need for a tight integration between the synthetic and analytic aspects of artificial embodiment in order to capture emergent effects.

References

  1. Froese T, Suzuki K, Wakisaka S, Ogai Y, Ikegami T. From artificial life to artificial embodiment: using human-computer interfaces to investigate the embodied mind ‘as-it-could-be’ from the first-person perspective. In: Kazakov D, Tsoulas G, editors. Proceedings of AISB’11: computing & philosophy. NewYork: Society for the Study of Artificial Intelligence and the Simulation of Behavior; 2011. p. 43–50.

    Google Scholar 

  2. Clark A. Mindware: an introduction to the philosophy of cognitive science. New York: Oxford University Press; 2001.

    Google Scholar 

  3. Froese T. From cybernetics to second-order cybernetics: a comparative analysis of their central ideas. Constr Found. 2010;5(2):75–85.

    Google Scholar 

  4. Froese T, Di Paolo EA. The enactive approach: theoretical sketches from cell to society. Pragmat Cogn. 2011;19(1):1–36.

    Article  Google Scholar 

  5. Stewart J, Gapenne O, Di Paolo EA, editors. Enaction: toward a new paradigm for cognitive science. Cambridge: MIT Press; 2010.

    Google Scholar 

  6. Thompson E. Mind in life: biology, phenomenology, and the sciences of mind. Cambridge: The Belknap Press of Harvard University Press; 2007.

    Google Scholar 

  7. Froese T. From second-order cybernetics to enactive cognitive science: varela’s turn from epistemology to phenomenology. Syst Res Behav Sci. 2011;28:631–45.

    Article  Google Scholar 

  8. Boden MA. Mind as machine: a history of cognitive science. Oxford: Oxford University Press; 2006.

    Google Scholar 

  9. Froese T, Ziemke T. Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif Intell. 2009;173(3–4):366–500.

    Google Scholar 

  10. Froese T, Stewart J. Life after ashby: ultrastability and the autopoietic foundations of biological individuality. Cybern Hum Knowing. 2010;17(4):83–106.

    Google Scholar 

  11. Hanna R, Thompson E. The mind-body-body problem. Theoria et Historia Scientarum. 2003;7(1):24–44.

    Google Scholar 

  12. Weber A, Varela FJ. Life after Kant: natural purposes and the autopoietic foundations of biological individuality. Phenomenol Cogn Sci. 2002;1:97–125.

    Article  Google Scholar 

  13. Froese T. Breathing new life into cognitive science. Avant J Philos Interdiscip Vanguard. 2011;2(1):95–111.

    Google Scholar 

  14. Froese T, Di Paolo EA. Sociality and the life-mind continuity thesis. Phenomenol Cogn Sci. 2009;8(4):439–63.

    Article  Google Scholar 

  15. Thompson E. Life and mind: from autopoiesis to neurophenomenology. A tribute to Francisco Varela. Phenomenol Cogn Sci. 2004;3(4):381–98.

    Article  Google Scholar 

  16. Stewart J. Cognition = life: implications for higher-level cognition. Behav Process. 1996;35:311–26.

    Article  Google Scholar 

  17. Varela FJ, Thompson E, Rosch E. The embodied mind: cognitive science and human experience. Cambridge: MIT Press; 1991.

    Google Scholar 

  18. Froese T. On the role of AI in the ongoing paradigm shift within the cognitive sciences. In: Lungarella M, Iida F, Bongard J, Pfeifer R, editors. 50 years of artificial intelligence: essays dedicated to the 50th anniversary of artificial intelligence. Berlin: Springer; 2007. p. 63–75.

    Google Scholar 

  19. Wheeler M. Reconstructing the cognitive world: the next step. Cambridge: The MIT Press; 2005.

    Google Scholar 

  20. Pfeifer R, Bongard JC. How the body shapes the way we think: a new view of intelligence. Cambridge: MIT Press; 2007.

    Google Scholar 

  21. Beer RD. The dynamics of active categorial perception in an evolved model agent. Adapt Behav. 2003;11(4):209–43.

    Article  Google Scholar 

  22. Clark A. Being there: putting brain, body, and world together again. Cambridge: The MIT Press; 1997.

    Google Scholar 

  23. Brooks RA. Intelligence without representation. Artif Intell. 1991;47(1–3):139–60.

    Article  Google Scholar 

  24. Bedau MA. Artificial life: organization, adaptation and complexity from the bottom up. Trends Cogn Sci. 2003;7(11):505–12.

