Skip to main content
Log in

Bio-inspired Approach for Smooth Motion Control of Wheeled Mobile Robots

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Wheeled mobile robot (WMR) has gained wide application in civilian and military fields. Smooth and stable motion of WMR is crucial not only for enhancing control accuracy and facilitating mission completion, but also for reducing mechanical tearing and wearing. In this paper, we present a novel bio-inspired approach aiming at significantly reducing motion chattering phenomena inherent with traditional methods. The main idea of the proposed smooth motion controller is motivated by two famous Chinese sayings “haste does not bring success” and “ride softly then you may get home sooner”, which inspires the utilization of pre-processing the speed commands with the help of fuzzy rules to generate more favorable movement for the actuation device, so as to effectively avoid the jitter problem that has not yet been adequately solved by traditional methods. Detail formulas and algorithms are derived with consideration of the kinematics and dynamics of WMR. Smooth and asymptotically stable tracking of the WMR along the desired position and orientation is ensured and real-time experiment demonstrates the effectiveness and simplicity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Siegwart Roland, Nourbakhsh Illah R. Introduction to autonomous mobile robots. Cambridge: The MIT Press; 2004.

    Google Scholar 

  2. Craig JJ. Introduction to robotics: mechanics and control. 3rd ed. Upper Saddle River: Pearson/Prentice Hall Press; 2005.

    Google Scholar 

  3. Jones JL, Seiger BA, Flynn AM. Mobile robots: inspiration to implementation. 2nd ed. Boca Raton: A K Peters/CRC Press; 1998.

    Google Scholar 

  4. Siegwart R, Nourbakhsh IR, Scaramuzza D. Introduction to autonomous mobile robots. Cambridge: The MIT Press; 2011.

    Google Scholar 

  5. Kanayama Y, Kimura Y, Miyazaki F, Noguchi T. A stable tracking control method for an autonomous mobile robot. In: IEEE international conference on robotics and automation; 1990. p. 384–9. doi: 10.1109/ROBOT.1990.126006.

  6. Jiang ZP, Nijmeijer H. Tracking control of mobile robots: a case study in backstepping. Automatica. 1997;33(7):1393–9. doi:10.1016/S0005-1098(97)00055-1.

    Article  Google Scholar 

  7. Fukao T, Nakagawa H, Adachi N. Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans Robot Autom. 2000;16(5):609–15. doi:10.1109/70.880812.

    Article  Google Scholar 

  8. Dong W, Kuhnert KD. Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Trans Robot. 2005;21(2):261–6. doi:10.1109/TRO.2004.837236.

    Article  Google Scholar 

  9. Park BS, Yoo SJ, Park JB, Choi YH. Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans Control Syst Technol. 2009;17(1):207–14. doi:10.1109/TCST.2008.922584.

    Article  Google Scholar 

  10. Martins NA, Bertol D, Lombardi W, Pieri ER, Castelan EB. Trajectory tracking of a nonholonomic mobile robot with parametric and nonparametric uncertainties: a proposed neural control. In: Proceedings of IEEE, mediterranean conference on control and automation; 2008. p. 315–320. doi: 10.1109/MED.2008.4602203.

  11. Fierro R, Lewis FL. Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Netw. 1998;9(4):589–600. doi:10.1109/72.701173.

    Article  PubMed  CAS  Google Scholar 

  12. Li YD, Wang ZY, Zhu L. Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot. In: IEEE international conference on ICIA; 2010. p. 753–7. doi: 10.1109/ICINFA.2010.5512467.

  13. R. Fierro, F. L. Lewis. Control of a nonholonomic mobile robot: backstepping into dynamics. In: Proceedings of IEEE on decision and control. 1995; 3805–10. doi: 10.1109/CDC.1995.479190.

  14. Sun CH, Wang YT, Chang CC. Switching T-S fuzzy model-based guaranteed cost control for two wheeled mobile robots. Int J Innov Comput I. 2012;8(5A):3015–28.

    Google Scholar 

  15. Hashemi E, Jadidi MG, Jadidi NG. Model-based PI-fuzzy control of four-wheeled omni-directional mobile robots. Robot Auton Syst. 2011;59(11):930–42. doi:10.1016/j.robot.2011.07.002.

    Article  Google Scholar 

  16. Castillo O, Agilar LT, Cárdenas S. Fuzzy logic tracking control for unicycle mobile robots. Eng Lett. 2006;13(2):73–7.

    Google Scholar 

  17. Tuncer A, Yildirim M, Erkan K. A motion planning system for mobile robots. Adv Electr Comput Eng. 2012;20(1):57–62. doi:10.4316/AECE.2012.01010.

