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A Novel Switching Delayed PSO Algorithm for
Estimating Unknown Parameters of Lateral
Flow Immunoassay

Nianyin Zeng, Zidong Wang Hong Zhang and Fuad E. Alsaadi

Abstract

In this paper, the parameter identification problem of thertd flow immunoassay (LFIA) devices is investi-
gated via a new switching delayed particle swarm optimira(SDPSO) algorithm. By evaluating an evolutionary
factor in each generation, the velocity of the particle cdapdively adjust the model according to a Markov
chain in the proposed SDPSO method. During the iteratiocge®s the SDPSO can adaptively select the inertia
weight, acceleration coefficients, locally best partjgieestand globally best particlgbestin the swarm. It is worth
highlighting that thepbestand thegbestcan be randomly selected from the corresponding valueseirptévious
iteration. That is, the delayed information of tippestand thegbestcan be exploited to update the particle’s
velocity in current iteration according to the evolutiopatates. The strategy can not only improve the global
search but also enhance the possibility of eventually iegdhe gbest The superiority of the proposed SDPSO is
evaluated on a series of unimodal and multimodal benchmarétions. Results demonstrate that the novel SDPSO
algorithm outperforms some well-known PSO algorithms ipeass of global search and efficiency of convergence.
Finally, the novel SDPSO is successfully exploited to eatamthe unknown time-delay parameters of a class of
nonlinear state-space LFIA model.

Index Terms

Switching delayed particle swarm optimization (SDPSO)tekal flow immunoassay; Markov chain; Time-

delay; Immunochromatographic strip.

. INTRODUCTION

Lateral flow immunoassay (LFIA) has been investigated esttesty and has become the most widely
used membrane-based immunoassay application due to itsap@wacteristics such as remarkable usabil-
ity, short assay time, good specificity and sensitivene3k [20]. Up to now, the LFIA has been used in
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a variety of biomedical applications including clinicahdnostics, toxins in food and agriculture products,
industrial testing, and biowarfare [8], [10], [14], [37B§]. Despite its advantages when applied to the
point-of-care testing (POCT), the LFIA developed so far basn recognized to have certain weakness in
guantifying test results which, to some extent, limits thepe of further applications. As such, a variety
of advanced strategies based on the material selectione(ged11], [15], [24]) have been developed
for enhancing the biochemical characteristics of the LFd8hnology over the past decade. On the other
hand, there has recently been an increasing researchsinierdeveloping a dynamic model to describe
the mechanism of the biochemical reactions of LFIA in oradeoptimize and enhance LFIA performance
for the quantification, see e.g. [18], [19], [30]-[33], [35]

In this paper, we focus on the issue of modeling LFIAs, and Itest progress is given here. A
mathematical model for two formats of LFIAs, namely, sardwand competitive formats, is constructed
via the convection-diffusion-reaction equations in [18P], and such a model has been utilized to study
the performance of LFIA under various operating conditidbgferent from the techniques proposed in
[18], [19], an improved nonlinear state-space model has ldeweloped in [30]-[32] for sandwich-type
LFIA devices, where the process of the concentration 8istion of LFIA devices is described by the
nonlinear state equations and the available observatgmals are modeled by the observation equation
with measurement noises. It is worth highlighting that te&blished nonlinear state-space model provides
insights into the process of the biochemical reactions dAL&nd can be utilized to test the LFIA system in
an inexpensive and rapid way. Unfortunately, the signalsinaission delay, which is an inherent behavior
of the biochemical reactions of LFIA, has not received adggattention in [30]-[32] despite the fact
that the sample containing the target analytes does needtonflow from the sample pad along the
nitrocellulose membrane encountering the detection zoaeapillary action. It is, therefore, the main
objective of this paper is to propose a novel approach famtitfeng the unknown time-delay parameters
of the improved LFIA model, where dedicated efforts are destdo the inherent time-delays among the
biochemical reactions.

