Skip to main content
Log in

Correlation Coefficients of Hesitant Fuzzy Sets and Their Application Based on Fuzzy Measures

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In this paper, several new correlation coefficients of hesitant fuzzy sets are defined, not taking into account the length of hesitant fuzzy elements and the arrangement of their possible values. To address the situations where the elements in a set are correlative, several Shapley weighted correlation coefficients are presented. It is worth noting that the Shapley weighted correlation coefficient can be seen as an extension of the correlation coefficient based on additive measures. When the weight information of attributes is partly known, models for the optimal fuzzy measure on an attribute set are constructed. After that, an approach to clustering analysis and decision making under hesitant fuzzy environment with incomplete weight information and interactive conditions is developed. Meanwhile, corresponding examples are provided to verify the practicality and feasibility of the new approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986;20(1):87–6.

  2. Atanassov K, Gargov G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989;31(3):343–9.

    Article  Google Scholar 

  3. Akusok A, Miche Y, Hegedus J, Nian R, Lendasse A. A two-stage methodology using K-NN and false-positive minimizing ELM for nominal data classification. Cogn Comput. 2014;6(3):432–45.

    Article  Google Scholar 

  4. Cao QW, Wu J. The extended COWG operators and their application to multiple attributive group decision making problems with interval numbers. Appl Math Model. 2011;35(5):2075–86.

    Article  Google Scholar 

  5. Chen N, Xu ZS, Xia MM. Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Appl Math Model. 2013;37(4):2197–211.

    Article  Google Scholar 

  6. Cao VV, Ronagh HR. Correlation between seismic parameters of far-fault motions and damage indices of low-rise reinforced concrete frames. Soil Dyn Earthq Eng. 2014;66:102–12.

    Article  Google Scholar 

  7. Chen SM, Tsai BH. Autocratic decision making using group recommendations based on the OWA operator and correlation coefficients. Inform Sci. 2015;290:106–19.

    Article  Google Scholar 

  8. Dumitrescu D. A definition of an informational energy in fuzzy sets theory. Studia Universitatis Babeş-Bolyai – Series Math. 1977;22(1):57–9.

  9. Dimitras A, Iopounidis C, Hurson C. A multicriteria decision aid method for the assessment of business failure risk. Found Comput Decis Sci. 1995;20(1):99–112.

    Google Scholar 

  10. Diaz-Ramirez VH, Cuevas A, Kober V, Trujillo L, Awwal A. Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization. Opt Commun. 2015;338:77–89.

    Article  CAS  Google Scholar 

  11. Gau WL, Buehrer DJ. Vague sets. IEEE Trans Syst Man Cybern. 1993;23(2):610–4.

    Article  Google Scholar 

  12. Gerstenkorn T, Mańko J. Correlation of intuitionistic fuzzy sets. Fuzzy Set Syst. 1991;44(1):39–43.

    Article  Google Scholar 

  13. Grabisch M. Fuzzy integral in multicriteria decision making. Fuzzy Set Syst. 1995;69(3):279–98.

    Article  Google Scholar 

  14. Gao Y, Cheng T, Su Y, Xu XH, Zhang Y, Zhang QC. High-efficiency and high-accuracy digital image correlation for three-dimensional measurement. Opt Laser Eng. 2015;65:73–80.

    Article  Google Scholar 

  15. Hu JWS, Hu YC, Bein HC. Constructing a corporate social responsibility fund using fuzzy multiple attributes decision making. Int J Fuzzy Syst. 2011;13(3):195–205.

    Google Scholar 

  16. Jiang LB, Xie HM, Pan B. Speeding up digital image correlation computation using the integral image technique. Opt Laser Eng. 2015;65:117–22.

    Article  Google Scholar 

  17. Kaplan RS, Norton D. The balanced scorecard: translating strategy into action. Boston: Harvard Business School Press; 1996.

    Google Scholar 

  18. Kaya T, Kahraman C. Fuzzy multiple attributes forestry decision making based on an integrated VIKOR and AHP approach. Expert Syst Appl. 2011;38(6):7326–33.

    Article  Google Scholar 

  19. Liu PD. Some geometric aggregation operators based on interval intuitionistic uncertain linguistic variables and their application to group decision making. Appl Math Model. 2013;37(4):2430–44.

