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Abstract

In this paper, the parameter identification problem of the lateral flow immunoassay (LFIA) devices is investi-

gated via a new switching delayed particle swarm optimization (SDPSO) algorithm. By evaluating an evolutionary

factor in each generation, the velocity of the particle can adaptively adjust the model according to a Markov

chain in the proposed SDPSO method. During the iteration process, the SDPSO can adaptively select the inertia

weight, acceleration coefficients, locally best particlepbestand globally best particlegbestin the swarm. It is worth

highlighting that thepbestand thegbestcan be randomly selected from the corresponding values in the previous

iteration. That is, the delayed information of thepbestand thegbestcan be exploited to update the particle’s

velocity in current iteration according to the evolutionary states. The strategy can not only improve the global

search but also enhance the possibility of eventually reaching thegbest. The superiority of the proposed SDPSO is

evaluated on a series of unimodal and multimodal benchmark functions. Results demonstrate that the novel SDPSO

algorithm outperforms some well-known PSO algorithms in aspects of global search and efficiency of convergence.

Finally, the novel SDPSO is successfully exploited to estimate the unknown time-delay parameters of a class of

nonlinear state-space LFIA model.

Index Terms

Switching delayed particle swarm optimization (SDPSO); Lateral flow immunoassay; Markov chain; Time-

delay; Immunochromatographic strip.

I. INTRODUCTION

Lateral flow immunoassay (LFIA) has been investigated extensively and has become the most widely

used membrane-based immunoassay application due to its good characteristics such as remarkable usabil-

ity, short assay time, good specificity and sensitiveness [13], [20]. Up to now, the LFIA has been used in
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a variety of biomedical applications including clinical diagnostics, toxins in food and agriculture products,

industrial testing, and biowarfare [8], [10], [14], [37], [38]. Despite its advantages when applied to the

point-of-care testing (POCT), the LFIA developed so far hasbeen recognized to have certain weakness in

quantifying test results which, to some extent, limits the scope of further applications. As such, a variety

of advanced strategies based on the material selection (seee.g. [11], [15], [24]) have been developed

for enhancing the biochemical characteristics of the LFIA technology over the past decade. On the other

hand, there has recently been an increasing research interest in developing a dynamic model to describe

the mechanism of the biochemical reactions of LFIA in order to optimize and enhance LFIA performance

for the quantification, see e.g. [18], [19], [30]–[33], [35].

In this paper, we focus on the issue of modeling LFIAs, and thelatest progress is given here. A

mathematical model for two formats of LFIAs, namely, sandwich and competitive formats, is constructed

via the convection-diffusion-reaction equations in [18],[19], and such a model has been utilized to study

the performance of LFIA under various operating conditions. Different from the techniques proposed in

[18], [19], an improved nonlinear state-space model has been developed in [30]–[32] for sandwich-type

LFIA devices, where the process of the concentration distribution of LFIA devices is described by the

nonlinear state equations and the available observation signals are modeled by the observation equation

with measurement noises. It is worth highlighting that the established nonlinear state-space model provides

insights into the process of the biochemical reactions of LFIA and can be utilized to test the LFIA system in

an inexpensive and rapid way. Unfortunately, the signal transmission delay, which is an inherent behavior

of the biochemical reactions of LFIA, has not received adequate attention in [30]–[32] despite the fact

that the sample containing the target analytes does need time to flow from the sample pad along the

nitrocellulose membrane encountering the detection zone via capillary action. It is, therefore, the main

objective of this paper is to propose a novel approach for identifying the unknown time-delay parameters

of the improved LFIA model, where dedicated efforts are devoted to the inherent time-delays among the

biochemical reactions.

From the theoretical point of view, it is a challenging task to estimate unknown time-delay parameters

of the improved LFIA model by using traditional optimization methods for the following three reasons.

First, the available measurement is associated with a couple of specific state variables but many other state

variables are simply immeasurable. Second, the established model for the LFIA devices is practically a

nonlinear one and the measurement may not be directly related to the time-delays. Third, the biochemical

reaction process is typically fast and the time-delays onlyexist at the first stage of the reaction process.

In this case, it becomes extremely difficult (if not impossible) to identify the time-delays in an analytical

way, and a practical alternative is to use the stochastic-search-based optimization approaches for which

finding the global optima in the object optimization function is the main issues [34]. In search of a suitable

optimization algorithm for modeling the LFIA, the particleswarm optimization (PSO) algorithm stands

out as an appropriate candidate owing to its good performance in solving various difficult real-world

optimization problems.

