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Online training for high-performance analogue readout layers
in photonic reservoir computers

Piotr Antonik · Marc Haelterman · Serge Massar

Abstract Introduction. Reservoir Computing is a bio-

inspired computing paradigm for processing time-de-

pendent signals. The performance of its hardware im-

plementation is comparable to state-of-the-art digital

algorithms on a series of benchmark tasks. The major

bottleneck of these implementation is the readout layer,

based on slow offline post-processing. Few analogue so-

lutions have been proposed, but all suffered from notice-

able decrease in performance due to added complexity

of the setup.

Methods. Here we propose the use of online training to

solve these issues. We study the applicability of this

method using numerical simulations of an experimen-

tally feasible reservoir computer with an analogue read-

out layer. We also consider a nonlinear output layer,

which would be very difficult to train with traditional

methods.

Results. We show numerically that online learning al-

lows to circumvent the added complexity of the ana-

logue layer and obtain the same level of performance as

with a digital layer.

Conclusion. This work paves the way to high-perfor-

mance fully-analogue reservoir computers through the

use of online training of the output layers.
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1 Introduction

Reservoir computing is a set of machine learning meth-

ods for designing and training artificial neural networks,

introduced independently in [1] and [2]. The idea is that

one can exploit the dynamics of a recurrent nonlinear

network to process time series without training the net-

work itself, but simply adding a general linear readout

layer and only training the latter. This results in a sys-

tem that is significantly easier to train (the learning is

reduced to solving a system of linear equations, see [3]),

yet powerful enough to match other algorithms on a se-

ries of benchmark tasks. Reservoir computing has been

successfully applied to wireless channel equalisation and

chaotic time series forecasting [1], phoneme recognition

[4], image processing [5], handwriting recognition [6],

audio classification [7] and won an international com-
petition on prediction of future evolution of financial

time series [8].

Reservoir computing allows efficient implementation

of simplified recurrent neural networks in hardware,

such as e.g. optical components. Optical computing has

been investigated for decades as photons propagate faster

than electrons, without generating heat or magnetic

interference, and thus promise higher bandwidth than

conventional computers [9]. Reservoir computing would

thus allow to build high-speed and energy efficient pho-

tonic computational devices. Several important steps

have been taken towards this goal with electronic [10],

opto-electronic [11–13], all-optical [14–16] and integrated

[17] experimental implementation reported since 2011.

The major drawback in these experiments is the

absence of efficient readout mechanisms: the states of

the neurons are collected and post-processed on a com-

puter, severely reducing the processing speeds and thus

limiting the applicability. An analog readout would re-

solve this issue, as suggested in [18]. This research di-
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rection has already been investigated experimentally in

[19–21], but all these implementations suffered from sig-

nificant performance degradation due to the complex

structure of the readout layer. Indeed the approach used

in these works was to characterise with high accuracy

the linear output layer, whereupon it was possible to

compute offline the output weights. However it is vir-

tually impossible to characterise each hardware com-

ponent of the setup with sufficient level of accuracy.

Furthermore the components in the output layer may

have a slight nonlinear behaviour. It follows that this

approach does not work satisfactorily, as is apparent

from the performance degradation reported in [20].

In this work we address the above issues with the

online learning approach. Online training has attracted

much attention in the machine learning community be-

cause it allows to train the system gradually, as the

input data becomes available. It can also easily cope

with non-stationary input signal, whose characteristics

change with time, as the online approach can keep the

model updated according to variations in the input. Fi-

nally, in the case of hardware systems, online training

can easily cope with drifts in the hardware, as the sys-

tem will adapt to gradual changes in the hardware com-

ponents [22,23].

In the context of reservoir computing, the online

training implements a gradient descent: it gradually

changes the output layer to adapt to the task. More

precisely the output layer is characterised by a series of

parameters (the readout weights), and in online train-

ing these weights are adjusted in small increments, so

that the output of the system gets closer to the tar-

get signal. We have previously applied this method to

a hardware reservoir computer with a digital output

layer in [24], where we illustrated how online learning

could cope with non-stationary input signals, i.e. tasks

that change with time.