    Article  Google Scholar 

  20. Laurent PA. A neural mechanism for reward discounting: insights from modeling hippocampal–striatal interactions. Cogn Comput. 2013;5(1):152–60.

    Article  Google Scholar 

  21. Melnik SS, Usatenko OV. Entropy and long-range correlations in DNA sequences. Comput Biol Chem. 2014;53(A):26–31.

    Article  CAS  PubMed  Google Scholar 

  22. Meng FY, Zhang Q, Chen H. Approaches to multiple-criteria group decision making based on interval-valued intuitionistic fuzzy Choquet integral with respect to the generalized λ-Shapley index. Knowl Based Syst. 2013;37:237–49.

    Article  Google Scholar 

  23. Meng FY, Tan CQ, Zhang Q. The induced generalized interval-valued intuitionistic fuzzy hybrid Shapley averaging operator and its application in decision making. Knowl Based Syst. 2013;42:9–19.

    Article  CAS  Google Scholar 

  24. Meng FY, Chen XH, Zhang Q. Multi-attribute decision analysis under a linguistic hesitant fuzzy environment. Inform Sci. 2014;267:287–305.

    Article  Google Scholar 

  25. Meng FY, Tan CQ, Zhang Q. Some interval-valued intuitionistic uncertain linguistic hybrid Shapley operators. J Syst Eng Electron. 2014;25(3):452–63.

    Article  Google Scholar 

  26. Meng FY, Chen XH. A hesitant fuzzy linguistic multi-granularity decision making model based on distance measures. J Intell Fuzzy Syst. doi:10.3233/IFS-141435.

  27. Meng FY, Chen XH. Entropy and similarity measure of Atanassov’s intuitionistic fuzzy sets and their application to pattern recognition based on fuzzy measures. Pattern Anal Appl. doi:10.1007/s10044-014-0378-6.

  28. Meng FY, Chen XH. Interval-valued intuitionistic fuzzy multi-criteria group decision making based on cross entropy and 2-additive measures. Soft Comput. doi:10.1007/s00500-014-1393-7.

  29. Meng FY, Chen XH, Zhang Q. Some uncertain generalized Shapley aggregation operators for multi-attribute group decision making. J Intell Fuzzy Syst. doi:10.3233/IFS-131069.

  30. Parreiras RO, Ekel PY, Martini JSC, Palhares RM. A flexible consensus scheme for multicriteria group decision making under linguistic assessments. Inform Sci. 2010;180(7):1075–89.

    Article  Google Scholar 

  31. Patryk A, Laurent A. Neural mechanism for reward discounting: insights from modeling hippocampal–striatal interactions. Cogn Comput. 2013;5(1):152–60.

    Article  Google Scholar 

  32. Rodríguez LF, Ramos F. Development of computational models of emotions for autonomous agents: a review. Cogn Comput. 2014;6(3):351–75.

    Article  Google Scholar 

  33. Sugeno M. Theory of fuzzy integral and its application. Doctorial Dissertation, Tokyo Institute of Technology, 1974.

  34. Shapley LS. A value for n-person game. Princeton: Princeton University Press; 1953.

    Google Scholar 

  35. Tan CQ, Chen XH. Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making. Expert Syst Appl. 2010;37(1):149–57.

    Article  Google Scholar 

  36. Tan CQ, Jiang ZZ, Chen XH. Generalized Atanassov’s intuitionistic fuzzy quasi-Choquet geometric operators and their applications to multicriteria decision making. Fuzzy Optim Decis Mak. doi:10.1007/s10700-014-9196-y.

  37. Tan CQ. Generalized intuitionistic fuzzy geometric aggregation operator and its application to multi-criteria group decision making. Soft Comput. 2011;15(5):867–76.

    Article  Google Scholar 

  38. Tan CQ, Wu DSD, Ma BJ. Group decision making with linguistic preference relations with application to supplier selection. Expert Syst Appl. 2011;38(12):14382–9.

    Article  Google Scholar 

  39. Torra V. Hesitant fuzzy sets. Int J Intell Syst. 2010;25(6):529–39.

    Google Scholar 

  40. Torra V, Narukawa Y. On hesitant fuzzy sets and decision. In: FUZZ-IEEE’09, Jeju Island, Korea, 2009. pp. 1378–82.

  41. Wang JQ, Li JJ. The multi-criteria group decision making method based on multi-granularity intuitionistic two semantics. Sci Tech Inform. 2009;33(1):8–9.