From the theoretical point of view, it is a challenging taskestimate unknown time-delay parameters
of the improved LFIA model by using traditional optimizatianethods for the following three reasons.
First, the available measurement is associated with a emfdpecific state variables but many other state
variables are simply immeasurable. Second, the establlistealel for the LFIA devices is practically a
nonlinear one and the measurement may not be directly delatthe time-delays. Third, the biochemical
reaction process is typically fast and the time-delays @xiigt at the first stage of the reaction process.
In this case, it becomes extremely difficult (if not impo$s)lio identify the time-delays in an analytical
way, and a practical alternative is to use the stochastochebased optimization approaches for which
finding the global optima in the object optimization functiis the main issues [34]. In search of a suitable
optimization algorithm for modeling the LFIA, the particésvarm optimization (PSO) algorithm stands
out as an appropriate candidate owing to its good performamcsolving various difficult real-world
optimization problems.

PSO is a stochastic-search-based optimization appro@¢hHat mimics the swarm behaviors of birds
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flocking or fish schooling, and has been widely exploited tvieng many difficult real-world optimization
problems [12], [22], [25], [26], [34]. However, an issue WiPSO is that it can easily fall into the local
optima when applied in the multi-modal and high-dimensialaaks, and this has restricted the PSO
algorithm to wider applications [1], [25], [27], [36]. Up twow, quite a considerable number of improved
PSO algorithms have been introduced to overcome this limitasee e.g. [1], [21]-[23], [25]-[27],
[34], [36]. Especially, an adaptive PSO algorithm based onewolutionary factor has recently been
introduced in [36] which can adaptively control the paraenetof PSO, including the inertia weight, two
acceleration coefficients and others. Furthermore, a BingcPSO (SPSO) algorithm was developed in
[25] where the velocity equation is determined by a Markoaishwhich greatly enhance the performance
of global search. Moreover, a new switching local evoluaignPSO (SLEPSO) that combined the SPSO
algorithm with differential evolution has been recentlyweleped and analyzed in [34] for quantification
determination of the LFIA. Nevertheless, there is still ornom to further the PSO algorithm so as to
enhance its capability of getting rid of the local trappirngepomenon (premature convergence) and the
introduction of time-delays with hope to enrich the dynasniould well serve this purpose.

Based on the above discussions, the main object of this sgudydevelop a new switching delayed PSO
algorithm with delayed information and adaptive switchatigategy for identifying the unknown parameters
of LFIA. The proposed SDPSO algorithm can not only improve g¢fobal search but also enhance the
capability of quickly reaching thg@best The main contribution of this paper can be summarized as
follows. 1) A novel switching delayed PSO (SDPSO) based on the adapuitching strategy and the
delayed information is proposed for solving the prematwevergence problem, thereby improving both
the search efficiency and the convergence speed of the P®@tlag. 2) The SDPSO is verified in a
comprehensive manner on a set of unimodal and multimodalhmeark functions and outperforms other
six well-known PSOs. 3) The novel SDPSO method is sucdessfylied to identifying the unknown
time-delay parameters of the improved nonlinear stateegda~IA model

The remainder of this paper is organized as follows. The Inewdtching delayed PSO (SDPSO)
is proposed in Section Il. In Section Ill, simulation resudnd performance comparison with various
existing PSO algorithms are provided. In Section IV, therowed model of LFIA device with time-delay
is provided and the novel SDPSO algorithm for identifying tinknown parameters of LFIA is presented
and then discussed. Finally, conclusions are drawn in @edti

II. ANOVEL SWITCHING DELAYED PARTICLE SWARM OPTIMIZATION ALGORITHM
A. Traditional PSO Algorithm and Its Developments

The PSO, first introduced by Kennedy and Eberhart in 1995 j$2] stochastic-search-based optimiza-
tion approach that mimics the swarm behaviors of birds floglar fish schooling to make the particles
find the globally optimal solution.

