Skip to main content
Log in

Brain Programming for the Evolution of an Artificial Dorsal Stream

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

This work describes the application of a new strategy called brain programming for automating the design of visual attention (VA) models. Nowadays, a term known as cognitive vision coined within the computer vision and cognitive research communities has been introduced to delimitate the kind of computer vision systems that are robust, resilient and adaptable to the task at hand through the incorporation of cognitive abilities. In particular, visual attention is considered as a critical factor whose main goal is to establish a relationship between the different properties or features of the scene with the aim of selecting the most suitable aspects for the task at hand. This paper follows a main trend in cognitive computation where the visual pathway is modeled through a succession of levels or layers. Here, the VA task is defined with the idea that several areas of the brain are in charge of its functionality in a hierarchical way. To achieve such functionality, we propose that an artificial process, mimicking the natural counterpart, would be charged of looking for a set of complex operations using an optimization/search process. The idea is to include such operations within a VA model that will be evolved according to a specific task. The aim of the whole process is to provide with the best solutions among the space of possible visual attention programs (VAPs) for a given problem. In this way, the article presents a methodology for automating the design of VAPs. Therefore, the final design can be seen as a cognitive vision system that is engaged in a purposive goal-directed behavior. The results obtained on a well-known testbed confirm that the proposal is able to automatically design VAPs that outperform previous man-made systems developed by VA experts, while providing readable results through a set of mathematical and computational structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://ilab.usc.edu/imgdbs/

  2. http://www.saliencytoolbox.net/

References

  1. Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4:219–27.

    CAS  PubMed  Google Scholar 

  2. Feldman JA. Four frames suffice: a provisional model of vision and space. J Behav Brain Sci. 1985;8:265–89.

    Article  Google Scholar 

  3. Trehub A. The cognitive brain. Cambridge, MA: MIT Press; 1991. p. 384.

    Google Scholar 

  4. Ungerleider LG, Mishkin M. Two cortical visual systems. In: Analysis of visual behavior. Cambridge, MA: MIT Press; 1982. p. 549–85.

  5. Milner D, Goodale MA. The visual brain in action. 2nd ed. Oxford: Oxford University Press; 1995. p. 320.

    Google Scholar 

  6. Baluch F, Itti L. Mechanisms of top-down attention. Trends Neurosci. 2011;34(4):210–24.

    Article  CAS  PubMed  Google Scholar 

  7. Yarbus A. Eye movements and vision. 1st ed. New York: Plenum Press; 1967. p. 222.

    Book  Google Scholar 

  8. James W. The principles of psychology, vol 1. Mineola: Dover; 1950. p. 696.

    Google Scholar 

  9. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18(1):193–222.

    Article  CAS  PubMed  Google Scholar 

  10. Egeth H, Yantis S. Visual attention: control, representation, and time course. Annu Rev Psychol. 1997;48(1):269–97.

    Article  CAS  PubMed  Google Scholar 

  11. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.

    Article  CAS  PubMed  Google Scholar 

  12. Underwood G. Cognitive processes in eye guidance: algorithms for attention in image processing. Cogn Comput. 2009;1:69–76.

    Article  Google Scholar 

  13. Dozal L, Olague G, Clemente E, Sánchez M. Evolving visual attention programs through evo features. In: Proceedings of the 2012 European conference on applications of evolutionary computation. Berlin, Heidelberg: Springer, EvoApplications’12; 2012. p. 326–35.

  14. Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems. J Electron Imaging. 2001;10:161–9.

    Article  Google Scholar 

  15. Dozal L, Olague G, Clemente E. Evolving an artificial dorsal stream on purpose for visual attention. EVOLVE—a bridge between probability set oriented numerics and evolutionary computation II. Adv Intell Syst Comput. 2013;175:371–85.

    Article  Google Scholar 

  16. Olague G, Dozal L, Clemente E, Ocampo A. Optimizing an artificial dorsal stream on purpose for visual attention. In: Schütze O et al, editors. EVOLVE—a bridge between probability set oriented numerics and evolutionary computation III. Studies in Computational Intelligence, Springer 2014;500:141–66.

