Skip to main content
Log in

A Novel Biologically Inspired Visual Saliency Model

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The paper focuses on the modeling of visual saliency. We present a novel model to simulate the two stages of visual processing that are involved in attention. Firstly, the proto-object features are extracted in the pre-attentive stage. On the one hand, the salient pixels and regions are extracted. On the other hand, the semantic proto-objects, which involve all possible states of the observer’s memories such as face, person, car, and text, are detected. Then, the support vector machines are utilized to simulate the learning process. As a consequence, the association between the proto-object features and the salient information is established. A visual attention model is built via the method of machine learning, and the saliency information of a new image can be obtained by the way of reasoning. To validate the model, the eye fixations prediction problem on the MIT dataset is studied. Experimental results indicate that the proposed model effectively improves the predictive accuracy rates compared with other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu H, Wang Y, Feng K, Wong T, Lee TY, Heng P. Resizing by symmetry–summarization. ACM Trans Graph. 2010;29(6):1591–9.

    Article  Google Scholar 

  2. Siagian C, Itti L. Biologically-inspired robotics vision Monte-Carlo localization in the outdoor environment. In: IEEE/RSL international conference on intelligent robots and systems; 2007. p. 1723–30.

  3. Tong Y, Cheikh F, Guraya F, Konik H, Tremeau A. A spatiotemporal saliency model for video surveillance. Cogn Comput. 2011;3:241–63.

    Article  Google Scholar 

  4. Harding P, Robertson N. Visual saliency from image features with application to compression. Cogn Comput. 2013;5:76–98.

    Article  Google Scholar 

  5. Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.

    Article  CAS  PubMed  Google Scholar 

  6. Wolfe JM, Cave KR, Franzel SL. Guided search: an alternative to the feature integration model for visual search. J Exp Psychol Hum Percept Perform. 1989;15(3):419–33.

    Article  CAS  PubMed  Google Scholar 

  7. Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurbiol. 1985;4:219–27.

    CAS  Google Scholar 

  8. Harel J, Koch C, Perona P. Graph-based visual saliency. In: NIPS; 2006. p. 545–52.

  9. Hou X, Zhang L. Saliency detection: a spectral residual approach. In: CVPR; 2007. p. 1–8.

  10. Achanta R, Hemami S, Estrada F, Süsstrunk S. Frequency-tuned salient region detection. In: CVPR; 2009. p. 1597–604.

  11. Zhai Y, Shah M. Visual attention detection in video sequences using spatiotemporal cues. In: ACM multimedia; 2006. p. 815–24.

  12. Cheng M, Zhang G, Mitra N, Huang X, Hu S. Global contrast based salient region detection. In: IEEE international conference on computer vision and pattern recognition; 2011. p. 409–16.

  13. Li J, Levine MD, An X, Xu X, He H. Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell. 2013;35(4):996–1010.

    Article  PubMed  Google Scholar 

  14. Henderson JM, Brockmole JR, Castelhano MS, Mack M. Visual saliency does not account for eye movements during visual search in real-world scenes. In: Eye movements: a window on mind and brain; 2007. p. 537–62.

  15. Navalpakkam V, Itti L. Modeling the influence of task on attention. Vision Res. 2005;45(2):205–31.

    Article  PubMed  Google Scholar 

  16. Elazary L, Itti L. A bayesian model for efficient visual search and recognition. Vision Res. 2010;50(14):1338–52.

    Article  PubMed  Google Scholar 

  17. Gao D, Mahadevan V, Vasconcelos N. On the plausibility of the discriminant center-surround hypothesis for visual saliency. J Vis. 2008;8(7):1–18.

    Article  CAS  PubMed  Google Scholar 

  18. Judd T, Ehinger K, Durand F, Torralba A. Learning to predict where humans look. In: IEEE international conference on computer vision; 2009.

  19. Jonides J. Further towards a model of the mind’s eye’s movement. Bull Psychon Soc. 1983;21(4):247–50.

    Article  Google Scholar 

  20. Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42.

    Article  CAS  PubMed  Google Scholar 

  21. Posner MI, Rothbart MK. Attention, self-regulation and consciousness. Philos Trans R Soc B Biol Sci. 1998;353:1915–27.

    Article  CAS  Google Scholar 

  22. Astle DE, Scerif G. Using developmental cognitive neuroscience to study behavioral and attentional control. Dev Psychobiol. 2009;51(2):107–18.

    Article  PubMed  Google Scholar 

  23. Rensink R. Seeing, sensing, and scrutinizing. Vision Res. 2000;40(10–12):1469–87.

    Article  CAS  PubMed  Google Scholar 

  24. Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: IEEE conference on computer vision and pattern recognition; 2008. p. 1–8.

  25. Yi C, Tian Y. Text string detection from natural scenes by structure-based partition and grouping. IEEE Trans Image Process. 2011;20(9):2594–605.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Viola P, Jones M. Robust real-time object detection. Int J Comput Vision. 2002;57(2):137–54.

    Article  Google Scholar 

  27. Boser BE, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers. In: COLT; 1992.

  28. Hsieh CJ, Chang KW, Lin CJ, Keerthi SS, Sundararajan S. A dual coordinate descent method for large-scale linear SVM. In: ICML; 2008.

  29. Fawcett T. An introduction to roc analysis. Pattern Recogn Lett. 2006;27(8):861–74.

    Article  Google Scholar 

  30. Hussain A. Cognitive computation: an introduction. Cogn Comput. 2009;1:1–3.

    Article  Google Scholar 

  31. Esposito A. The perceptual and cognitive role of visual and auditory channels in conveying emotional information. Cogn Comput. 2009;1:268–78.

    Article  Google Scholar 

  32. Ma Y-F, Hua X-S, Lu L, Zhang H-J. A generic framework of user attention model and its application in video summarization. IEEE Trans Multimed. 2005;7(5):907–19.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61302091). Sincere gratitude from the authors goes to Judd and her group for providing the dataset and materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Sun, S., Liu, X. et al. A Novel Biologically Inspired Visual Saliency Model. Cogn Comput 6, 841–848 (2014). https://doi.org/10.1007/s12559-014-9266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-014-9266-z

Keywords

Navigation