In PSO [12], [25], [34], a swarm consisting ¢f particles moves around at a certain speed iP-a
dimensional search space. Each partictepresented as a potential solution at Afie iteration is related
with two vectors, that is, the velocity vector(k) = (vi1(k), via(k), - -+ ,v;p(k)) and the position vector
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zi(k) = (xin(k), zn(k), - ,z;p(k)). During the evolutionary process, the position of eachigarwill

be automatically adjusted in the direction of the globairapim based on the previous experiences, one is
the best position founded by itseffi{es) represented by; = (pi1, pie, - -+ , pip), @nd the other is the best
position in the whole swarmgpes} represented by, = (pg1,pg2. -+ ,Pgp). The velocity and position

of a particlei at (k + 1)th iteration are described as follows:

vi(k + 1) = wui(k) + ciri(pi(k) — 2i(k)) + cara(py (k) — zi(k)),
zi(k+1) = x;(k) + vi(k+ 1), 1)

wherew is the inertia weight¢; andc, are acceleration coefficients calledgnitiveandsocial parameter,
respectively; two random numbers; andr, ;, which are uniformly distributed if0, 1].

The PSO described above has been gaining particular résatiention and has been widely applied
in solving a variety of optimization problems due to its slioipy of the concept and efficiency of the
implementation. Meanwhile, much effort has been devotedntprove the searching performance of
PSO. One of the common strategies is to introduce PSO widalin time-varying inertia weight or
acceleration coefficients,, ¢, as follows [21]-[23]:

Umax — ot

w=(w1—w2)ka+w2, (2)
1max — 1tk

e = (c1p — cui) X T + Cui, 3)
itmax - Ztk

co = (Cop — C2i) X T + Cai (4)

whereit, is the current number of iteration and,.. IS a maximum number of the iteratiom:;; and
wy represent maximal and minimal values of inertia weightpeesively; c,; and c¢,; denote the minimal
values, and;; andc,; denote the maximum values of the acceleration coefficiengdc,, respectively.

In [22], [23], a linearly decreasing inertia weightwith the iteration generations (PSO-LDIW) shown
in Eq. (2) was introduced according to the characteristiseafrching process. That is, the swarm inclines
to perform the global exploration when the inertia weightsgarger, and the swarm tends to perform
the local exploration when the inertia weight is smaller][Zr this purpose, the maximal and minimal
values are usually set as; = 0.9 and w, = 0.4, respectively. In addition, the acceleration coefficients
of the PSO are time-varying (PSO-TVAC) shown in Eq. (3)-(Hswntroduced in [21] withey; = 2.5,
coi = 0.5, c1y = 0.5 andcy; = 2.5. Furthermore, the constriction factor has been introductxPSO by
Clerc and Kennedy [2] to improve its search performance,revhe= 0.729 and¢; = ¢; = 1.49 were
suggested in the PSO-CK algorithm. Recently, an adaptiv@ R8s proposed in [36] that is capable
of automatically controlling the inertia weight, acceleration coefficients;, c; and other parameters
according to an evolutionary factor. Furthermore, a svitghPSO algorithm was developed in [25] where
the velocity equation is determined by a Markov chain, wigobatly enhances the performance of global
search. Moreover, a switching local evolutionary PSO (S&@Pthat combined the SPSO algorithm with
differential evolution has been recently developed andyaed in [34] for quantification determination
of the LFIA.
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B. A Novel Switching Delayed PSO Algorithm

In this section, a new switching delayed PSO (SDPSO) is megdo improve the searching perfor-
mance of PSO. The main idea of the proposed SDPSO is the tyetddhe particle adaptively adjust the
model according to an evolutionary factor and the Markovirthi&loreover, the delayed information of
the pbestand the whole swarmbestis exploited to update the velocity of a particle in curreetation
according to the evolutionary states. This strategy caectifely prevent the PSO from the premature
convergence, and this is especially useful in dealing wighrhulti-modal and high-dimensional problems.

