Skip to main content

Advertisement

Log in

Multivariate Synchronization Analysis of Brain Electroencephalography Signals: A Review of Two Methods

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Temporal synchronization of neuronal activity plays an important role in various brain functions such as binding, cognition, information processing, and computation. Patients suffering from disorders such as Alzheimer’s disease or schizophrenia show abnormality in the synchronization patterns. Electroencephalography (EEG) is a cheap, non-invasive, and easy-to-use method with fine temporal resolution. Modern multichannel EEG data are increasingly being used in brain studies. Traditional approaches for identifying synchronous activity in EEG are through univariate techniques such as power spectral density or bivariate techniques such as coherence. In this paper, we review two methods for synchronization analysis within multivariate time series. One method, denoted by multivariate state-space synchronization-estimator, calculates the generalized synchronization based on the shrinking of the embedding dimension in the state-space. The other method, denoted by multivariate phase synchronization-estimator, considers phase of the signals and calculates the mean coherency within multivariate phases. Their effectiveness is assessed on both simulated data and real EEGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fenton GW, et al. EEG spectral analysis in schizophrenia. Br J Psychiatry. 1980;136:445–55.

    Article  CAS  PubMed  Google Scholar 

  2. Knyazeva MG, et al. Alpha rhythm and hypofrontality in schizophrenia. Acta Psychiatr Scand. 2008;118(3):188–99.

    Article  CAS  PubMed  Google Scholar 

  3. Adler G, Brassen S, Jajcevic A. EEG coherence in Alzheimer’s dementia. J Neural Transm. 2003;110(9):1051–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hogan MJ, et al. Memory-related EEG power and coherence reductions in mild Alzheimer’s disease. Int J Psychophysiol. 2003;49(2):147–63.

    Article  PubMed  Google Scholar 

  5. Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115(7):1490–505.

    Article  PubMed  Google Scholar 

  6. Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr Alzheimer Res. 2010;7(6):487–505.

    Article  CAS  PubMed  Google Scholar 

  7. Lee S-A, Spencer DD, Spencer SS. Intracranial EEG seizure-onset patterns in neocortical epilepsy. Epilepsia. 2000;41(3):297–307.

    Article  CAS  PubMed  Google Scholar 

  8. Mormann F, et al. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D. 2000;144:358–69.

    Article  Google Scholar 

  9. Moazami-Goudarzi M, et al. Enhanced frontal low and high frequency power and synchronization in the resting EEG of parkinsonian patients. NeuroImage. 2008;41(3):985–97.

    Article  PubMed  Google Scholar 

  10. Dauwels J, et al. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage. 2010;49(1):668–93.

    Article  CAS  PubMed  Google Scholar 

  11. Gray CM, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA. 1989;86:1698–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron. 1999;24(1):49–65.

    Article  CAS  PubMed  Google Scholar 

  13. Gray CM, et al. Oscillatory responses in cat visual-cortex exhebit inter-columinar synchronization which reflects global stimulus properties. Nature. 1989;338(6213):334–7.

    Article  CAS  PubMed  Google Scholar 

  14. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52(1):155–68.

    Article  CAS  PubMed  Google Scholar 

  15. Koenig T, et al. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2005;26(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  16. Jalili M, et al. Dysconnection topography in schizophrenia with state-space analysis of EEG. PLoS ONE. 2007;2(10):e1059.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Spencer K, et al. Abnormal neural synchrony in schizophrenia. J Neurosci. 2003;23(19):7407–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Just MA, et al. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004;127(8):1811–21.

    Article  PubMed  Google Scholar 

  19. Jelic V, et al. Quantitative electroencephalography power and coherence in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord. 1996;7(6):314–23.

    Article  CAS  Google Scholar 

  20. Merrin E, Floyd T, Fein G. EEG coherence in unmedicated schizophrenic patients. Biol Psychiatry. 1989;25(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  21. Jalili M. Collective behavior of interacting locally synchronized oscillations in neuronal networks. Commun Nonlinear Sci Numer Simul. 2012;17:3922–33.

    Article  Google Scholar 

  22. Kreuz T, et al. Measuring multiple spike train synchrony. J Neurosci Methods. 2009;183(2):287–99.

    Article  PubMed  Google Scholar 

  23. Ford J, et al. Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol Psychiatry. 2002;51(6):485–92.

    Article  PubMed  Google Scholar 

  24. Hoffman R, et al. EEG coherence of prefrontal areas in normal and schizophrenic males during perceptual activation. J Neuropsychiatry Clin Neurosci. 1991;3(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  25. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol. 2005;77:1–37.