PSO is a stochastic-search-based optimization approach [12] that mimics the swarm behaviors of birds
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flocking or fish schooling, and has been widely exploited for solving many difficult real-world optimization

problems [12], [22], [25], [26], [34]. However, an issue with PSO is that it can easily fall into the local

optima when applied in the multi-modal and high-dimensional tasks, and this has restricted the PSO

algorithm to wider applications [1], [25], [27], [36]. Up tonow, quite a considerable number of improved

PSO algorithms have been introduced to overcome this limitation, see e.g. [1], [21]–[23], [25]–[27],

[34], [36]. Especially, an adaptive PSO algorithm based on an evolutionary factor has recently been

introduced in [36] which can adaptively control the parameters of PSO, including the inertia weight, two

acceleration coefficients and others. Furthermore, a switching PSO (SPSO) algorithm was developed in

[25] where the velocity equation is determined by a Markov chain, which greatly enhance the performance

of global search. Moreover, a new switching local evolutionary PSO (SLEPSO) that combined the SPSO

algorithm with differential evolution has been recently developed and analyzed in [34] for quantification

determination of the LFIA. Nevertheless, there is still some room to further the PSO algorithm so as to

enhance its capability of getting rid of the local trapping phenomenon (premature convergence) and the

introduction of time-delays with hope to enrich the dynamics could well serve this purpose.

Based on the above discussions, the main object of this studyis to develop a new switching delayed PSO

algorithm with delayed information and adaptive switchingstrategy for identifying the unknown parameters

of LFIA. The proposed SDPSO algorithm can not only improve the global search but also enhance the

capability of quickly reaching thegbest. The main contribution of this paper can be summarized as

follows. 1) A novel switching delayed PSO (SDPSO) based on the adaptive switching strategy and the

delayed information is proposed for solving the premature convergence problem, thereby improving both

the search efficiency and the convergence speed of the PSO algorithm. 2) The SDPSO is verified in a

comprehensive manner on a set of unimodal and multimodal benchmark functions and outperforms other

six well-known PSOs. 3) The novel SDPSO method is successfully applied to identifying the unknown

time-delay parameters of the improved nonlinear state-space LFIA model.

The remainder of this paper is organized as follows. The novel switching delayed PSO (SDPSO)

is proposed in Section II. In Section III, simulation results and performance comparison with various

existing PSO algorithms are provided. In Section IV, the improved model of LFIA device with time-delay

is provided and the novel SDPSO algorithm for identifying the unknown parameters of LFIA is presented

and then discussed. Finally, conclusions are drawn in Section V.

II. A N OVEL SWITCHING DELAYED PARTICLE SWARM OPTIMIZATION ALGORITHM

A. Traditional PSO Algorithm and Its Developments

The PSO, first introduced by Kennedy and Eberhart in 1995 [12], is a stochastic-search-based optimiza-

tion approach that mimics the swarm behaviors of birds flocking or fish schooling to make the particles

find the globally optimal solution.

In PSO [12], [25], [34], a swarm consisting ofS particles moves around at a certain speed in aD-

dimensional search space. Each particlei represented as a potential solution at thekth iteration is related

with two vectors, that is, the velocity vectorvi(k) = (vi1(k), vi2(k), · · · , viD(k)) and the position vector
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xi(k) = (xi1(k), xi2(k), · · · , xiD(k)). During the evolutionary process, the position of each particle will

be automatically adjusted in the direction of the global optimum based on the previous experiences, one is

the best position founded by itself (pbest) represented bypi = (pi1, pi2, · · · , piD), and the other is the best

position in the whole swarm (gbest) represented bypg = (pg1, pg2, · · · , pgD). The velocity and position

of a particlei at (k + 1)th iteration are described as follows:

vi(k + 1) = wvi(k) + c1r1(pi(k)− xi(k)) + c2r2(pg(k)− xi(k)),

xi(k + 1) = xi(k) + vi(k + 1), (1)

wherew is the inertia weight,c1 andc2 are acceleration coefficients calledcognitiveandsocialparameter,

respectively; two random numbersr1,j andr2,j , which are uniformly distributed in[0, 1].