1) Switching Delayed PSO FrameworKhe velocity and position equations of the proposed SDPSO
algorithm are given as follows:

vilk +1) = wk)oi(k) + cr(E(k))ra(pi(k — m(E(K))) — 2i(F))
+ea(E(R))ra(pg(k — m2(E(K))) — wi(k)),
ri(k+1) = z3(k)+v(k+1) (5)

wherec; (¢(k)) and ey (E(k)) are the acceleration coefficients. The constant§(k)) and(£(k)) denote
the delay. All of these parameters are determined by a nambeneous Markov chaig(k) (k > 0).
The value of the Markov chain is taken in a finite state spae= {1,2,---,N}. The probability
transition matrix of the Markov chain is representedIBy) = (w}f))NxN, Wherewff) >0 (i,j €8) and
Z;'V:1 ﬂz(f) =1

In the SDPSO algorithm, the matriX(*) is adaptively adjusted by evaluating an evolutionary facto
(EF) [25], which is firstly introduced to describe the pogida distribution properties in [36]. According
to the characteristics of the searching process, the EFoaplprcan be exploited to define four states:
convergence, exploration, exploitation and jumping owpétially, these four states are respectively
represented by (k) =1, £(k) = 2, £(k) = 3 and{(k) = 4 in the Markov chain.

The average distance between each particle and the othalgmin the swarm, which is represented
by d;, can be computed by,

1S D
d; = 5 Z Z(xf — k)2 (6)

=1 k=1
where S and D stand for the swarm size and the dimensions, respectivagicé] the evolution factor
E; can be defined as follows [36]:

dy — dmin
9 —min (7)

E, =
/ dmax - dmin

whered, denotes the globally best particle amafigd,,.x andd.,;, denote the maximum and minimum
distances ini;, respectively.

Based on the value of evolutionary factfl;, we can get the value of the Markov chain as follows
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TABLE |
STRATEGIES FOR SELECTING:; AND c2

State Mode c1 | e
Convergence

1
y=2|21]19
k)y=3 |22 18
y=4

Exploration
Jumping-out

1.8 | 2.2

3
Exploitation | &
3
3

[25]:
., 0< E;<0.25,

. 0.25< E; < 0.5,
. 0.5< E; <0.75,
4, 075 < Ep <1,

§(k) = (8)

w N =

where the probability transition matrix is provided by:

X 1—x 0
x5

1— 1—
e

0 0 1—x X

0
’ ©)

Hence, the Markov process at the next iteration may switchtéate based on the probability distribution
matrix II. It should be pointed out that the value of the probabiiitys of great importance to keep the
classification accuracy and also the search diversity: 0.9 in this paper) [25].

2) Switching Delayed PSO Parametershe strategies introduced in [25] for controlling the imert
weightw and also selecting the acceleration coefficientsafid c;) are exploited in this paper.

The inertia weightv has the same tendency as the evolutionary faEtoduring the iteration process.
Note that, a largev will tend to the global search in the states of jumping-out earploration. In contrast,
a smallw will benefit the local search. The initial value ofis set as 0.9, and the function for describing
inertia weightw and E; can be represented as follows [25]:

w(Es) = 0.5E; + 0.4 € [0.4,0.9),VE; € [0, 1]. (10)

On the other hand, the initial values of acceleration caefiisc, andc, are set as 2, and both of them
can automatically adjust their values based on the evalatiostate [25], which given in the Table I.

3) Strategies for Selecting Delayed Informatiofhe part constitutes the main novelty of the proposed
SDPSO algorithm where the delayed informationpbestand gbestare utilized to update the velocity
equation based on the evolutionary state. The strategiesefecting delayed information are introduced
as below:

« In a jumping-out state, the current globally best partislavilling to fly to a better optimum so as to

escape from the local optimum. The delayed information epiestandgbestdistribute much wider
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TABLE Il
STRATEGIES FOR SELECTING DELAYED INFORMATION AND PARAMETER

State Mode pbest gbest T1(&(k)) T2(&(K))
Convergence| &(k) =1 pi(k) pg (k) 0 0
Exploitation | (k) =2 | pi(k — m1(&(k))) py(k) |k - rand, | 0
Exploration | £(k) =3 pi(k) pg(k — 12(£(k))) 0 Lk - randz ]
Jumping-out| £(k) =4 | pi(k — 1i(6(k)) | po(k — m2(E(R))) | [k - rands] | [k - rands]

in the search space. More importantlytk — 71 (£(k))) andp,(k — 72(£(k)) are the particle and the
swarm encountered in the previous iteration, that is, bobthem contain the knowledge/experiences
of the particle and swarm. Therefore, they are selecteghemtiwely, for updating the influences
of “self-cognition” and “social” in the velocity equatiognd this will help to jump out the local
optimum.

