Skip to main content
Log in

Scanpath Generated by Cue-Driven Activation and Spatial Strategy: A Comparative Study

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

A comparative study of a cued face search task is presented in this paper. Human participants and a computer model carried out a task in which they were required to locate a color-cued target face. Human-generated eye fixations and scanpaths were compared with those generated by the computational model. Throughout the comparison, we considered the similarities and dissimilarities between the two systems’ performances. Their results show that the eye fixations in a valid cue search are highly correlated with the computer-generated fixation points in a valid cue search but not to those in random and invalid cue searches. Moreover, the comparison between human- and computer-generated scanpaths showed that the scanpath that links the fixation points is not randomly generated. Our results imply that eye movement is accomplished not only by cue-driven activation, but also by a spatial strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbott RG, Williams LR. Multiple target tracking with lazy background subtraction and connected components analysis. Mach Vis Appl 2009;20(2):93–101.

    Article  Google Scholar 

  2. Berry WD, Golder M, Milton D. Improving tests of theories positing interaction. J Polit 2012;74:653–71.

    Article  Google Scholar 

  3. Birmingham E, Bischof WF, Kingstone A. Social attention and real-world scenes: the roles of action, competition and social content. Q J Exp Psychol 2008;61(7):986–98.

    Article  Google Scholar 

  4. Borji A, Sihite DN, Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans Image Process 2013;22(1):55–69.

    Article  PubMed  Google Scholar 

  5. Borji A, Sihite DN, Itti L. What stands out in a scene? A study of human explicit saliency judgment. Vis Res 2013;91(0):62–77.

    Article  PubMed  Google Scholar 

  6. Cutsuridis V. A cognitive model of saliency, attention, and picture scanning. Cognit Comput 2009;1(4):292–99.

    Article  Google Scholar 

  7. De Vries JP, Hooge ITC, Verstraten FAJ. Saccades toward the target are planned as sequences rather than as single steps. Psychol Sci 2014;25(1):215–223.

    Google Scholar 

  8. Einhäuser W, Spain M, Perona P. Objects predict fixations better than early saliency. J Vis 2008;8(14):1–26.

    Article  Google Scholar 

  9. Findlay JM, Brown V. Eye scanning of multi-element displays: I. Scanpath planning. Vis Res 2006;46(1–2):179–95.

    Article  PubMed  Google Scholar 

  10. Findlay JM, Walker R. A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci 1999;22(4):661–74.

    CAS  PubMed  Google Scholar 

  11. Foulsham T, Underwood G. What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J Vis 2008;8(2):1–17.

    Article  PubMed  Google Scholar 

  12. Gersch TM, Kowler E, Schnitzer BS, Dosher BA. Attention during sequences of saccades along marked and memorized paths. Vis Res 2009;49(10):1256–66.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Helsgaun K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur J Oper Res 2000;126:106–30.

    Article  Google Scholar 

  14. Henderson JM, Brockmole JR, Castelhano MS, Mack M. Visual saliency does not account for eye movements during visual search in real-world scenes. In: van Gompel R, Fischer M, Murray W, Hill R, editors. Eye movements: a window on mind and brain. Oxford: Elsevier; 2007. p. 537–62.

    Chapter  Google Scholar 

  15. Hou X, Harel J, Koch C. Image signature: highlighting sparse salient regions. IEEE Trans Pattern Anal Mach Intell 2012;34(1):194–201.

    Article  Google Scholar 

  16. Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 2000;40:1489–506.

    Article  CAS  PubMed  Google Scholar 

  17. Judd T, Durand F, Torralba A. (2012) A benchmark of computational models of saliency to predict human fixations. Tech. rep., MIT.

  18. Kay J, Phillips WA. Activation functions, computational goals, and learning rules for local processors with contextual guidance. Neural Comput 1997;9(4):895–910.

    Article  Google Scholar 

  19. Laporte G. The traveling salesman problem: an overview of exact and approximate algorithms. Eur J Oper Res 1992;59(2):231–47.

    Article  Google Scholar 

  20. Lee K, Choo H. A common computational process in cueing and conjunction search tasks. Cognive Process 2012;13(1):73–82.

    Article  Google Scholar 

  21. Li Z, Qin S, Itti L. Visual attention guided bit allocation in video compression. Image Vis Comput 2011;29(1):1–14.

    Article  Google Scholar 

  22. Lin S, Kernighan BW. An effective heuristic algorithm for the traveling-salesman problem. Oper Res 1973;21(2):498–516.

    Article  Google Scholar 

  23. Merz P, Freisleben B. Memetic algorithms for the traveling salesman problem. Complex Syst 1997;13:297–345.

    Google Scholar 

  24. Meur O, Baccino T. Methods for comparing scanpaths and saliency maps: strengths and weaknesses. Behav Res Methods 2013;45(1):251–66.