The PSO described above has been gaining particular research attention and has been widely applied

in solving a variety of optimization problems due to its simplicity of the concept and efficiency of the

implementation. Meanwhile, much effort has been devoted toimprove the searching performance of

PSO. One of the common strategies is to introduce PSO with linearly time-varying inertia weightw or

acceleration coefficientsc1, c2, as follows [21]–[23]:

w = (w1 − w2)×
itmax − itk

itmax

+ w2, (2)

c1 = (c1f − c1i)×
itmax − itk

itmax

+ c1i, (3)

c2 = (c2f − c2i)×
itmax − itk

itmax

+ c2i (4)

where itk is the current number of iteration anditmax is a maximum number of the iteration.w1 and

w2 represent maximal and minimal values of inertia weight, respectively;c1i and c2i denote the minimal

values, andc1f andc2f denote the maximum values of the acceleration coefficientsc1 andc2, respectively.

In [22], [23], a linearly decreasing inertia weightw with the iteration generations (PSO-LDIW) shown

in Eq. (2) was introduced according to the characteristic ofsearching process. That is, the swarm inclines

to perform the global exploration when the inertia weight gets larger, and the swarm tends to perform

the local exploration when the inertia weight is smaller [22]. For this purpose, the maximal and minimal

values are usually set asw1 = 0.9 andw2 = 0.4, respectively. In addition, the acceleration coefficients

of the PSO are time-varying (PSO-TVAC) shown in Eq. (3)-(4) was introduced in [21] withc1i = 2.5,

c2i = 0.5, c1f = 0.5 andc2f = 2.5. Furthermore, the constriction factor has been introducedinto PSO by

Clerc and Kennedy [2] to improve its search performance, where w = 0.729 and c1 = c2 = 1.49 were

suggested in the PSO-CK algorithm. Recently, an adaptive PSO was proposed in [36] that is capable

of automatically controlling the inertia weightw, acceleration coefficientsc1, c2 and other parameters

according to an evolutionary factor. Furthermore, a switching PSO algorithm was developed in [25] where

the velocity equation is determined by a Markov chain, whichgreatly enhances the performance of global

search. Moreover, a switching local evolutionary PSO (SLEPSO) that combined the SPSO algorithm with

differential evolution has been recently developed and analyzed in [34] for quantification determination

of the LFIA.
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B. A Novel Switching Delayed PSO Algorithm

In this section, a new switching delayed PSO (SDPSO) is proposed to improve the searching perfor-

mance of PSO. The main idea of the proposed SDPSO is the velocity of the particle adaptively adjust the

model according to an evolutionary factor and the Markov chain. Moreover, the delayed information of

the pbestand the whole swarmgbestis exploited to update the velocity of a particle in current iteration

according to the evolutionary states. This strategy can effectively prevent the PSO from the premature

convergence, and this is especially useful in dealing with the multi-modal and high-dimensional problems.

1) Switching Delayed PSO Framework:The velocity and position equations of the proposed SDPSO

algorithm are given as follows:

vi(k + 1) = w(k)vi(k) + c1(ξ(k))r1(pi(k − τ1(ξ(k)))− xi(k))

+c2(ξ(k))r2(pg(k − τ2(ξ(k)))− xi(k)),

xi(k + 1) = xi(k) + vi(k + 1) (5)

wherec1(ξ(k)) andc2(ξ(k)) are the acceleration coefficients. The constantsτ1(ξ(k)) andτ2(ξ(k)) denote

the delay. All of these parameters are determined by a non-homogeneous Markov chainξ(k) (k ≥ 0).

The value of the Markov chain is taken in a finite state space:S = {1, 2, · · · , N}. The probability

transition matrix of the Markov chain is represented byΠ(k) = (π
(k)
ij )N×N , whereπ(k)

ij ≥ 0 (i, j ∈ S) and
∑N

j=1 π
(k)
ij = 1.

In the SDPSO algorithm, the matrixΠ(k) is adaptively adjusted by evaluating an evolutionary factor

(EF) [25], which is firstly introduced to describe the population distribution properties in [36]. According

to the characteristics of the searching process, the EF approach can be exploited to define four states:

convergence, exploration, exploitation and jumping out. Especially, these four states are respectively

represented byξ(k) = 1, ξ(k) = 2, ξ(k) = 3 and ξ(k) = 4 in the Markov chain.