« In an exploration state, it is crucial for exploring as mamptima as possible. Hence, selecting the
pbestat the current iteration and the delayed valuggbéstcan make particles explore individually
and also lead patrticles to fly to historically global bestiposs (instead gathering around the current
global best position which could possibly be a local optimum

. In an exploitation state, each particle is taking advantddes historical best positiop; (k—7 (£(k)))
andgbestat the current iteration to enhance the search and expdoitatound the local region.

« In the convergence state, all particles are willing to cogedo the best optima as soon as possible
in the found globally optimal region. Hence, the particleswd follow the pbestand gbestat the
current iteration to achieve this goal in this state.

The strategies discussed above can be summarized in TalilsHbuld be mentioned that the constants
71(&(k)) andr»(£(k)) are selected randomly, which are given in Tablg {|.is the floor function. In other
words, thepbestand thegbestare selected randomly from the values encountered in théopieiteration.

The flowchart of the proposed Switching delayed PSO (SDPS@lustrated in Fig.1.

IIl. SIMULATION EXPERIMENTS
A. The Benchmark Functions

In the experiments, some well-known benchmark functiorth different properties given by (11)-(15)
are utilized to demonstrate the performance of the new SD&3®oach. Especially, these benchmark
functions have their own characteristics. The Sphere foncf; (x) is generally exploited to evaluate the
convergent rate of the algorithm singg(z) is a typical unimodal optimization problenf;(z) is very
difficult to optimize since the optimum locates in a banahaped valley and therefore can be seen as a
multimodal problems. Besides, there is no doubt it is hardgimize f;(x) and f5(x) functions which
are typical multimodal problems.
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Initialize particles of the swarm and
the parameters of the SDPSO

A

Evaluate the fitness value of each particle

Calculate the mean distance of each
particle according to (7)

Compute evolutionary factor according to (6)

4

Update the state in the next generation based on the
current state and the probability transition matrix (9)

A

Get the acceleration coefficients according to the Table I

:

Calculate the inertia weight according to (10)

4

Select the pbest and gbest according to the Table 11

A

Update the velocity and the position according to the (5)

I=kt1

No

If /=maximum iteration?

Fig. 1. The flowchart of SDPSO algorithm

D
Sphere fi(x) =) a7, and x € [~100,100}". (11)
=1
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D—-1

Rosenbrock f(z Z (100(zi41 — 75)* + (2, — 1)), and x € [-10, 10}". (12)
=1
Ackley : f5(z) = —20e 02V b Xitif _ ob XiZieos2mri o0 4 o and o € [—32,32]°. (13)
Griewank: f;(z 4000 Z R H cos —= + 1,and = € [—600,600]7. (14)
D
Rastrigin: f5(z) = » (27 — 10 cos27ma; + 10), and x € [-50,50]". (15)

i=1

B. Simulation Results and Discussion

The experiments are conducted to verify the effectivenésseonovel SDPSO algorithm and compare
the SDPSO with six well-known PSOs to demonstrate its sapgri The parameters of these five
benchmark functions in the experiments are set as: thecfgrtumberN = 20, the dimensionD = 20,
the maximum generation number is 3000. Especially, eachrarpnt of the same algorithm is repeated 20
times independently so as to eliminate the random effect tlaen the mean result is provided. Moreover,
we compare the proposed SDPSO algorithm with six other kredlvn PSO algorithms, which consist
of the PSO-LDIW [22], [23], PSO-TVAC [21], PSO-CK [2], simfied SPSO [25], PSO combing with
differential evolutionary algorithm (LEPSO) [1] and a hybiISPSO with the differential evolutionary
algorithm SLEPSO [34]. The parameters for these PSOs caedein [34] for more details.