    Article  Google Scholar 

  18. Das T, Kar IN. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans Contr Syst Technol. 2006;14(3):501–10. doi:10.1109/TCST.2006.872536.

    Article  Google Scholar 

  19. Abdessemed F, Benmahammed K, Monacelli E. A Fuzzy-based reactive controller for a non-holonomic mobile robot. Robot Auton Syst. 2004;47(1):31–46. doi:10.1016/j.robot.2004.02.006.

    Article  Google Scholar 

  20. Yu SH, Liu S, Xu H. Adaptive fuzzy trajectory-tracking control of uncertain nonholonomic mobile robots. In: IEEE International conference on industrial informatics (INDIN); 2008. p. 481–6. doi: 10.1109/INDIN.2008.4618148.

  21. Song YD, Chen HN, Li DY. Virtual-point-based fault-tolerant lateral and longitudinal control of 4 W-steering vehicles. IEEE Trans Intel Transp Syst. 2011;12(4):1343–51. doi:10.1109/TITS.2011.2158646.

    Article  Google Scholar 

  22. Lee TK, Baek SH, Choi YH, Oh SY. Smooth coverage path planning and control of mobile robots based on high-resolution grid map representation. Robot Auton Syst. 2011;50(10):801–812. doi: 10.1016/j.robot.2011.06.002.

  23. Park JJ, Kuipers B. A smooth control law for graceful motion of differential wheeled mobile robots in 2D environment. In: IEEE international conference on robotics and automation; 2011. p. 4896–4902. doi: 10.1109/ICRA.2011.5980167.

  24. Guarino Lo Bianco C, Piazzi A, Romano M. Smooth motion generation for unicycle mobile robots via dynamic path inversion. IEEE Trans Robot. 2004;20(5):884–91. doi:10.1109/TRO.2004.832827.

    Article  Google Scholar 

  25. Huang L. Direction and control adjustment for smooth motion of wheeled mobile robots. In: 15th international conference on MCVIP; 2008. p. 460–464.

  26. Li P, Song YD. Monitoring of wind turbines: a bio-inspired fault tolerant approach. Meas Control. 2011;44(4):111–5.

    Article  Google Scholar 

  27. Song YD. Control of wind turbines using memory-based method. J Wind Eng Ind Aerodyn. 2000;85(3):263–75.

    Article  Google Scholar 

  28. Song YD, Cai WC, Li P, Hu YS. A bio-inspired approach to enhancing wind power conversion. J Renew Sustain Energy. 2012;4(2):023107. doi: 10.1063/1.3696072.

    Google Scholar 

  29. Song YD, Weng LG, Lebby G. Human memory/learning inspired control method for flapping-wing micro air vehicles. Int J Bionic Eng. 2010;7(2):127–33.

    Article  Google Scholar 

  30. Takashi K, Masanao O, Kunikazu K, et al. An improved internal model of autonomous robots by a psychological approach. Cogn Comput. 2011;3(4):501–9. doi:10.1007/s12559-011-9102-7.

    Article  Google Scholar 

  31. Haikonen Pentti AO. XCR-1: an experimental cognitive robot based on an associative neural architecture. Cogn Comput. 2011;3(2):360–6. doi:10.1007/s12559-011-9100-9.

    Article  Google Scholar 

  32. Yan XD. Dissociated emergent response system and fine-processing system in human neural network and a heuristic neural architecture for autonomous humanoid robots. Cogn Comput. 2011;3(2):367–73. doi:10.1007/s12559-010-9090-z.

    Article  Google Scholar 

  33. Ziemke T, Lowe R. On the role of emotion in embodied cognitive architectures: from organisms to robots. Cogn Comput. 2009;1(1):104–17. doi:10.1007/s12559-009-9012-0.

    Article  Google Scholar 

  34. Atoufi B, Hamed SH. Bio-inspired algorithms for fuzzy rule-based systems. In: Sajja PS, Akerkar R, editors. Advanced knowledge based systems: model. USA: Applications and Research. Jones & Bartlett Publishers; 2010. p. 126–59.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Major State Basic Research Development Program 973 (No. 2012CB215202), the National Natural Science Foundation of China (No. 60974052 and 61134001) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT0949).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z.J., Song, Y.D. & Cai, W.C. Bio-inspired Approach for Smooth Motion Control of Wheeled Mobile Robots. Cogn Comput 5, 252–263 (2013). https://doi.org/10.1007/s12559-012-9186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9186-8

Keywords

Navigation