Skip to main content
Log in

Characterizing Neurological Disease from Voice Quality Biomechanical Analysis

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The dramatic impact of neurological degenerative pathologies in life quality is a growing concern nowadays. Many techniques have been designed for the detection, diagnosis, and monitoring of the neurological disease. Most of them are too expensive or complex for being used by primary attention medical services. On the other hand, it is well known that many neurological diseases leave a signature in voice and speech. Through the present paper, a new method to trace some neurological diseases at the level of phonation will be shown. In this way, the detection and grading of the neurological disease could be based on a simple voice test. This methodology is benefiting from the advances achieved during the last years in detecting and grading organic pathologies in phonation. The paper hypothesizes that some of the underlying neurological mechanisms affecting phonation produce observable correlates in vocal fold biomechanics and that these correlates behave differentially in neurological diseases than in organic pathologies. A general description about the main hypotheses involved and their validation by acoustic voice analysis based on biomechanical correlates of the neurological disease is given. The validation is carried out on a balanced database of normal and organic dysphonic patients of both genders. Selected study cases will be presented to illustrate the possibilities offered by this methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. UK Department of Work and Pensions: http://www.dwp.gov.uk/publications/specialist-guides/medical-conditions/a-z-of-medical-conditions/parkinsons-disease/prevalence-pd.shtml. Accessed 4 Jan 2012.

  2. Godino JI, Osma V, Sáenz N, Gómez P, Blanco M, Cruz F. The effectiveness of the glottal to noise excitation ratio for the screening of voice disorders. J Voice. 2010;24:47–56.

    Article  Google Scholar 

  3. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans Biomed Eng 2009; 56.4:1015–1022.

    Google Scholar 

  4. Rauschecker JP, Scott SK. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci. 2009;12:718–24.

    Article  PubMed  CAS  Google Scholar 

  5. Törnqvist AL, Schalén L, Rehncrona S. Effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson’s disease treated with subthalamic deep brain stimulation. Mov Disord. 2004;20:416–23.

    Article  Google Scholar 

  6. Eckley CA, Sataloff RT, Hawkshaw M, Spiegel JR, Mandel S. Voice range in superior laryngeal nerve paresis and paralysis. J Voice. 1998;12:340–8.

    Article  PubMed  CAS  Google Scholar 

  7. Luschei ES, Ramig LO, Baker KL, Smith ME. Discharge characteristics of laryngeal single motor units during phonation in young and older adults and in persons with Parkinson disease. J Neurophysiol. 1999;81:2131–9.

    PubMed  CAS  Google Scholar 

  8. Pantazis Y, Koutsogiannaki M, Stylianou Y. A novel method for the extraction of tremor. In: Manfredi C editor. Proceedings of MAVEBA07. Florence University Press; 2007. p. 107–110.

  9. Das R. A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst Appl. 2010;37:1568–72.

    Article  Google Scholar 

  10. Gamboa J, Jiménez FJ, Nieto A, Montojo J, Ortí M, Molina JA, et al. Acoustic voice analysis in patients with Parkinson’s disease treated with dopaminergic drugs. J Voice. 1997;11:314–20.

    Article  PubMed  CAS  Google Scholar 

  11. Gómez P, Fernández R, Rodellar V, Nieto V, Álvarez A, Mazaira LM, et al. Glottal source biometrical signature for voice pathology detection. Speech Commun. 2009;51:759–81.

    Article  Google Scholar 

  12. Gómez P, Fernández R, Rodellar V, Puntonet C. Glottal source asymmetry estimation by ICA. In: Babiloni F, Fred LN, Filipe J, Gamboa H, editors. Proceedings of biosignals Rome, Italy 26–29 Jan 2011, p. 559–564.

  13. Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of Parkinson’s disease progression by non-invasive speech tests. IEEE Trans Biomed Eng. 2009;57:884–93.

    Article  PubMed  Google Scholar 

  14. Little M. Exploiting nonlinearity in speech for biomedical applications, keynote speech, non-linear speech processing conference 2011 (NoLiSP2011), Las Palmas de Gran Canaria, Spain, 7–9 Nov 2011.

  15. Roark RM, Li JCL, Schaefer SD, Adam A, De Luca CJ. Multiple motor unit recordings of laryngeal muscles: the technique of vector laryngeal electromyography. The Laryngoscope. 2002;112:2196–203.

    Article  PubMed  Google Scholar 

  16. Lee KS. Prediction of acoustic feature parameters using myoelectric signals. IEEE Trans Biomed Eng. 2010;57:1587–95.

    Article  PubMed  Google Scholar 

  17. Ganushchak LY, Christoffels IK, Schiller NO. The use of electroencephalography in language production research: a review. Frontiers Psychol. 2011;2:1–6.