The average distance between each particle and the other particles in the swarm, which is represented

by di, can be computed by,

di =
1

S

S
∑

i=1

√

√

√

√

D
∑

k=1

(xk
i − xk

j )
2 (6)

whereS andD stand for the swarm size and the dimensions, respectively. Hence, the evolution factor

Ef can be defined as follows [36]:

Ef =
dg − dmin

dmax − dmin
(7)

wheredg denotes the globally best particle amongdi. dmax anddmin denote the maximum and minimum

distances indi, respectively.

Based on the value of evolutionary factorEf , we can get the value of the Markov chain as follows
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TABLE I

STRATEGIES FOR SELECTINGc1 AND c2

State Mode c1 c2

Convergence ξ(k) = 1 2 2

Exploitation ξ(k) = 2 2.1 1.9

Exploration ξ(k) = 3 2.2 1.8

Jumping-out ξ(k) = 4 1.8 2.2

[25]:

ξ(k) =



























1, 0 ≤ Ef < 0.25,

2, 0.25 ≤ Ef < 0.5,

3, 0.5 ≤ Ef < 0.75,

4, 0.75 ≤ Ef < 1,

(8)

where the probability transition matrix is provided by:

Π =













χ 1− χ 0 0
1−χ

2
χ 1−χ

2
0

0 1−χ

2
0 1−χ

2

0 0 1− χ χ













(9)

Hence, the Markov process at the next iteration may switch its state based on the probability distribution

matrix Π. It should be pointed out that the value of the probabilityχ is of great importance to keep the

classification accuracy and also the search diversity (χ = 0.9 in this paper) [25].

2) Switching Delayed PSO Parameters:The strategies introduced in [25] for controlling the inertia

weightw and also selecting the acceleration coefficients (c1 and c2) are exploited in this paper.

The inertia weightw has the same tendency as the evolutionary factorEf during the iteration process.

Note that, a largew will tend to the global search in the states of jumping-out and exploration. In contrast,

a smallw will benefit the local search. The initial value ofw is set as 0.9, and the function for describing

inertia weightw andEf can be represented as follows [25]:

w(Ef) = 0.5Ef + 0.4 ∈ [0.4, 0.9], ∀Ef ∈ [0, 1]. (10)

On the other hand, the initial values of acceleration coefficientsc1 andc2 are set as 2, and both of them

can automatically adjust their values based on the evolutionary state [25], which given in the Table I.

3) Strategies for Selecting Delayed Information:The part constitutes the main novelty of the proposed

SDPSO algorithm where the delayed information ofpbestand gbestare utilized to update the velocity

equation based on the evolutionary state. The strategies for selecting delayed information are introduced

as below:

• In a jumping-out state, the current globally best particle is willing to fly to a better optimum so as to

escape from the local optimum. The delayed information of the pbestandgbestdistribute much wider
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TABLE II

STRATEGIES FOR SELECTING DELAYED INFORMATION AND PARAMETERS

State Mode pbest gbest τ1(ξ(k)) τ2(ξ(k))

Convergence ξ(k) = 1 pi(k) pg(k) 0 0

Exploitation ξ(k) = 2 pi(k − τ1(ξ(k))) pg(k) ⌊k · rand1⌋ 0

Exploration ξ(k) = 3 pi(k) pg(k − τ2(ξ(k))) 0 ⌊k · rand2⌋

Jumping-out ξ(k) = 4 pi(k − τ1(ξ(k))) pg(k − τ2(ξ(k))) ⌊k · rand1⌋ ⌊k · rand2⌋

in the search space. More importantly,pi(k − τ1(ξ(k))) andpg(k − τ2(ξ(k)) are the particle and the

swarm encountered in the previous iteration, that is, both of them contain the knowledge/experiences

of the particle and swarm. Therefore, they are selected, respectively, for updating the influences

of “self-cognition” and “social” in the velocity equation,and this will help to jump out the local

optimum.

• In an exploration state, it is crucial for exploring as many optima as possible. Hence, selecting the

pbestat the current iteration and the delayed value ofgbestcan make particles explore individually

and also lead particles to fly to historically global best positions (instead gathering around the current

global best position which could possibly be a local optimum).

• In an exploitation state, each particle is taking advantageof its historical best positionpi(k−τ1(ξ(k)))

andgbestat the current iteration to enhance the search and exploitation around the local region.

• In the convergence state, all particles are willing to converge to the best optima as soon as possible

in the found globally optimal region. Hence, the particles should follow thepbestand gbestat the

current iteration to achieve this goal in this state.