    CAS  Google Scholar 

  42. Wei GW. Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl Based Syst. 2012;31(1):176–82.

    Article  CAS  Google Scholar 

  43. Wei GW, Zhao XF, Wang HJ. Hesitant fuzzy Choquet integral aggregation operators and their applications to multiple attribute decision making. Information-TOYAKO. 2012;15(6):441–8.

    Google Scholar 

  44. Wang PZ. Fuzzy set theory and applications. Shanghai: Shanghai Scientific and Technical Publishers; 1983.

    Google Scholar 

  45. Xia MM, Xu ZS, Chen N. Some hesitant fuzzy aggregation operators with their application in group decision making. Group Dec Negot. 2013;22(2):259–79.

    Article  Google Scholar 

  46. Xia MM, Xu ZS. Hesitant fuzzy information aggregation in decision making. Int J Approx Reason. 2011;52(3):395–407.

    Article  Google Scholar 

  47. Xia MM, Xu ZS. Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making. Int J Intell Syst. 2012;27(9):799–822.

    Article  Google Scholar 

  48. Xu ZS, Xia MM. Distance and similarity measures for hesitant fuzzy sets. Inform Sci. 2011;181(11):2128–38.

    Article  Google Scholar 

  49. Xu ZS, Xia MM. On distance and correlation measures of hesitant fuzzy information. Int J Intell Syst. 2011;26(5):410–25.

    Article  Google Scholar 

  50. Xu ZS, Chen J, Wu JJ. Clustering algorithm for intuitionistic fuzzy sets. Inf Sci. 2008;178(19):3775–90.

    Article  Google Scholar 

  51. Xu ZS. Choquet integrals of weighted intuitionistic fuzzy information. Inf Sci. 2010;180(5):726–36.

    Article  Google Scholar 

  52. Xu ZS. Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf Sci. 2004;168(1–4):171–84.

    Article  Google Scholar 

  53. Yang YJ, Hinde C. A new extension of fuzzy sets using rough sets: R-fuzzy sets. Inf Sci. 2010;180(3):354–65.

    Article  Google Scholar 

  54. Ye J. Correlation coefficient of dual hesitant fuzzy sets and its application to multiple attribute decision making. Appl Math Model. 2014;38(2):659–66.

    Article  Google Scholar 

  55. Yu DJ, Wu YY, Zhou W. Multi-attributes decision making based on Choquet integral under hesitant fuzzy environment. J Comput Inform Syst. 2011;12:4506–13.

    Google Scholar 

  56. Zadeh LA. Fuzzy sets. Inform Con. 1965;8:338–53.

    Article  Google Scholar 

  57. Zadeh LA. Outline of a new approach to the analysis of complex systems and decision processes interval-valued fuzzy sets. IEEE Trans Syst Man Cybern. 1973;3(1):28–44.

    Article  Google Scholar 

  58. Zhang N, Wei GW. Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Appl Math Model. 2013;37(7):4938–47.

    Article  Google Scholar 

  59. Zhu B, Xu ZS, Xia MM. Hesitant fuzzy geometric Bonferroni means. Inf Sci. 2012;205(1):72–85.

    Article  Google Scholar 

  60. Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning—part I. Inf Sci. 1975;8(3):199–249.

    Article  Google Scholar 

  61. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int J Neural Syst. 2014;24(2):1450013.

    Article  PubMed  Google Scholar 

  62. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A. L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil. 2013;21(6):887–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors first gratefully thank the Editor-in-Chief Professor Amir Hussain and three anonymous referees for their valuable and constructive comments which have much improved the paper. This work was supported by the State Key Program of National Natural Science of China (No. 71431006), the Funds for Creative Research Groups of China (No. 71221061), the Projects of Major International Cooperation NSFC (No. 71210003), the National Natural Science Foundation of China (Nos. 71201089, 71201110, 71271217 and 71271029), the National Science Foundation for Post-doctoral Scientists of China (2014M560655), and the Program for New Century Excellent Talents in University of China (No. NCET-12-0541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanyong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Chen, X. Correlation Coefficients of Hesitant Fuzzy Sets and Their Application Based on Fuzzy Measures. Cogn Comput 7, 445–463 (2015). https://doi.org/10.1007/s12559-014-9313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-014-9313-9

Keywords

Navigation