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Abstract This paper concentrates on the use of Echo State Networks (ESN), an
effective form of reservoir computing, for improving microscopic cellular images
segmentation. ESN is a sparsely connected recurrent neural network with most of
its weights fixed a priori to randomly chosen values. The only trainable weights
are those on links connected to the outputs. The process of segmentation is done
with two approaches: the basic form with one reservoir and our approach that
corresponds to using multiple reservoirs. Obtained results confirm the benefits of
the second approach that outperforms all the state-of-the-art methods considered
in this paper for the microscopic image segmentation problem.

Keywords Cell microscopic images - Classification - Echo State Networks -
Reservoir Computing - Segmentation.

1 Introduction

A central problem in many studies, and often regarded as the cornerstone of image
analysis, is image segmentation. Microscopic cellular image segmentation is a very
important and challenging task for the medical image processing community. In
particular, image analysis in the field of cancer screening is a significant tool for
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cytopathology [1],[2]. Two principal reasons can be highlighted. First, the quan-
titative analysis of shape and structure of nuclei coming from microscopic color
images brings to the pathologist valuable information for diagnosis assistance. Sec-
ond, the quantity of information that the pathologist must deal with is large, in
particular when the number of cancer screening increases. Consequently, a seg-
mentation scheme for microscopic cellular imaging must be efficient for further
reliable analysis. Many cellular segmentation methods have been developed so far
(see [1] for a review). They include active contours [3], [4], neural networks [5],
spiking neuron networks [6] and watershed [7]. However, efficient segmentation of
such images is still an open issue.

In pathology, cells are usually stained with Papanicolaou international staining
and this makes it possible to classify the pixels among three classes according to
their color: background (white), cytoplasm (green) or nuclei (blue). However, this
classification cannot be perfect. Indeed, a fraction of nuclei pixels can have the
same color than cytoplasm pixels because of the variability of the nuclei, either
according to the type of the cells or to the chromatin distribution. In addition,
for some cytology, the mucus present in the background can have the same color
than some cells (either cytoplasm and nuclei). Another problem for the design
of cellular segmentation schemes is on how to evaluate the segmentation quality.
Indeed, almost all segmentation schemes have some parameters. Human observa-
tion highlights that the values chosen for these parameters are very significant
for the quality of the segmentation. However, for an automatic selection of the
optimal parameter values, the quality of segmentation must also be automatically
evaluated [8].

On the other hand, reservoir computing (RC) refers to a recent paradigm
in computational intelligence and deals with separate training of recurrent neu-
ral networks (RNNs) and its readouts. Jaeger introduced Echo State Networks
(ESNSs), one possible realization of RC, that have an important distinction regard-
ing traditional RNNs: only a linear output layer needs to be adjusted [9]. This
simplifies greatly the task of learning. The ESN is usually composed of hundreds
or thousands of internal neurons. This promising model reflects some features of
biological brain. ESN is a sparsely connected recurrent neural network with most
of its weights fixed a priori to randomly chosen values [10]. The only trainable
weights are those on links connected to the outputs. ESN has been successfully
applied in data clustering [11], image classification [12], spectral image clustering
[13], image segmentation [14], cell recognition [15], extraction of informations [16]
and object classification [17].

So, the main objective of this research is to classify different types of pix-
els in cellular images using Echo State Networks. The process is done with two
approaches: the basic form with one reservoir (Figure 3) and our approach (Fig-
ure 4) that corresponds to using multiple reservoirs. This is the one-versus-rest
approach used in many learning machine approaches relying on a decomposition
scheme [18]. Similar structure with Self Organizing Maps can be found in [19]. As
we experimentally demonstrate, our approach outperforms all the state-of-the-art
methods presented in this paper. With artificial neural networks, choosing a right
set of network parameters is important for a successful design, and so it is for an
ESN. Therefore, the penultimate section of this paper discusses choices on ESN
parameters and provides guidance towards their setting.
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The structure of the paper is as follows. Section 2 introduces the main aspects
of Echo State Networks. Section 3 describes the basic ESN approach and the
proposed architecture for cellular image segmentation. Section 4 is devoted to
cellular segmentation results, evaluation of the performance of our proposal and
comparison with other methods. Section 5 discusses the performance of Echo State
Networks. Finally, the main conclusions of this work are presented in Section 6.