The strategies discussed above can be summarized in Table II. It should be mentioned that the constants

τ1(ξ(k)) andτ2(ξ(k)) are selected randomly, which are given in Table II.⌊·⌋ is the floor function. In other

words, thepbestand thegbestare selected randomly from the values encountered in the previous iteration.

The flowchart of the proposed Switching delayed PSO (SDPSO) is illustrated in Fig.1.

III. SIMULATION EXPERIMENTS

A. The Benchmark Functions

In the experiments, some well-known benchmark functions with different properties given by (11)-(15)

are utilized to demonstrate the performance of the new SDPSOapproach. Especially, these benchmark

functions have their own characteristics. The Sphere function f1(x) is generally exploited to evaluate the

convergent rate of the algorithm sincef1(x) is a typical unimodal optimization problem.f2(x) is very

difficult to optimize since the optimum locates in a banana-shaped valley and therefore can be seen as a

multimodal problems. Besides, there is no doubt it is hard tooptimizef3(x) andf5(x) functions which

are typical multimodal problems.
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Start

End

Initialize particles of the swarm and 

the parameters of the SDPSO 

Evaluate the fitness value of each particle 

Calculate the mean distance of each 

particle according to (7)

Compute evolutionary factor according to (6)

Update the state in the next generation based on the 

current state and the probability transition matrix (9)

Get the acceleration coefficients according to the Table I

Calculate the inertia weight according to (10)

Select the pbest and gbest according to the Table II

Update the velocity and the position according to the (5)

k=k+1

If k=maximum iteration?

No

Yes

Fig. 1. The flowchart of SDPSO algorithm

Sphere: f1(x) =
D
∑

i=1

x2
i , and x ∈ [−100, 100]D. (11)
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Rosenbrock: f2(x) =
D−1
∑

i=1

(100(xi+1 − xi)
2 + (xi − 1)2), and x ∈ [−10, 10]D. (12)

Ackley : f3(x) = −20e−0.2
√

1

D

∑D
i=1

x2

i − e
1

D

∑D
i=1

cos 2πxi + 20 + e, and x ∈ [−32, 32]D. (13)

Griewank: f4(x) =
1

4000

D
∑

i=1

x2
i −

D
∏

i=1

cos
xi√
i
+ 1, and x ∈ [−600, 600]D. (14)

Rastrigin: f5(x) =
D
∑

i=1

(x2
i − 10 cos 2πxi + 10), and x ∈ [−50, 50]D. (15)

B. Simulation Results and Discussion

The experiments are conducted to verify the effectiveness of the novel SDPSO algorithm and compare

the SDPSO with six well-known PSOs to demonstrate its superiority. The parameters of these five

benchmark functions in the experiments are set as: the particle numberN = 20, the dimensionD = 20,

the maximum generation number is 3000. Especially, each experiment of the same algorithm is repeated 20

times independently so as to eliminate the random effect, and then the mean result is provided. Moreover,

we compare the proposed SDPSO algorithm with six other well-known PSO algorithms, which consist

of the PSO-LDIW [22], [23], PSO-TVAC [21], PSO-CK [2], simplified SPSO [25], PSO combing with

differential evolutionary algorithm (LEPSO) [1] and a hybrid SPSO with the differential evolutionary

algorithm SLEPSO [34]. The parameters for these PSOs can be seen in [34] for more details.

As shown in the Table III and Figs. 2-6, the proposed SDPSO algorithm outperforms six other PSO

algorithms in term of a series of criteria. Particularly, the best result among those PSOs for each benchmark

function is highlighted by boldface in the table. Obviously, the SDPSO method could find an optimal

solution with high accuracy and fast speed. The Sphere function f1(x) is generally exploited to evaluate

the convergent rate of the algorithm. Therefore, we can conclude that the local search ability of the new

SDPSO method is better than other six well-known PSOs from Table III and Fig. 2. The Rosenbrock

function f2(x), which is viewed as a mono-modal optimization problem is often used to verify not only

the local search but also the global search abilities. It canbe seen from Table III and Fig. 3 that SDPSO

performs better than the other six PSO algorithms. The otherthree benchmark functions are generally

utilized to verify the global search ability of the PSO approach. From Table III and Figs. 4-6, it is clear

that the new SDPSO approach outperforms the other six algorithms. Hence, the SDPSO method proposed

in this paper performs best among seven PSOs on both unimodaland multimodal functions.