    Article  PubMed  Google Scholar 

  25. Froese T, Virgo N, Ikegami T. Life as a process of open-ended becoming: analysis of a minimal model. In: Lenaerts T, Giacobini M, Bersini H, Bourgine P, Dorigo M, Doursat R, editors. Advances in artificial life, ECAL 2011: proceedings of the eleventh European conference on the synthesis and simulation of living systems. Cambridge: The MIT Press; 2011. p. 250–7.

    Google Scholar 

  26. Egbert MD, Barandiaran XE. Quantifying normative behaviour and precariousness in adaptive agency. In: Lenaerts T, Giacobini M, Bersini H, Bourgine P, Dorigo M, Doursat R, editors. Advances in artificial life, ECAL 2011: proceedings of the eleventh European conference on the synthesis and simulation of living systems. Cambridge: The MIT Press; 2011. p. 210–7.

    Google Scholar 

  27. Hanczyc MM, Ikegami T. Chemical basis for minimal cognition. Artif Life. 2010;16:233–43.

    Article  PubMed  Google Scholar 

  28. Suzuki K, Ikegami T. Shapes and self-movement in protocell systems. Artif Life. 2009;15(1):59–70.

    Article  PubMed  Google Scholar 

  29. Varela FJ, Maturana HR, Uribe R. Autopoiesis: the organization of living systems, its characterization and a model. BioSystems. 1974;5:187–96.

    Article  CAS  Google Scholar 

  30. Wheeler M. Cognition’s Coming Home: The Reunion of Life and Mind. In: Husbands P, Harvey I, editors. Fourth European conference on artificial life. Cambridge: The MIT Press; 1997. p. 10–9.

    Google Scholar 

  31. Stewart J. Life = cognition: the epistemological and ontological significance of artificial life. In: Varela FJ, Bourgine P, editors. Toward a practice of autonomous systems: proceedings of the first European conference on artificial life. Cambridge: MIT Press; 1992. p. 475–83.

    Google Scholar 

  32. Di Paolo EA, Iizuka H. How (not) to model autonomous behaviour. BioSystems. 2008;91:409–23.

    Article  PubMed  Google Scholar 

  33. Ikegami T, Suzuki K. From homeostatic to homeodynamic self. BioSystems. 2008;91(2):388–400.

    Article  PubMed  Google Scholar 

  34. Harvey I. Homeostasis and rein control: from daisyworld to active perception. In: Pollack J, Bedau MA, Husbands P, Ikegami T, Watson RA, editors. Artificial life IX: proceedings of the ninth international conference on the simulation and synthesis of living systems. Cambridge: The MIT Press; 2004. p. 309–14.

    Google Scholar 

  35. Di Paolo EA. Organismically-inspired robotics: Homeostatic adaptation and teleology beyond the closed sensorimotor loop. In: Murase K, Asakura T, editors. Dynamical systems approach to embodiment and sociality. Adelaide: Adv Knowl Int; 2003. p. 19–42.

    Google Scholar 

  36. Depraz N, Varela FJ, Vermersch P. On becoming aware: a pragmatics of experiencing. Amsterdam: John Benjamins Publishing; 2003.

    Google Scholar 

  37. Searle JR. Minds, brains, and programs. Behav Brain Sci. 1980;3(3):417–24.

    Article  Google Scholar 

  38. Dreyfus HL. What computers can’t do: a critique of artificial reason. New York: Harper and Row; 1972.

    Google Scholar 

  39. Chalmers DJ. Facing up to the problem of consciousness. J Conscious Stud. 1995;2(3):200–19.

    Google Scholar 

  40. Penrose R. The Emperor’s new mind: concerning computers, minds and the laws of physics. Oxford: Oxford University Press; 1989.

    Google Scholar 

  41. Bishop JM. A cognitive computation fallacy? cognition. Computations and panpsychism. Cogn Comput. 2009;1:221–33.

    Article  Google Scholar 

  42. Froese T, Gould C, Barrett A. Re-Viewing from within: a commentary on first- and second-person methods in the science of consciousness. Constr Found. 2011;6(2):254–69.

  43. Froese T, Gould C, Seth AK. Validating and calibrating first- and second-person methods in the science of consciousness. J Conscious Stud. 2011;18(2):38–64.

    Google Scholar 

  44. Froese T, Gallagher S. Phenomenology and Artificial Life: toward a Technological Supplementation of Phenomenological Methodology. Husserl Stud. 2010;26(2):83–106.