2 Echo State Networks

Neurons are recurrently connected in the brain and similar computational models
integrating temporal information are needed for solving cognitive tasks. However it
is difficult to modify the synapses in such recurrent systems to improve their com-
putational performance. One strategy is to view the recurrent system as a generic
computational model and to concentrate learning efforts only on the training of
linear readouts. Such a strategy has been developed with Echo State Networks [9].
We detail them in the sequel.

2.1 Network architecture

An Echo State Network can be described as a graph with three sets of nodes,
namely input units, internal network units and output units [9]. Figure 1 depicts
the overall scheme of an Echo State Networks. We distinguish four sets of weights:
w'™ the weights from the input layer to the reservoir layer, w the reservoir weights,
wb°* the recurrent connections from the output to the reservoir layer, and w®*
the connections from the input and reservoir layer to the output layer.
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Tum) | Myn) |
| y, fFTTT Tt o | |
X(n)

! O lyin ! , I out! Q 1
I Ko w IWo |
1 | | 1 L

| - |
I — s
I | 1 1 ] |
1 | 1 1 1 |
L-—-a L el Tt ! L@. 4

1\
Wback

Fig. 1 Representation of an Echo State Network.

The reservoir is the big layer, there can be connections directly from the input
to the output layers and there can also be feedback connections from the output to
the reservoir and to itself. Inside the reservoir, there are feedback connections since
the neurons are randomly connected to each other. These connections are typically
sparse. The size N of the reservoir and the sparsity of the connections within the
reservoir are meta-parameters that are usually not critical. The computational
power of ESN comes with the short-term memory capability of the reservoir.
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We can write the state x(t) at time t of a reservoir of N neurons, given an ESN
with K inputs and L outputs, as:

z(t) = flw™u(t + 1) + w(t — 1) + w**Fy(t — 1)) (1)

where f(.) is the reservoir nonlinear activation function, w is the N x N reser-
voir weight matrix, w'™ is the N x K input weight matrix, w’*°* is the N x L
output feedback weight matrix and w(t) is the input data. The L-dimensional
network output is given by:

y(t) = 9w (u(t), z(t), y(t - 1))) (2)

where g(.) is the output activation function (typically the identity or a sigmoid)
and w°"! is a L x (K + N + L) output weight matrix.

2.2 ESN Training

To overcome the training difficulties of recurrent neural networks, the concept of
reservoir computing (RC) has been proposed. The core idea of RC consists in
using a large recurrent neural networks as a ”pool” of excitable complex neural
dynamics, from which readout neurons can learn to extract the current state of
the network. This reduces the complexity of training to simple linear regression
while preserving the recurrent property of the network.

Otherwise, the concept consists in teaching only the weights of the outgoing
connections from the reservoir to the output (see Figure 1). The internal topology
and weights remain unchanged during teaching. All weights except w®“’ are fixed
prior to training with random values chosen to ensure that there will be Echo States
Properties (ESP). ESP means that the reservoir states asymptotically depend on
the input and not the initial state of the reservoir [20]. To account for ESP, the
eigenvalues of W should lie inside the unit circle by scaling the reservoir connection
weights w as w < aw/pmaz , where |pmaz| is the spectral radius, which is the
largest among the absolute values of the eigenvalues of w and 0 < o < 1 is a
scaling parameter. The spectral radius of the reservoir matrix should be smaller
than 1 to ensure that the network possesses the "Echo State Property’ (see [9]; [21]
for more details).

When training an ESN, the input vectors are fed into the ESN and its outputs
are read only after several iterations, that is when reservoir output becomes stable
for a given input vector. The desired output Yieqch(t) and actual ESN output y(t)
are compared, and the errors are used to update only the readout output weights
while all other weights in the ESN remain fixed. Different methods can then be
used to train the linear readout function, and thus to determine the elements of the
Lx (K + N+ L) output weight matrix w®"*. A complete overview and discussion of
the different available techniques reported in the literature for training the readout
function of the reservoir can be found in [9], [22] and [23].