As shown in the Table Ill and Figs. 2-6, the proposed SDPS@ritign outperforms six other PSO
algorithms in term of a series of criteria. Particularly thest result among those PSOs for each benchmark
function is highlighted by boldface in the table. Obvioydlye SDPSO method could find an optimal
solution with high accuracy and fast speed. The Sphereiimg¢i(x) is generally exploited to evaluate
the convergent rate of the algorithm. Therefore, we can lodiecthat the local search ability of the new
SDPSO method is better than other six well-known PSOs frobleTdl and Fig. 2. The Rosenbrock
function f»(x), which is viewed as a mono-modal optimization problem igmftised to verify not only
the local search but also the global search abilities. Ithmiseen from Table Il and Fig. 3 that SDPSO
performs better than the other six PSO algorithms. The dftmere benchmark functions are generally
utilized to verify the global search ability of the PSO apmb. From Table Il and Figs. 4-6, it is clear
that the new SDPSO approach outperforms the other six tigosi Hence, the SDPSO method proposed
in this paper performs best among seven PSOs on both unirmadamultimodal functions.

Remark 1:Note that the SDPSO method is capable of solving the optimizgoroblem with fast
convergence as well as global search accuracy characterikie to the use of the adaptive switching
strategy and the delayed information embedded in algoritioreover, the advantage of escaping from
local optima and converging to global optimum of multimodahctions shows the superiority of the
proposed SDPSO algorithm.
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TABLE 11l
THE COMPARISONS OF SEARCH RESULTS AMONG SEVERSQs ON FIVE BENCHMARK FUNCTIONS

10

PSO-TVAC PSO-CK PSO-LDIW LEPSO SPSO SLEPSO SDPSO
fi Bestvalue 9.25xe* 58I xe” ™ 273xe ™ 124xe™ 285xe ™ 319 xe % 0
Mean 1.12xe ™ 1.66xe™® 314xe? 523xe P 797xe % 458 xe 0
Std. Dev. 498 xe™1®  7T4xe ™ 694xe P 876 xe® 232xe7 % 1.07 xe % 0
fo Best value 0.027 0.0056 3.06 0.19 0.80 0.38 2.7108 x e~ *
Mean 13.43 8.39 23.16 19.86 11.66 1.17 0.3072
Std. Dev. 13.87 14.56 25.40 21.84 13.75 0.68 0.4739
fs Bestvalue 1.11 xe '3 19.1803 7.99xe P 799 xe ! 444 xe P 444 xe !5 88818 xe 6
Mean 2.2433 19.7191 3.0048 2.63 x e '3 2.02 6.75 x e” 15  8.8818 x e 16
Std. Dev. 5.9376 0.1883 7.3383 3.86 x e 13 6.23 1.74 x e 1° 0
f+ Best value 121.6087 0.787 0 0 0 0 0
Mean 175.3641 29.5584 0.018 0.0047 0.0142 0 0
Std. Dev. 27.8352 20.7047 0.0131 0.0072 0.0128 0 0
fs Best value 22.8841 65.6671 15.9193 6.9647 13.9294 2.9849 0
Mean 39.1516 133.2741 23.5821 15.626 24.1834 6.5785 0
Std. Dev. 9.6101 46.8896 6.4960 5.4027 8.1526 3.7855 0
10
E SDPSO
—=&— SLEPSO
—<4— SPSO
or &\\:\4 —4A— LEPSO
—&— PSO-CK
i PSO-TVAC
-10 x —»— PSO-LDIW
3
\‘
5 200 \ \\
g e,
§ ~sop e .
é -40F \
ol
e
ol
7700 5(;0 11;00 15‘00 20‘00 25‘00 3000

Number of generations (Population=20,Dimension=20)

Fig. 2. The performance of seven PSOs for 20-dimensighét).

V. PARAMETER ESTIMATION OF THE IMPROVED LFIA M ODEL

In this section, the novel SDPSO method is utilized to edinthe unknown time-delay parameters
of the improved LFIA model, where the time-delays occurrmgong the biochemical reactions are

considered.