  17. Tsotsos JK. Analyzing vision at the complexity level. Behav Brain Sci. 1990;13:423–69.

    Article  Google Scholar 

  18. Frintrop S, Rome E, Christensen HI. Computational visual attention systems and their cognitive foundation: a survey. ACM Trans Appl Percept. 2010;7(1):1–39.

    Article  Google Scholar 

  19. Wischnewski M, Belardinelli A, Schneider WX, Steil JJ. Where to look next? Combining static and dynamic proto-objects in a TVA-based model of visual attention. Cogn Comput. 2010;2(4):326–43.

    Article  Google Scholar 

  20. Taylor JG, Cutsuridis V. Saliency, attention, active visual search, and picture scanning. Editor Spec Issue Cogn Comput. 2011;3(1):1–3.

    Article  Google Scholar 

  21. Neokleous KC, Avraamides MN, Neocleous CK, Schizas CN. Selective attention and consciousness: investigating their relation through computational modelling. Cogn Comput. 2011;3(1):321–31.

    Article  Google Scholar 

  22. Vernon D. Cognitive vision: the case for embodied perception. Image Vis Comput. 2008;26:127–40.

    Article  Google Scholar 

  23. Nagel HH. Reflections on cognitive vision systems. In: Crowley JL, Piater JH, Vincze M, Paletta L, editors. Proceedings of the third international conference on computer vision systems. Heidelberg: Springer; 2003. p. 34–43.

  24. Tsotsos JK. Cognitive vision needs attention to link sensing with recognition. In: Christensen HI, Nagel HH, editors. Cognitive vision systems: sampling the spectrum of approaches, LNCS. Heidelberg: Springer; 2006. p. 25–35.

    Chapter  Google Scholar 

  25. Posner MI, Snyder CR, Davidson BJ. Attention and the detection of signals. J Exp Psychol. 1980;109(2):160–74.

    Article  CAS  PubMed  Google Scholar 

  26. Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.

    Article  CAS  PubMed  Google Scholar 

  27. Wolfe JM. Visual attention. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA: Academic Press; 2000. p. 335–86.

    Chapter  Google Scholar 

  28. Olague G. Evolutionary computer vision—the first footprints. Springer (accepted for publication, to appear).

  29. Fukushima K. A neural network model for selective attention in visual pattern recognition. Biol Cybern. 1986;55(1):5–15.

    Article  CAS  PubMed  Google Scholar 

  30. Burt P. Attention mechanisms for vision in a dynamic world. In: 9th international conference on pattern recognition; 1988. p. 977–87.

  31. Sandon PA. Simulating visual attention. J Cogn Neurosci. 1990;2(3):213–31.

    Article  CAS  PubMed  Google Scholar 

  32. Olshausen BA, Anderson CH, Van Essen DC. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci. 1993;13(11):4700–19.

    CAS  PubMed  Google Scholar 

  33. Palmer SE. The psychology of perceptual organization: a transformational approach. In: Beck J, Hope B, Rosenfeld A, editors. Human and machine vision. New York: Academic Press; 1983. p. 269–339.

  34. Milanese R. Detecting salient regions in an image: from biological evidence to computer implementation. Ph.D. thesis, Department of Computer Science, University of Genova, Switzerland; 1993.

  35. Tsotsos JK, Culhane SM, Wai WYK, Lai Y, Davis N, Nuflo F. Modeling visual attention via selective tuning. Artif Intell. 1995;78(1–2):507–45.

    Article  Google Scholar 

  36. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20(11):1254–59.

    Article  Google Scholar 

  37. Torralba A. Modeling global scene factors in attention. J Opt Soc Am A Opt Image Sci Vis. 2003;20(7):1407–18.

    Article  PubMed  Google Scholar 

  38. Walther D, Koch C. Modeling attention to salient proto-objects. Neural Netw. 2006;19(9):1395–407.

    Article  PubMed  Google Scholar 

  39. Cutsuridis V. A cognitive model of saliency, attention, and picture scanning. Cogn Comput. 2009;1(4):292–9.

    Article  Google Scholar 

  40. Kootstra G, Boer B, Schomaker LRB. Predicting eye fixations on complex visual stimuli using local symmetry. Cogn Comput. 2011;3(1):223–40.