As demonstrated in [24] one tries to compute the output weights w°"* such
that the mean squared training error M SE¢rqirn is minimized. The error erqin (t)
at the current time step is the difference between a target signal y¢eqcn (t) and the
network output y(t) :

t
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etrain(t) = g_l(yteach (t)) - g_l(y(t)) (3)

Ctrain (t) = gil(yteach(t)) - gil(wout(x(t))) (4)
where, the effect of nonlinearity output is undone by ¢~ '. Now the output

weights w°* are determined such that etrqs, is minimized in a mean square error
(MSE) sense.

1 TL7", axr

MSEtrain = e?rain (t) (5)

(nmaz - nmzn)
N=Nmin

where, Nmaqq is the number of training examples and 7,4y, is an initial washout
time. Due to the echo state property, the dynamic reservoir needs some time until
the effects of initial transients are washed out and these initial samples should not
be considered when calculating the output weights.

In a training algorithm, based on the pseudo-inverse, the following steps cal-
culate optimal output weights w®“!:

— Dismiss data from initial transients where n < n,in and collect the remaining
input and network states (uteqcn(t), z(t)) for each time step row-wise into a
(Nmaz — Nmin) X (N + K) matrix M [N : reservoir size, K : input units];

— Collect target signals ¢~ 1(Yteach (t)) for each output neuron and time step into
a (Nmaz — Nmin) X (L) matrix S [L : output units];

— Compute pseudo-inverse M and put

w = (M*8)" (6)

where ()" denotes the pseudo-inverse and (.)” the transposition of a matrix.

— The ESN is now trained and can be used. Once trained, the system can then
be used for classification purposes by running an unseen data through the ESN
network to generate a classification output.

3 Proposed ESN architecture for Microscopic pixel classification

In this section we present the ESN architecture in its basic form and the one we
have developed for the classification of pixels in microscopic images. We start by
a presentation of the problem.

3.1 Microscopic pixel classification

For the considered class of microscopic images, a microscopy expert has to choose
representative images that well describe the whole segmentation problem (i.e.,
a ground truth). This ground truth database can be used for the learning step
and also as a reference segmentation to evaluate the relevance of an automatic
segmentation. In the sequel, we will consider a publicly available database of mi-
croscopic images from bronchial cytology * [25]. The pixels of these images have to

1

https://lezoray.users.greyc. fr/researchDatabasesBronchiallmages.php
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be classified into one of the three following classes: background, cell cytoplasm and
cell nuclei. Pixels have a label specifying their classes (2: nucleus, 1: cytoplasm,
0: background). Figure 2(a)-(b) show a microscopic color image and its ground
truth. Images dataset has been split to produce training and test sets. All images
have same width and height (752 x 574 pixels).

The problem we want to solve with such a dataset is pixel classification. Using
an ESN; we want to classify each pixel of an image into a class among background,
cytoplasm and nuclei. Once this classification has been performed, each cell can
be isolated and features computed from it so that the cell can then be classified
into benign or malignant. This last task is beyond the scope of the paper and
we will consider only the task of pixel classification. As detailed in [26], even
if image processing automation is one of the oldest fields in cytopathology, the
accurate classification of nuclei pixels still poses large difficulties for computational
approaches.

In addition, the dataset [25] is the only available public dataset with associated
labeling information. Previous works on this dataset [6], [25], [27] and [28] have
shown that such a real-world classification problem is very difficult.

2 2..
.'.Q’;
®

Fig. 2 (a) Microscopic cellular image; (b) Expert segmentation result on the microscopic
image: background (black), cytoplasm (green), nuclei (red).

3.2 Basic ESN approach

The basic architecture consists of three layers of neurons, an input layer, a recur-
rently connected reservoir layer and an output layer (Figure 3). Each neuron in
a layer is randomly connected to every neuron of the next layer. The first layer
is composed of three inputs units that correspond to normalized values of color
pixels of each image in the sequence training. Images are normalized to the [0; 1]
range:

o x; — min(x;)
v max(z;) —min(x;) (™)
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Where z; correspond to RGB values of color pixels and max(z;), min(z;) are
the maximum and minimum values of z;, respectively.

In the second layer, we distinguish the reservoir that recognizes three outputs.
After completing the supervised learning of the input pixel in correspondence with
the ground truth image, it will be assigned to one winning class (background, nuclei
or cytoplasm). The third layer corresponds to three outputs units. The maximum
response is used to determine the pixel class.