A. The Improved Nonlinear LFIA Model

A nonlinear state-space model has recently been develoga@]i-[32] for sandwich-type LFIA devices.
The developed model includes the equations for descrildliegbiochemical reaction process of LFIA
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SDPSO
—=— SLEPSO
—<— SPSO
Ly —A— LEPSO

> —e— PSO-CK

RN PSO-TVAC
S —»— PSO-LDIW

Mean fitness:log(f(x))

-1 Il Il Il Il L
0 500 1000 1500 2000 2500 3000
Number of generations (Population=20,Dimension=20)

Fig. 3. The performance of seven PSOs for 20-dimensighét).

SDPSO
—&— SLEPSO
‘Y] —4—SPSO
—&— LEPSO
—&— PSO-CK

Lv—e—

PSO-TVAC
—»— PSO-LDIW

Mean fitness:log(f(x))

Il Il Il Il
500 1000 1500 2000 2500 3000
Number of generations (Population=20,Dimension=20)

-16 I
0

Fig. 4. The performance of seven PSOs for 20-dimensighéat).

system and the observation output. Especially, the prafaébe concentration distribution of LFIA devices
are described by the nonlinear state equations, and th&alaslkeameasurement signals are characterized
by the observation equation including the measuremenesols [30]-[32], however, the time-delay has
not been taken into consideration in the process of LFIAtieas. Such an assumption is not really
reasonable since the sample containing the target analgxds time to flow from the sample pad along
the nitrocellulose membrane encountering the detectiowe z@a capillary action. Hence, the time-delays
between the biochemical reactions are considered in tlpsrpdhe reaction rates of the LFIA systems
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SDPSO
—=8— SLEPSO
# —<— SPSO
—4A— LEPSO
5[ —— PSO-CK [
\ PSO-TVAC
2-0-0 & —p— |

VRS A i o = = = & I 59094 PSO-LDIW '

5

Mean fitness:log(f(x))

-10+

-20 1 1 1 1 I
0 500 1000 1500 2000 2500 3000

Number of generations (Population=20,Dimension=20)

Fig. 5. The performance of seven PSOs for 20-dimensighéat).

-4 4

-6 4

-8F 4

Mean fitness:log(f(x))

-10+ 4

SDPSO
—12+ —=— SLEPSO ||
—<— SPSO

—&— LEPSO
-14+ —@®— PSO-CK |
PSO-TVAC

—»— PSO-LDIW

-16 I 1 1 1 T
0 500 1000 1500 2000 2500 3000

Number of generations (Population=20,Dimension=20)

Fig. 6. The performance of seven PSOs for 20-dimensigigéat).

are described as follows:

v = k12129 — ko3 (16)
ve = (kgz124 — kax5)(t — 11) a7
vy = (ksz3ry — kewe)(t — T2) (18)
vy = (krwoxs — ksxe)(t — 73) (29)

where k., ks, ks, k7 and ks, k4, kg, kg are, respectively, the association and dissociation ramstants,
and 7, 75, 73 are time delays which exist among the biochemical reacti®he stoichiometrixS for the
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reaction process of the LFIA system is provided as follows:

[ 1 -1 0 0 |

-1 0 0 -1

s_| 1t 0o 10
0 -1 -1 0

0o 1 0 -1
0 0 1 1|

Therefore, the improved nonlinear state-space model witb-tlelay of the LFIA device is shown as
follows:

x(k+1) = x(k)+SV(x(k), )+ w(k) (20)
y(k) = gz(k)) +v(k) (21)

wherez (k) denotes the vector of various materials in the LFIA devidé;) is the observation experiment
value at time point. V = [vy, vy, ..., v4]" is the reaction rate vectow (k) andv(k) stand for zero-mean
uncorrelated Gaussian white noisesk) ~ N (0,Q) andwv(k) ~ N (0, R), respectively.