    Article  Google Scholar 

  41. Marat S, Rahman A, Pellerin D, Guyader N, Houzet D. Improving visual saliency by adding ‘face feature map’ and ‘center bias’. Cogn Comput. 2013;5(1):63–75.

    Article  Google Scholar 

  42. Koza JR. Genetic programming: on the programming of computers by means of natural selection. 1st ed. Cambridge: A Bradford Book; 1992. p. 840.

  43. Suder K, Wörgötter F. The control of low level information flow in the visual system. Rev Neurosci. 2000;11(2–3):127–46.

    CAS  PubMed  Google Scholar 

  44. Julesz B. A brief outline of the texton theory of human vision. Trends Neurosci. 1984;7(2):41-45.

    Article  Google Scholar 

  45. Hubel DH, Wiesel TN. Receptive fields of single neurons in the cat’s striate cortex. J Physiol. 1959; 148(3):574–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Boynton RM. Human color vision. 2nd ed. New York: Holt, Rinehart and Winston; 1979. p. 438.

    Google Scholar 

  47. Robinson DL, Petersen SE. The pulvinar and visual salience. Trends Neurosci. 1992;15(4):127–32.

    Article  CAS  PubMed  Google Scholar 

  48. Zhaoping L. A saliency map in primary visual cortex. Trends Cogn Sci. 2002;6(1):9–16.

    Article  Google Scholar 

  49. Mazer JA, Gallant JL. Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map. Neuron. 2003;40(6):1241–50.

    Article  CAS  PubMed  Google Scholar 

  50. Gottlieb J. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron. 2007;53(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  51. Taylor K, Stein J. Attention, intention and salience in the posterior parietal cortex. Neurocomputing. 1999;26–27:901–10.

    Article  Google Scholar 

  52. Rensink RA. Seeing, sensing and scrutinizing. Vis Res. 2000;40(10–12):1469–87.

    Article  CAS  PubMed  Google Scholar 

  53. Rensink RA. The dynamic representation of scenes. Vis cogn. 2000;7(1–3):17–42.

    Article  Google Scholar 

  54. Barton RA. Visual specialization and brain evolution in primates. Proc Biol Sci. 1998; 265(1409):1933–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Yokoyama S. Molecular evolution of color vision in vertebrates. Gene. 2002;300(1–2):69–78.

    Article  CAS  PubMed  Google Scholar 

  56. Rijsbergen CJV. Information retrieval. 2nd ed. London: Butterworths; 1979. p. 208.

    Google Scholar 

  57. Pérez CB, Olague G. Learning invariant region descriptor operators with genetic programming and the f-measure. In: ICPR 19th international conference on pattern recognition; 2008. p. 1–4.

  58. Gimenez D, Evans AN. An evaluation of area morphology scale-spaces for colour images. Comput Vis Image Underst. 2008;110(1):32–42.

    Article  Google Scholar 

  59. Atmosukarto I, Shapiro LG, Heike C. The use of genetic programming for learning 3D craniofacial shape quantifications. In: ICPR 20th international conference on pattern recognition; 2010. p. 2444–7.

Download references

Acknowledgements

This research was founded by CONACyT through the Project 155045 - “Evolución de Cerebros Artificiales en Visión por Computadora". First author supported by scholarship 164678 from CONACyT. Dr. Gustavo Olague graciously acknowledges the support of the Seventh Framework Program of the European Union through the Marie Curie International Research Staff Scheme, FP7-PEOPLE-2013-IRSES, Grant 612689 ACoBSEC and the project Analysis and Classification of Mental States of Vigilance with Evolutionary Computation. This research was also supported by TESE through the project DIMI-MCIM-004/08. In addition, the authors acknowledge the valuable comments of the anonymous reviewers, the Editor of Cognitive Computation, and the International Editorial Board whose enthusiasm is gladly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Olague.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dozal, L., Olague, G., Clemente, E. et al. Brain Programming for the Evolution of an Artificial Dorsal Stream. Cogn Comput 6, 528–557 (2014). https://doi.org/10.1007/s12559-014-9251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-014-9251-6

Keywords

Navigation