Reservoir (N internal units) 3 outputunits

Background —
3 input units Cytoplasm -Nuclei
l. . C O _
3 Bl afe o

L
b ‘;‘ J:'

ar ..- -

e e e e -

Fig. 3 Network topology with one reservoir for cellular image segmentation.

3.3 Proposed ESN approach

Our proposed architecture consists of four layers of neurons (Figure 4). The first
layer corresponds to three inputs units that correspond to normalized values of
color pixels of each image in the sequence training. Images are normalized to the
[0; 1] using Eq.7.

In the second layer, we distinguish two reservoirs that have the same prop-
erties. Each reservoir is independent of the other in its computation. The first
allows separating background versus both cytoplasm and nuclei. The second al-
lows separating nuclei versus both background and cytoplasm. After completing
the supervised learning of the input pixel in correspondence with the ground truth
image for each reservoir, it will be assigned to one winning class (background ver-
sus rest and nuclei versus rest) in the third layer. The final output is obtained by
superposition of the two previous outputs outcome from the third layer based on
the maximum value of the class number.

In both architectures, one should note that there are no direct connections be-
tween input and output layers. Similarly, there are no feedback connections from
the output layer to previous layers. Only the reservoir layer contains recurrent con-
nections. The input layer is fully connected to the reservoir. In this case, equations
1 and 2 will become respectively:

w(t) = fw™u(t + 1) + wa(t - 1)) (8)
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Fig. 4 Network topology with two reservoirs for cellular image segmentation.

y(t) = g(w™ (z(t))) (9)

Our approach towards pixel classification using ESN is summed up in Algo-
rithm 1.

Algorithm 1 Implementation of pixel classification using ESN

Step 1: Build an untrained network that has the Echo State Property and whose internal
units exhibit different dynamics

Randomly generate an internal weight matrix wo with a particular degree of connectivity

— Normalize wp to a matrix w; by putting w1 = (1/(|p(wo)|)) where |p(wo)| is the spectral
radius of wg

— Scale w1 to w = aw; where a < 1, such that finally w has a spectral radius of «

— Randomly create the input and output weights matrices w*® and w°%“

Step 2: Train the ESN

— Feed the training images into the network and save the reservoir states for each input

out

Step 3: Compute output weights w

— After having showed the complete training set to the network, find the output weights
using a linear solver (pseudo-inverse approach), given the state of the reservoir and the
desired target for each input image

Step 4: Use the ESN

— With the trained output layer the network can be used in test mode
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In both the training and the exploitation of the ESN, it is a common procedure
to not use the first 100 values of a sequence to wash out the effect of the initial
network state [24].

4 Experimental Results
4.1 Classification Results

Our pixel classification belongs to supervised classification techniques. To perform
its learning, we generate a training set from three images containing objects with
a wide variability. These images have been manually segmented by an expert in
cytopathology (Figure 2.b). A testing set was also created from five other repre-
sentative images.

However, in all of the experiment results, the reservoir size is kept constant
at 100 units whose weight matrix has sparse connectivity of 10% and which is
scaled to a spectral radius of 0.8 (see next section for the choice of parameters
performance). Hyperbolic tangent activation functions are used for the reservoir
units: f(z) = tanh(z). The output units act only as summation units: g(z) = x.
The input, reservoir and readout weights are randomly initialized at the beginning
of the training [29]. During the process of training, the weights are updated using
the pseudo inverse of different states. The network is stopped once all images are
presented for training.

Images in Figure 5 show segmentation results with our segmentation scheme
in comparison with the expert segmentation and ESN basic approach. It is worth
to note that the mucus present in all images is correctly identified as background.

4.2 Evaluation Methods

The resulting evaluation step is very important. The evaluation method uses a
reference manual segmentation provided by an expert and provides a recognition
quality index. A common accuracy measures the average percentage of pixels be-
ing correctly classified for both foreground and background classes. Thus, several
classification rates are used to assess our approach performance and are expressed
as follows [30]:

Re — Number of pixels well classified
O~ "Number of pixels of the image

(10)

_ Number of nuclei pixzels well classified

R = 11

! Number of nuclei pixels of the image (11)

R, — Number of background pixels well classified (12)
>~ "Number of background pixels of the image

Ry — @ (13)

Tables 1 and 2 present the recognition accuracy of our approach for each cellular
image of the training and test sets. The most important (and difficult) task is
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the efficient classification of nuclei pixels since they allow to differentiate between
benign and malign cells (Figure 5-fifth row). The tables show the different accuracy
rates for the four different measures expressed above. From Table 1, the obtained
results by the ESN based on our approach indicate a high accuracy of nuclei
recognition (R1) that lies between 88.27% and 92.45%, with an average accuracy
of 89.76%. On the other side from Table 2, the obtained results by the ESN
based on our approach indicate a high accuracy of nuclei recognition (R1) that
lies between 75.05% and 91.87%, with an average accuracy of 86.06%.