    Article  Google Scholar 

  45. Ikegami T. Simulating active perception and mental imagery with embodied chaotic itinerancy. J Conscious Stud. 2007;14(7):111–25.

    Google Scholar 

  46. Kiverstein J. Could a robot have a subjective point of view? J Conscious Stud. 2007;14(7):128–40.

    Google Scholar 

  47. Ziemke T. What’s life got to do with it? In: Chella A, Manzotti R, editors. Artificial consciousness. Exeter: Imprint Academic; 2007. p. 48–66.

    Google Scholar 

  48. Torrance S. Two conceptions of machine phenomenality. J Conscious Stud. 2007;14(7):154–66.

    Google Scholar 

  49. O’Regan JK, Noë A. A sensorimotor account of vision and visual consciousness. Behav Brain Sci. 2001;24(5):939–1031.

    Article  PubMed  Google Scholar 

  50. Noë A. Action in perception. Cambridge: The MIT Press; 2004.

    Google Scholar 

  51. Bach-y-Rita P, Collins CC, Saunders FA, White B, Scadden L. Vision substitution by tactile image projection. Nature. 1969;221(5184):963–4.

    Article  PubMed  CAS  Google Scholar 

  52. Bach-y-Rita P. Sensory substitution and qualia. In: Noë A, Thompson E, editors. Vision and mind: selected readings in the philosophy of perception. Cambridge: The MIT Press; 2002. p. 497–514.

    Google Scholar 

  53. Block N. Tactile sensation via spatial perception. Trends Cogn Sci. 2003;7(7):285–6.

    Article  PubMed  Google Scholar 

  54. Prinz J. Putting the brakes on enactive perception. Psyche. 2006;12(1):1–19.

    Google Scholar 

  55. Lenay C, Gapenne O, Hanneton S, Marque C, Genouëlle C. Sensory substitution: limits and perspectives. In: Hatwell Y, Streri A, Gentaz E, editors. Touching for knowing: cognitive psychology of haptic manual perception. Amsterdam: John Benjamins; 2003. p. 275–92.

    Google Scholar 

  56. Auvray M, Myin E. Perception with compensatory devices: from sensory substitution to sensorimotor extension. Cogn Sci. 2009;33:1036–58.

    Article  PubMed  Google Scholar 

  57. Guarniero G. Experience of tactile vision. Perception. 1974;3(1):101–4.

    Article  PubMed  CAS  Google Scholar 

  58. Froese T, Spiers A. Toward a phenomenological pragmatics of enactive perception. Enactive/07: proceedings of the 4th international conference on enactive interfaces. Grenoble, France: Association ACROE; 2007. p. 105–8.

  59. Nagel T. What is it like to be a bat? Philos Rev. 1974;83(4):435–40.

    Article  Google Scholar 

  60. Petitmengin C. Describing one’s subjective experience in the second person: an interview method for the science of consciousness. Phenomenol Cogn Sci. 2006;5(3–4):229–69.

    Article  Google Scholar 

  61. Jackson F. Epiphenomenal qualia. Philos Q. 1982;32(127):127–36.

    Article  Google Scholar 

  62. Varela FJ. The re-enchantment of the concrete: some biological ingredients for a nouvelle cognitive science. In: Steels L, Brooks R, editors. The artificial life route to artificial intelligence. Hove: Lawrence Erlbaum Associates; 1995. p. 11–22.

    Google Scholar 

  63. Ihde D. Husserl’s Galileo needed a telescope! Philos Technol. 2011;24(1):69–82.

    Article  Google Scholar 

  64. Stiegler B. Technics and time, 1: the fault of epimetheus. Stanford: Stanford University Press; 1998.

    Google Scholar 

  65. De Preester H. Technology and the body: the (im)possibilities of re-embodiment. Found Sci. 2011;16:119–37.

    Article  Google Scholar 

  66. Visell Y. Tactile sensory substitution: models for enaction in HCI. Interact Comput. 2009;21(1–2):38–53.

    Article  Google Scholar 

  67. Gillespie RB, O’Modhrain S, editors. Embodied cognition as a motivating perspective for haptic interaction design: a position paper. IEEE World Haptics Conference (WHC); 2011; Istanbul, Turkey: IEEE.

  68. Khatchatourov A, Stewart J, Lenay C, editors. Towards an enactive epistemology of technics. ENACTIVE/07; 2007; Grenoble, France: Association ACROE.