    Google Scholar 

  18. Chandrasekaran B, Kraus N. The scalp-recorded brainstem response to speech: neural origins and plasticity. Pychophysiology. 2010;47:236–46.

    Article  Google Scholar 

  19. Biermann-Ruben K, Salmelin R, Schitzler A. Right rolandic activation during speech perception in stutterers: a MEG study. NeuroImage. 2005;25:793–801.

    Article  PubMed  Google Scholar 

  20. Luo H, Husain FT, Horwitz B, Poeppel D. Discrimination and categorization of speech and non-speech sounds in an MEG delayed-match-to-sample study. NeuroImage. 2005;28:59–71.

    Article  PubMed  Google Scholar 

  21. Gracco VL, Tremblay P, Pike B. Imaging speech production using fMRI. NeuroImage. 2005;26:294–301.

    Article  PubMed  Google Scholar 

  22. Troiani V, Fernández-Seara MA, Wang Z, Detre JA, Ash S, Grossman M. Narrative speech production: an fMRI study using continuous arterial spin labeling. NeuroImage 2008; 40.2:932–939.

    Google Scholar 

  23. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal Ganglia efferents to the Brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in Basal Ganglia dysfunction. Neuroscience. 2003;119:293–308.

    Article  PubMed  CAS  Google Scholar 

  24. Sapir S, Ramig LO, Spielman J, Fox C. Acoustic metrics of vowel articulation in Parkinson’s disease: Vowel Space Area (VSA) vs. Vowel Articulation Index (VAI). In: Manfredi C, editor. Proceedings of MAVEBA11. Florence University Press; 2011. p. 173–175.

  25. Berry DA. Modal and nonmodal phonation. J Phonetics. 2001;29:431–50.

    Article  Google Scholar 

  26. Gómez P, Rodellar V, Nieto V, Mazaira LM, Muñoz C, Fernández M, Toribio E. Neurological disease detection and monitoring from voice production. LNCS. 2011;7015:1–8.

    Google Scholar 

  27. Deller JR, Proakis JG, Hansen JHL. Discrete-time processing of speech signals. Englewood Cliffs: Macmillan Pub. Co.; 1993.

    Google Scholar 

  28. Gómez P, Rodellar V, Nieto V, Mazaira LM, Muñoz C, Fernández M, Toribio E. Voice quality analysis to detect neurological diseases. In: Manfredi C, editor. Proceedings of MAVEBA11. Florence University Press; 2011. p. 79–82.

  29. Marques de Sá JP. Applied statistics using SSPS, STATISTICA and MATLAB. Springer: Berlin; 2003.

  30. Fant G, Liljencrants J. A four-parameter model of glottal flow. KTH STL-QPSR. 1985;26:1–13.

    Google Scholar 

  31. Tsanas A. Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear speech signal processing and statistical machine learning. UK, D. Phil. Thesis: University of Oxford; 2012.

    Google Scholar 

  32. Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for high-accuracy classification of Parkinson‘s disease. IEEE Trans Biomed Eng. 2010;59:1264–71.

    Article  Google Scholar 

  33. Johnson RA, Wichern DW. Applied multivariate statistical analysis. Upper Saddle River: Prentice-Hall; 2002.

    Google Scholar 

  34. Papadelis C, Poghosyan V, Fenwick PBC, Ioannides AA. MEG’s ability to localise accurately weak transient neural sources. Clin Neurophysiol. 2009;120:1958–70.

    Article  PubMed  Google Scholar 

  35. Yunusova Y, Green JR, Lindstrom MJ, Ball LJ, Pattee GL, Zinman L. Kinematics of disease progression in bulbar ALS. J Commun Disord. 2010;43:6–20.

    Article  PubMed  Google Scholar 

  36. Ogar J, Slama H, Dronkers N, Amici S, Giorno-Tempini ML. Apraxia of speech: an overview. Neurocase. 2005;11:427–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by grants TEC2009-14123-C04-03 and TEC2012-38630-C04-04 from Plan Nacional de I + D + i, Ministry of Science and Technology, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Gómez-Vilda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Vilda, P., Rodellar-Biarge, V., Nieto-Lluis, V. et al. Characterizing Neurological Disease from Voice Quality Biomechanical Analysis. Cogn Comput 5, 399–425 (2013). https://doi.org/10.1007/s12559-013-9207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9207-2

Keywords

Navigation