Remark 1:Note that the SDPSO method is capable of solving the optimization problem with fast

convergence as well as global search accuracy characteristics due to the use of the adaptive switching

strategy and the delayed information embedded in algorithm. Moreover, the advantage of escaping from

local optima and converging to global optimum of multimodalfunctions shows the superiority of the

proposed SDPSO algorithm.
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TABLE III

THE COMPARISONS OF SEARCH RESULTS AMONG SEVENPSOS ON FIVE BENCHMARK FUNCTIONS

PSO-TVAC PSO-CK PSO-LDIW LEPSO SPSO SLEPSO SDPSO

f1 Best value 9.25× e−38 5.89× e−71 2.73 × e−32 1.24 × e−30 2.85× e−70 3.19 × e−69 0

Mean 1.12× e−18 1.66× e−57 3.14 × e−29 5.23 × e−28 7.97× e−66 4.58 × e−65 0

Std. Dev. 4.98× e−18 7.4× e−57 6.94 × e−29 8.76 × e−28 2.32× e−65 1.07 × e−64 0

f2 Best value 0.027 0.0056 3.06 0.19 0.80 0.38 2.7108 × e
−4

Mean 13.43 8.39 23.16 19.86 11.66 1.17 0.3072

Std. Dev. 13.87 14.56 25.40 21.84 13.75 0.68 0.4739

f3 Best value 1.11× e−13 19.1803 7.99 × e−15 7.99 × e−15 4.44× e−15 4.44 × e−15
8.8818 × e

−16

Mean 2.2433 19.7191 3.0048 2.63 × e−13 2.02 6.75 × e−15
8.8818 × e

−16

Std. Dev. 5.9376 0.1883 7.3383 3.86 × e−13 6.23 1.74 × e−15 0

f4 Best value 121.6087 0.787 0 0 0 0 0

Mean 175.3641 29.5584 0.018 0.0047 0.0142 0 0

Std. Dev. 27.8352 20.7047 0.0131 0.0072 0.0128 0 0

f5 Best value 22.8841 65.6671 15.9193 6.9647 13.9294 2.9849 0

Mean 39.1516 133.2741 23.5821 15.626 24.1834 6.5785 0

Std. Dev. 9.6101 46.8896 6.4960 5.4027 8.1526 3.7855 0
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Fig. 2. The performance of seven PSOs for 20-dimensionalf1(x).

IV. PARAMETER ESTIMATION OF THE IMPROVED LFIA M ODEL

In this section, the novel SDPSO method is utilized to estimate the unknown time-delay parameters

of the improved LFIA model, where the time-delays occurringamong the biochemical reactions are

considered.

A. The Improved Nonlinear LFIA Model

A nonlinear state-space model has recently been developed in [30]–[32] for sandwich-type LFIA devices.

The developed model includes the equations for describing the biochemical reaction process of LFIA
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Fig. 3. The performance of seven PSOs for 20-dimensionalf2(x).
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Fig. 4. The performance of seven PSOs for 20-dimensionalf3(x).

system and the observation output. Especially, the processof the concentration distribution of LFIA devices

are described by the nonlinear state equations, and the available measurement signals are characterized

by the observation equation including the measurement noises. In [30]–[32], however, the time-delay has

not been taken into consideration in the process of LFIA reactions. Such an assumption is not really

reasonable since the sample containing the target analytesneeds time to flow from the sample pad along

the nitrocellulose membrane encountering the detection zone via capillary action. Hence, the time-delays

between the biochemical reactions are considered in this paper. The reaction rates of the LFIA systems
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Fig. 5. The performance of seven PSOs for 20-dimensionalf4(x).
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Fig. 6. The performance of seven PSOs for 20-dimensionalf5(x).

are described as follows:

v1 = k1x1x2 − k2x3 (16)

v2 = (k3x1x4 − k4x5)(t− τ1) (17)

v3 = (k5x3x4 − k6x6)(t− τ2) (18)

v4 = (k7x2x5 − k8x6)(t− τ3) (19)

wherek1, k3, k5, k7 and k2, k4, k6, k8 are, respectively, the association and dissociation rate constants,

and τ1, τ2, τ3 are time delays which exist among the biochemical reactions. The stoichiometrixS for the
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reaction process of the LFIA system is provided as follows:

S =























−1 −1 0 0

−1 0 0 −1

1 0 −1 0

0 −1 −1 0

0 1 0 −1

0 0 1 1























.