  69. Froese T, McGann M, Bigge W, Spiers A, Seth AK. The enactive torch: a new tool for the science of perception. IEEE Trans Haptics. 2012. http://doi.ieeecomputersociety.org/10.1109/TOH.2011.57.

  70. Di Paolo EA, Noble J, Bullock S. Simulation models as opaque thought experiments. In: Bedau MA, McCaskill JS, Packard NH, Rasmussen S, editors. Artificial life VII: proceedings of the seventh international conference on artificial life. Cambridge: MIT Press; 2000. p. 497–506.

    Google Scholar 

  71. Beer RD. Dynamical approaches to cognitive science. Trends Cogn Sci. 2000;4(3):91–9.

    Article  PubMed  Google Scholar 

  72. Newell A, Simon HA. Human problem solving. Englewood Cliffs: Prentice-Hall; 1972.

    Google Scholar 

  73. Dreyfus HL. Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. Philos Psychol. 2007;20(2):247–68.

    Article  Google Scholar 

  74. Chrisley R, Parthemore J. Synthetic phenomenology: exploiting embodiment to specify the non-conceptual content of visual experience. J Conscious Stud. 2007;14(7):44–58.

    Google Scholar 

  75. Gallagher S. How the body shapes the mind. New York: Oxford University Press; 2005.

    Book  Google Scholar 

  76. LeGrand D. The bodily self: the sensori-motor roots of pre-reflective self-consciousness. Phenomenol Cogn Sci. 2006;5(1):89–118.

    Article  Google Scholar 

  77. Sheets-Johnstone M. The primacy of movement, expanded. 2nd ed. Amsterdam: John Benjamins Publishing Company; 2011.

    Google Scholar 

  78. De Preester H, Tsakiris M. Body-extension versus body-incorporation: is there a need for a body-model? Phenomenol Cogn Sci. 2009;8(3):307–19.

    Article  Google Scholar 

  79. Thompson E, Stapleton M. Making sense of sense-making: reflections on enactive and extended mind theories. Topoi. 2009;28(1):23–30.

    Article  Google Scholar 

  80. Clark A. Natural-Born Cyborgs: minds, technologies, and the future of human intelligence. New York: Oxford University Press; 2003.

    Google Scholar 

  81. Clark A. Supersizing the mind: embodiment, action, and cognitive extension. New York: Oxford University Press; 2008.

    Google Scholar 

  82. Di Paolo EA. Extended life. Topoi. 2009;28(1):9–21.

    Article  Google Scholar 

  83. Clark A. Spreading the Joy? Why the machinery of consciousness is (probably) still in the head. Mind. 2009;118:963–93.

    Article  Google Scholar 

  84. Froese T. Exploring mind-as-it-could-be: from artificial life to artificial embodiment. Workshop on key issues in sensory augmentation research; Brighton, UK: University of Sussex; 2009. p 1–2.

  85. Auvray M, Hanneton S, Lenay C, O’Regan JK. There is something out there: distal attribution in sensory substitution, twenty years later. J Integr Neurosci. 2005;4(4):505–21.

    Article  PubMed  Google Scholar 

  86. Bach-y-Rita P, Kercel SW. Sensory substitution and the human-machine interface. Trends Cogn Sci. 2003;7(12):541–6.

    Article  PubMed  Google Scholar 

  87. Lenggenhager B, Tadi T, Metzinger T, Blanke O. Video Ergo Sum: manipulating bodily self-consciousness. Science. 2007;317:1096–9.

    Article  PubMed  CAS  Google Scholar 

  88. Sanchez-Vives MV, Slater M. From presence to consciousness through virtual reality. Nat Rev Neurosci. 2005;6(4):332–9.

    Article  PubMed  CAS  Google Scholar 

  89. Reid K, Flowers P, Larkin M. Exploring lived experience. Psychologist. 2005;18(1):20–3.

    Google Scholar 

  90. Varela FJ, Shear J. First-person methodologies: what, why, how? J Conscious Stud. 1999;6(2–3):1–14.

    Google Scholar 

  91. Petitmengin C. Editorial introduction: ten years of viewing from within. J Conscious Stud. 2009;16(10–12):7–19.

    Google Scholar 

  92. Proulx MJ, Stoerig P, Ludowig E, Knoll I. Seeing ‘where’ through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution. PLoS One. 2008;3(3):e1840.