    Article  PubMed  Google Scholar 

  26. Audrino F, Buhlmann P. Synchronizing multivariate financial time series. Zurich: ETH Zurich; 2001.

    Google Scholar 

  27. Carmeli C, et al. Assessment of EEG synchronization based on state-space analysis. NeuroImage. 2005;25(2):339–54.

    Article  PubMed  Google Scholar 

  28. Knyazeva MG, et al. Topography of EEG multivariate phase synchronization in early Alzheimer’s disease. Neurobiol Aging. 2010;31:1132–44.

    Article  PubMed  Google Scholar 

  29. Righero M, De Feo O, Biey M. A cooperation index based on correlation matrix spectrum and Renyi entropy. In: European conference on circuit theory and design. 2009. p. 466–469.

  30. Koenig T, et al. Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naıve patients with schizophrenia: preliminary results. Schizophr Res. 2001;50(1–2):55–60.

    Article  CAS  PubMed  Google Scholar 

  31. Wackermann J. Beyond mapping: estimating complexity of multichannel EEG recordings. Acta Neurobiol Exp. 1996;56:197–208.

    CAS  Google Scholar 

  32. Allefeld C, Bialonski S. Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains. Phys Rev E. 2007;76:066207.

    Article  Google Scholar 

  33. Boccaletti S, et al. The synchronization of chaotic systems. Phys Rep. 2002;366(1–2):1–101.

    Article  CAS  Google Scholar 

  34. Kantz H, Schreiber T. Nonlinear time series analysis. 2nd ed. Cambridge: Cambridge University Press; 2004.

    Google Scholar 

  35. Carmeli C. Assessing cooperative behavior in dynamical networks with applications to brain data. Lausanne: Ecole Polytechnique Federal de Lausanne; 2006.

    Google Scholar 

  36. Strang G. Introduction to linear algebra. 3rd ed. Wellesley: Cambridge Press; 2003.

    Google Scholar 

  37. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett. 1996;76(11):1804–7.

    Article  CAS  PubMed  Google Scholar 

  38. Hahn SL. Hilbert transforms in signal processing. London: Artech House Publishers; 1996.

    Google Scholar 

  39. Quiroga R, et al. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E. 2002;65:041903.

    Article  Google Scholar 

  40. Strogatz SH. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D. 2000;143(1–4):1–20.

    Article  Google Scholar 

  41. Kuramoto Y. Chemical oscillations, waves, and turbulence. New York: Dover; 2003.

    Google Scholar 

  42. Le Van Quyen M, et al. Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods. 2001;111:83–98.

    Article  Google Scholar 

  43. David O, Cosmelli D, Friston KJ. Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage. 2004;21:659–73.

    Article  PubMed  Google Scholar 

  44. Rössler OE. An equation for continuous chaos. Phys Lett A. 1976;57(5):397–8.

    Article  Google Scholar 

  45. Quarteroni A, Sacco R, Saleri F. Numerical mathematics. Berlin: Springer; 2000.

    Google Scholar 

  46. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300.

    Google Scholar 

  47. Rickham PP. Human experimentation. Code of Ethics of the World Medical Association. Declaration of Helsinki. Br Med J. 1964;2(5402):177.

    Google Scholar 

  48. Nunez P, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. New York: Oxford University Press; 2006.

    Book  Google Scholar 

  49. Knyazeva MG, et al. Psychogenic seizures and frontal disconnection: EEG synchronisation study. J Neurol Neurosurg Psychiatry. 2011;82(5):505–11.

    Article  PubMed  Google Scholar 

  50. Srinivasan R, et al. Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topogr. 1996;8:355–66.

    Article  CAS  PubMed  Google Scholar 

  51. Nunez P, et al. EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol. 1997;103(5):499–515.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Maria G. Knyazeva for EEG recording and preprocessing in her lab and Homa Babai for carefully editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Jalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalili, M. Multivariate Synchronization Analysis of Brain Electroencephalography Signals: A Review of Two Methods. Cogn Comput 7, 3–10 (2015). https://doi.org/10.1007/s12559-013-9213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9213-4

Keywords

Navigation