Therefore, the improved nonlinear state-space model with time-delay of the LFIA device is shown as

follows:

x(k + 1) = x(k) + SV (x(k), τ) + w(k) (20)

y(k) = g(x(k)) + v(k) (21)

wherex(k) denotes the vector of various materials in the LFIA device;y(k) is the observation experiment

value at time pointk. V = [v1, v2, ..., v4]
T is the reaction rate vector.w(k) andv(k) stand for zero-mean

uncorrelated Gaussian white noises,w(k) ∼ N (0, Q) andv(k) ∼ N (0, R), respectively.

B. Parameter Identification and Results

The main object of this study is to identify the unknown time-delay parameters of Eq. (20) via the

proposed SDPSO algorithm. Here, the structure of the improved nonlinear model of LFIA device (20)-(21)

is supposed to be known in this study. Meanwhile, the time-delay parametersτ1, τ2, τ3 are all viewed as

unknown parameters to be estimated. Therefore, the problemof parameter estimation of the improved

LFIA model can be transformed into an optimization problem,and the objective function is given by:

J = 100

l
∑

c=1

s
∑

k=1

‖zck − ŷck‖, (22)

wherel denotes the dimension of observations in the state-space model, especiallyl = 1 in the improved

nonlinear LFIA model;s is the length of observations, andzck represent the actual value for thecth

observation at thekth time point.

It should be pointed out that it is a challenging task to estimate unknown time-delay parameters of the

improved LFIA model by using traditional optimization methods for the following three reasons. First,

the available measurement is associated with a couple of specific state variables but many other state

variables are simply immeasurable. Second, the established model for the LFIA devices is practically a

nonlinear one and the measurement may not be directly related to the time-delays. Third, the biochemical

reaction process is typically fast and the time-delays onlyexist at the first stage of the reaction process. In

this case, the object optimization function (22) would havelocal optimums. Considering the biochemical

reactions of the LFIA, we assume that the time-delayτ2 equals to the time-delayτ3, and is larger than

the τ1. The association and dissociation rate constants of the LFIA model, which have been identified in

[32], are utilized in this paper. Especially, we carried outthree experiments where the concentrations of
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samples are different to comprehensively evaluate the presented SDPSO algorithm. In experiments, we set

the population size as 10 and the maximum generation as 100. Meanwhile, each experiment is carried out

10 times independently so as to eliminate the random effect.Three convergence processes of the objective

functionJ are shown in Fig. 7 and the evolving processes of the identified time-delay parametersτ1 and

τ2 are illustrated respectively in Fig. 8 and Fig. 9.
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Fig. 7. Three convergence processes of the objective functionJ .
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Fig. 8. Three evolving processes of time-delay parameterτ1.

Fig. 7 demonstrates that the values of object optimization function (22) for three experiments descend

quickly to zero, which indicates that the novel SDPSO algorithm can efficiently find the global optimum.

Moreover, it is obvious from Fig. 8 and Fig. 9 that time-delayparametersτ1 andτ2 for three experiments
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Fig. 9. Three evolving processes of time-delay parametersτ2.

converge to the same results quickly, which verified the highefficiency of the new SDPSO algorithm.

V. CONCLUSIONS

In this paper, we have developed a new switching delayed particle swarm optimization (SDPSO)

algorithm for inferring the unknown time-delay parametersof the LFIA system. The velocity of the

particle can adaptively adjust the mode according to a Markov chain and an evolutionary factor in the

proposed SDPSO method. Therefore, the SDPSO can adaptivelyselect the inertia weight, acceleration

coefficients, itself local best particlepbestand the global best particle in the swarmgbestduring the

iteration process. It should be mentioned that the delayed information of thepbestand thegbestcan be

randomly utilized to update the particle’s velocity in current iteration according to the evolutionary states.

Compared with six other well-known PSOs, the search performance including the global optimality and

convergence speed is improved substantially when testing aset of unimodal and multimodal benchmark

functions. Finally, we have exploited the new SDPSO to identify the unknown time-delay parameters of

the improved nonlinear state-space LFIA model with time-delay.

In the near future, our research topics will focus on the strategy for selecting more complicated

dynamical behaviors (e.g. delayed information [6], [7], [16], [17], [29] and jumped/switched information

[3]–[5], [9], [28]) so as to further improve the performanceof PSO, and also on the issue of modeling the

LFIA system together with the control line to comprehensively simulate the biochemical reaction process.
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