    Article  PubMed  Google Scholar 

  93. Auvray M, Lenay C, Stewart J. Perceptual interactions in a minimalist virtual environment. New Ideas Psychol. 2009;27(1):32–47.

    Article  Google Scholar 

  94. Ward J, Meijer P. Visual experiences in the blind induced by an auditory sensory substitution device. Conscious Cogn. 2010;19(1):492–500.

    Article  PubMed  Google Scholar 

  95. Rohde M. Enaction, embodiment, evolutionary robotics: simulation models for a post-cognitivist science of mind. Amsterdam: Atlantis Press; 2010.

    Book  Google Scholar 

  96. Ogai Y. Constructive Research of Active Perception by Cognitive Experiment and Simulation Using Neural Networks [Dissertation]. Tokyo, Japan: University of Tokyo; 2011.

  97. Ogai Y, Uno R, Ikegami T. From active perception to language: analysis of onomatopoeias using a tactile display. The third international symposium on Mobiligence. Hyogo, Japan; 2009. p. 382–6.

  98. Ogai Y, Uno R, Ikegami T. Shokkan wo kousei suru jikken kara akutibu tacchi wo kangaeru. In: Shinohara K, Uno R, editors. Chikazuku oto to imi: Onomatope kenkyu no shatei. Japan: Hituzi Syobo; 2012 (in press).

  99. Ogai Y, Ikegami T. An investigation of active touch using neural networks and a tactile display—constructing tactile sensations represented by onomatopoeias. IEICE Technical Report. 2009;109:17–21.

    Google Scholar 

  100. Dawkins R. the blind watchmaker: why the evidence of evolution reveals a universe without design. New York: W. W. Norton & Company, Inc.; 1986.

    Google Scholar 

  101. Takagi H. Interactive evolutionary computation: fusion of the capacities of EC optimization and human evaluation. Proc IEEE. 2001;89(9):1275–96.

    Article  Google Scholar 

  102. Coelho C, Tichon J, Hine TJ, Wallis G, Riva G. Media presence and inner presence: the sense of presence in virtual reality technologies. In: Riva G, Anguera MT, Wiederhold BK, Mantovani F, editors. From communication to presence: cognition, emotions and culture towards the ultimate communicative experience festschrift in honor of Luigi Anolli. Amsterdam: IOS Press; 2006. p. 25–45.

    Google Scholar 

  103. Heeter C. Being there: the subjective experience of presence. Presence: teleoperators and Virtual. Environments. 1992;1(2):262–71.

    Google Scholar 

  104. Noë A. Is the visual world a grand illusion? J Conscious Stud. 2002;9(5–6):1–12.

    Google Scholar 

  105. Suzuki K, Wakisaka S, Fujii N. Substituting “here and now”—using virtual reality technology. Toward a science of consciousness. Stockholm: Sweden; 2011. p. 120.

    Google Scholar 

  106. Brown P. The mechanization of art. In: Husbands P, Holland O, Wheeler M, editors. The mechanical mind in history. Cambridge: MIT Press; 2008. p. 259–82.

    Google Scholar 

  107. Ikegami T. Studying a self-sustainable system by making a mind time machine. Workshop on self-sustaining systems (S3). Tokyo, Japan: University of Tokyo; 2010. p. 1–8.

  108. Ikegami T, Ogai Y. Self-organization of subjective time and sustainable autonomy in mind time machine. In: Fellermann H, Dörr M, Hanczyc MM, Laursen LL, Maurer S, Merkle D, et al., editors. Artificial Life XII: Proceedings of the twelfth international conference on the synthesis and simulation of living systems. Cambridge, MA: The MIT Press; 2010. p. 624–5.

  109. Ikegami T. A design for living technology: experiments with the mind time machine. Artificial Life. 2012 (in press).

  110. McGann M, Froese T, Bigge W, Spiers A, Seth AK. The use of a distal-to-tactile sensory substitution interface does not lead to extension of body image. BIO Web of Conferences. 2011;1:00060.

    Google Scholar 

Download references

Acknowledgments

Froese’s research was financially supported by a Grant-in-Aid of the Japanese Society for the Promotion of Science. We thank Yuki Sato for his help in the design of Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Froese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Froese, T., Suzuki, K., Ogai, Y. et al. Using Human–Computer Interfaces to Investigate ‘Mind-As-It-Could-Be’ from the First-Person Perspective. Cogn Comput 4, 365–382 (2012). https://doi.org/10.1007/s12559-012-9153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9153-4

Keywords

Navigation