B. Parameter Identification and Results

The main object of this study is to identify the unknown tiselay parameters of Eq. (20) via the
proposed SDPSO algorithm. Here, the structure of the inggtomnlinear model of LFIA device (20)-(21)
is supposed to be known in this study. Meanwhile, the timeydparameters, », 3 are all viewed as
unknown parameters to be estimated. Therefore, the probfeparameter estimation of the improved
LFIA model can be transformed into an optimization problemd the objective function is given by:

l s
J=100) > llzek — el (22)

c=1 k=1
wherel denotes the dimension of observations in the state-spadelpespecially = 1 in the improved
nonlinear LFIA model;s is the length of observations, angd, represent the actual value for tlth
observation at théth time point.

It should be pointed out that it is a challenging task to eaterunknown time-delay parameters of the
improved LFIA model by using traditional optimization metts for the following three reasons. First,
the available measurement is associated with a couple affgpstate variables but many other state
variables are simply immeasurable. Second, the establlistzalel for the LFIA devices is practically a
nonlinear one and the measurement may not be directly delatthe time-delays. Third, the biochemical
reaction process is typically fast and the time-delays exigt at the first stage of the reaction process. In
this case, the object optimization function (22) would hkeal optimums. Considering the biochemical
reactions of the LFIA, we assume that the time-defayequals to the time-delay;, and is larger than
the 7. The association and dissociation rate constants of tha Inffddel, which have been identified in
[32], are utilized in this paper. Especially, we carried tuee experiments where the concentrations of
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samples are different to comprehensively evaluate theepted SDPSO algorithm. In experiments, we set
the population size as 10 and the maximum generation as 18@nWwhile, each experiment is carried out

10 times independently so as to eliminate the random efféete convergence processes of the objective
function J are shown in Fig. 7 and the evolving processes of the identifiee-delay parameters and

T, are illustrated respectively in Fig. 8 and Fig. 9.

fitness

T T
Experiment 1
Experiment 2
Experiment 3

Objection function

" _\—\ L L L L L L L
10 20 30 40 50 60 70 80 90 100
Generation

Fig. 7. Three convergence processes of the objective function

5 T T

Experiment 1
Experiment 2
Experiment 3

w
T
I

Parameter identification

0 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100
Generation

Fig. 8. Three evolving processes of time-delay parameter

Fig. 7 demonstrates that the values of object optimizatimction (22) for three experiments descend
quickly to zero, which indicates that the novel SDPSO atpanican efficiently find the global optimum.
Moreover, it is obvious from Fig. 8 and Fig. 9 that time-defmrameters; andr, for three experiments
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T
Experiment 1
Experiment 2
Experiment 3

Parameter identification

0
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Fig. 9. Three evolving processes of time-delay parametgrs

converge to the same results quickly, which verified the Hfficiency of the new SDPSO algorithm.

V. CONCLUSIONS

In this paper, we have developed a new switching delayedcferswarm optimization (SDPSO)
algorithm for inferring the unknown time-delay parametefsthe LFIA system. The velocity of the
particle can adaptively adjust the mode according to a Madtwin and an evolutionary factor in the
proposed SDPSO method. Therefore, the SDPSO can adapsieiggt the inertia weight, acceleration
coefficients, itself local best particlgbestand the global best particle in the swaghestduring the
iteration process. It should be mentioned that the delagtatmation of thepbestand thegbestcan be
randomly utilized to update the particle’s velocity in ent iteration according to the evolutionary states.
Compared with six other well-known PSOs, the search perdoga including the global optimality and
convergence speed is improved substantially when testset af unimodal and multimodal benchmark
functions. Finally, we have exploited the new SDPSO to idigtihe unknown time-delay parameters of
the improved nonlinear state-space LFIA model with timige

In the near future, our research topics will focus on thetafya for selecting more complicated
dynamical behaviors (e.g. delayed information [6], [7B][117], [29] and jumped/switched information
[3]-[5], [9], [28]) so as to further improve the performanaePSO, and also on the issue of modeling the
LFIA system together with the control line to comprehenlsiwmulate the biochemical reaction process.
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