    Article  PubMed  Google Scholar 

  25. Minato T, Asada M. Towards selective attention: generating image features by learning a visuo-motor map. Rob Auton Syst 2003;45:211–21.

    Article  Google Scholar 

  26. Mordkoff JT, Halterman R, Chen P. Why does the effect of short-soa exogenous cuing on simple rt depend on the number of display locations? Psychon Bull Rev 2008;15(4):819–24.

    Article  Google Scholar 

  27. Omid S. Face detection program (2010). http://www.mathworks.com/matlabcentral/fileexchange/11073.

  28. Over E, Hooge I, Vlaskamp B, Erkelens C. Coarse-to-fine eye movement strategy in visual search. Vis Res 2007;47(17):2272–80.

    Article  CAS  PubMed  Google Scholar 

  29. Parkhurst D, Law K, Niebur E. Modeling the role of salience in the allocation of overt visual attention. Vis Res 2002;42(1):107–23.

    Article  PubMed  Google Scholar 

  30. Pomplun M, Reingold EM, Shen J. Area activation: a computational model of saccadic selectivity in visual search. Cogn Sci 2003;27(2):299–312.

    Article  Google Scholar 

  31. Pomplun M, Sichelschmidt L, Wagner K, Clermont T, Rickheit G, Ritter H. Comparative visual search: a difference that makes a difference. Cogn Sci 2001;25(1):3–36.

    Article  Google Scholar 

  32. Rebhan S, Eggert J. Dynamic, task-related and demand-driven scene representation. Cogn Comput 2011;3(1):124–45.

    Article  PubMed Central  PubMed  Google Scholar 

  33. der Stigchel SV, Nijboer T. How global is the global effect? The spatial characteristics of saccade averaging. Vis Res 2013;84(0):6–15.

    Article  PubMed  Google Scholar 

  34. Stirk JA, Underwood G. Low-level visual saliency does not predict change detection in natural scenes. J Vis 2007;7(10):1–10.

    Article  PubMed  Google Scholar 

  35. Tatler BW. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J Vis 2007;7(14):1–17.

    Article  PubMed  Google Scholar 

  36. Tatler BW, Baddeley RJ, Vincent BT. The long and the short of it: spatial statistics at fixation vary with saccade amplitude and task. Vis Res 2006;46(12):1857–62.

    Article  PubMed  Google Scholar 

  37. Tatler BW, Hayhoe MM, Land MF, Ballard DH. Eye guidance in natural vision: reinterpreting salience. J Vis 2011;11(5):1–23.

    Article  Google Scholar 

  38. Trukenbrod HA, Engbert R. Eye movements in a sequential scanning task: evidence for distributed processing. J Vis 2012;12(1):1–12.

    Article  Google Scholar 

  39. Tsai Th, Gill J. Interactions in generalized linear models: theoretical issues and an application to personal vote-earning attributes. Soc Sci 2013;2(2):91–113.

    Article  Google Scholar 

  40. Turk M, Pentland A. Eigenfaces for recognition. J Cogn Neurosci 1991;3(1):71–86.

    Article  CAS  PubMed  Google Scholar 

  41. Underwood G, Mennie N, Humphrey K, Underwood J. Remembering pictures of real-world images using eye fixation sequences in imagery and in recognition. In: Caputo B, Vincze M, editors. Cognitive vision. Berlin:Springer; 2008.p. 51–64.

  42. Vezhnevets V, Sazonov V, Andreeva A. A survey on pixel-based skin color detection techniques. In: IN PROC. GRAPHICON-2003, 2003;85–92.

  43. Walther D, Rutishauser U, Koch C, Perona P. Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Comput Vis Image Underst 2005;100(1–2):41–63.

    Article  Google Scholar 

  44. Wasserman G, Bolbecker A, Li J, Lim-Kessler C. A top down and bottom up component of visual attention. Cogn Comput 2011;3(1):294–302.

    Article  Google Scholar 

  45. Watson MR, Brennan AA, Kingstone A, Enns JT. Looking versus seeing: strategies alter eye movements during visual search. Psychon Bull Rev 2010;17(4):543–49.

    Article  Google Scholar 

  46. Zabinsky Z. Random search algorithms. Tech. rep., University of Washington, Department of Industrial and Systems Engineering, Seattle, WA 2000.

Download references

Acknowledgments

This research was supported by the Basic Science Research Program (Grant No. 2012009055) and (NRF-2012R1A1A3008188) through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology and the Ministry of Science, ICT and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KangWoo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Lee, Y. Scanpath Generated by Cue-Driven Activation and Spatial Strategy: A Comparative Study. Cogn Comput 6, 585–594 (2014). https://doi.org/10.1007/s12559-014-9246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-014-9246-3

Keywords

Navigation