Table 1 Classification rates of the training set.

Training Ro R1 R Rs3
set
0024-rgb 95.29% 88.27% 98.91% 93.59%
0042-rgb 95.37% 88.57% 97.35% 92.96%
0055-rgb 97.62% 92.45% 98.24% 95.35%
Average 96.09% 89.76% 98.17% 93.97%

Table 2 Classification rates of the test set.

Test set Ro Ry R R3
0033-rgb 95.34% 91.87% 97.87% 94.87%
0036-rgb 98.22% 91.83% 99.48% 95.65%
0056-rgb 96.96% 75.05% 99.18% 87.11%
0061-rgb 96.85% 79.87% 98.83% 89.35%
0070-rgb 96.29% 91.70% 97.48% 94.59%
Average 96.73% 86.06% 98.57% 92.32%

Table 3 presents a comparison of the classification accuracies obtained by Mef-
tah [6], Meurie [25] and Dumont [27] and for different classifiers as well as with
ESN method based on the test set. Our approach clearly outperforms all these
state-of-the-art methods and exceeds by far the performance of the ESN basic
approach.

Table 3 Segmentation rates and comparison with other approaches with best rates bold faced

Classifier Ry
ESN with one reservoir (basic approach) 67.55%
KNN [25 70.00%
Fisher 1 [25] 72.30%
MLP [25 73.00%
SVM [25 74.20%
K-means [25] 74.40%
Bayes [25] 74.60%
Extra trees [27] 76.90%
Supervised SNN [6] 80.37%
ESN with multiple reservoirs (our approach) 86.06 %
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This very good performance of our approach is illustrated in Figure 5. As it can
be seen, background and cytoplasm classification is almost perfect even for some
very difficult cases where the pixel color is very close to that of nuclei (because of
the mucus in the background). For the nuclei classification, the results are good
for all cells except those having a very pale color close to the background or the
cytoplasm. This inaccuracy can however be easily corrected by the use of a local
region refinement to obtain the final segmentation, as it is done in [30].

5 Echo state performance and discussion

One difficulty in dealing with ESN Networks is that a large number of parameters
are involved that can greatly influence performance. Jaeger [31] identified some
parameters to be appropriately selected for developing an effective ESN: reservoir
size, spectral radius of reservoir weight matrix and the scaling of input. For more
details Alexandre et al. [32], Yuanbiao et al. [33], Venayagamoorthy et al. [34],
Koryakin et al. [35] and Rodan et al. [36] have also developed some literatures
towards the choice of ESN parameters.

Indeed, in order to achieve an appropriate performance for the ESN, there is
a need to develop a specific experimental design for each individual image from
microscopic cells database cited in section 3.1, and testing different values for each
parameter in a wide range. However, in the following are given some guidance on
individual parameter settings.

The metric used to check the network performance is Root Mean Square Er-
ror (RMSE). RMSE, sometimes called Root Mean Square Deviation (RMSD), is
commonly used to quantify the difference between a target signal yieqcn(t) and
the network output y(¢) i.e. the current class output (background or cytoplasm or
nuclei) (Figure 4.last layer)

RMSE = | Y (y(t) = yecacn(t))? (14)

i=1

5.1 Reservoir size

One obviously crucial parameter of the model is the number of units in the reser-
voir. The topology of the reservoir has an important role in the performance of
the segmentation process. In general, it is necessary to increase the size of the
reservoir to find a good result. Figure 6 shows the variation of the system perfor-
mance with different reservoir sizes varying from 5 to 500 neurons. For each image
in the dataset and each reservoir size, experiments are repeated and the average
test RMSE is calculated.

Generally, the more neurons there are in the reservoir, the better are the results
but longer is the simulation time. Nevertheless, the number of neurons has to be
previously designed to really correspond to the desired application. Since training
and running an ESN is computationally cheap compared to other RNN approaches,
reservoir sizes of order 10* are not uncommon [37].
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5.2 Spectral radius

Another test we performed was to find out the optimal value for the spectral radius
«. The diligent choice of the spectral radius « of the reservoir weight matrix is
of crucial importance for the eventual success of ESN training. This is because «
is intimately connected to the intrinsic timescale of the dynamics of the reservoir
state. The spectral radius determines how fast the influence of an input dies out
in a reservoir with time, and how stable the reservoir activations are. It is small
for the fast teacher dynamics and large for the slow teacher dynamics [9].

Experiments are carried out to verify whether the spectral radius can be ex-
tended to a wider range by using the ESN. Reservoir size of 100 neurons is used.
For each image in the dataset and each spectral radius, experiments are repeated
and the average test RMSE is calculated.

Figure 7 shows the variation of the system performance with different settings
of spectral radius. Note that, the range of the spectral radius is set to [0.05; 0.9],
in steps of 0.05. We can conclude that the system performed well at « = 0.8 and
this value is also confirmed by [34].

5.3 Input scaling

The input scaling will determine how far the hidden states are pushed away from
the linear part of the activation function by the input, in other words: it will
determine the overall nonlinearity of the reservoir.

Experiments are carried out to verify whether the input scaling can be used
by the ESN. A reservoir size of 100 neurons is used. For each image in the data
set and each input scaling, experiments are repeated and the average test RMSE
is calculated.

Figure 8 shows the variation of the system performance with different settings
of input scaling. Note that, the range of the input scaling is set to [0;10]. It is
concluded that the system performed well for any positive value far away from
zero of input scaling. This parameter is not of critical impact for the ESN training
once it is larger than 4.

5.4 Complexity evaluation

The complexity is an important element to consider as well, since its estimation
is often used to understand the behavior of classifiers. This gives an idea of time
and memory requirements. Table 4 presents the complexity of the learning of the
classifiers under consideration for performance comparison in the Table 3 Section
4.2. We assume that n denotes the number of training examples, d is the number
of dimensions of each example and k is the number of classes. Based on Table
4, it can be seen that the complexity of the proposed approach with a ESN is
very close to the least complex approaches such as KNN or Bayes, when the ESN
reservoir size is reasonable. This is the case of our proposal since we have chosen
in all our experimentations a reservoir of 100 units. This behavior is normal since
an ESN roughly performs linear regression and its complexity is due to the cost
of inverting the matrix (Step 3 of Algorithm 1).
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Table 4 Complexity evaluation

Classifier Complexity
KNN O(knd)
Fisher 1 0(9/2n3)
MLP O(nM?d? + nM?k?)
where M is the number of units
SVM O(dn?)
K-means O(nTF+Tjog(n))
Bayes O(kdn)
Extra trees O(Mdnlog(n))
where M is the number of trees
SNN O(nM?d? + nM?k?)
where M is the number of units
ESN O(M?3) where M is the reservoir size

6 Conclusion

In this paper, the Echo State Neural Network (ESN) model is applied to classify
different types of pixels in cellular images. The process is done with two approaches:
the basic form with one reservoir and our approach that corresponds to use mul-
tiple reservoirs. Based on the results presented in the previous section and the
remarks listed above, it is concluded that the ESN can be used as an efficient
tool for improving the output performance of cellular segmentation. Echo State
Network yields highly satisfying results when compared with others methods.

Echo State Neural network is widely recognized and studied, although it has
only recently emerged. An essential and difficult to solve for this kind of model
question is whether a particular architecture for the reservoir could improve per-
formance. Usually the reservoir is a random structure, optionally subjected to an
adaptation mechanism. This study has also shown the importance of the choice of
the ESN parameters.
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Fig. 5 Cell microscopic images (First row), expert segmentation (Second row), segmentation
produced by ESN basic approach (Third row), segmentation produced by our approach (Fourth
row) and nuclei extracted by our approach (Fifth row).
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Fig. 6 Echo State Networks performance with variations of reservoir size.
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Fig. 7 Echo State Networks performance with variations of spectral radius.
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Fig. 8 Echo State Networks performance with variations of input scaling.