The important point in the present context is that,

compared to previously used offline methods, in online

training based on gradient descent no assumption is

necessary about how these weights contribute to the

output signal. That is, it is not necessary to model the

output layer. Furthermore, the transfer function of the

readout layer could in principle be nonlinear. Here we

show, using realistic numerical simulations, how these

features could be highly advantageous for training hard-

ware reservoir computers.

For concreteness, we will consider in simulations an

opto-electronic reservoir computing setup based on a

ring topology already extensively studied experimen-

tally in [11,12]. We add to this setup an analogue layer

that is now trained online by an FPGA chip processing

the simple gradient descent algorithm in real time, as

in [24]. The readout layer consists of a simple Resistor-

Capacitor (RC) circuit (as in [19]), instead of a more

complicated RLC circuit (consisting of a resistor R, an

inductor L and a capacitor C) that was used to increase

the amplitude of the output signal in [20].

We investigate the performance of this setup through

numerical simulations on two benchmark tasks and show

that previously encountered difficulties are almost en-

tirely alleviated by the online training approach. In

other words, with a relatively simple analogue readout

layer, trained online, and without any modelling of the

underlying processes, we obtain results similar to those

produced by a digital layer, trained offline. We also ex-

plore a special case with a nonlinear readout function

and show that this complication doesn’t decrease much

the performance of the system. This work thus brings

an interesting solution to an important problem in the

hardware reservoir computing field.

The paper is structured as follows. In the Methods

section, we introduce the basic principles of reservoir

computing, online learning and the benchmark tasks

used here, and then present the experimental opto-elec-

tronic reservoir computer, the analogue readout layer,

and specify the major aspects of our numerical simula-

tions. We then focus on the results of our investigations

and conclude the paper with future perspectives.

2 Methods

2.1 Reservoir Computing

A reservoir computer, schematised in figure 1, consists

of a recurrent network of internal variables, usually

called “nodes” or “neurons”, from its biological ori-

gins [3]. These N variables, denoted by xi(n), with

i = 0, . . . , N − 1, evolve in discrete time n ∈ Z, as

follows

x0(n+ 1) = f (αxN−1(n− 1) + βM0u(n)) ,

xi(n+ 1) = f (αxi−1(n) + βMiu(n)) ,
(1)

where f is a nonlinear function, u(n) is the input signal

that is injected into the system, α and β are feedback

and input gains, respectively, used to adjust the dynam-

ics of the system, and Mi is the input mask, drawn from

a uniform distribution over the interval [−1,+1], as in

e.g. [25,11,14]. In our implementation, we use a sine

function f = sin(x) as nonlinearity and a ring topol-

ogy [10,25] to simplify the interconnection matrix of

the network, so that only the first neighbour nodes are

connected. Both choices are dictated by the proposed

hardware setup of the opto-electronic reservoir. As will

be discussed in Sec. 2.4, we use a light intensity modula-

tor with a sine transfer function as the nonlinear node,
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Fig. 1 Schematic representation of a reservoir computer with
N = 6 nodes. In terms of artificial neural networks, its archi-
tecture is composed of a single input neuron (which receives
the input signal u(n)), one layer of hidden neurons and a sin-
gle output neuron (which produces the output signal y(n)).
The configuration of neurons in the hidden layer can be ar-
bitrary, but for ease of hardware implementation we use a
ring-like topology.

and a delay system with time-multiplexing of the reser-

voir states. A detailed discussion of these experimental

aspects can be found in the Supplementary Material of

[11].

The reservoir computer produces an output signal

y(n), given by a linear combination of the states of its

internal variables

y(n) =

N−1∑
i=0

wi(n)xi(n), (2)

where wi(n) are the readout weights, trained either

offline (using standard linear regression methods), in

which case they are time independent, or online, as

described in the next section, in order to minimise a

task-dependent error function, which will be introduced

alongside the benchmark tasks further in this paper. As

discussed below in detail, in hardware implementations

of reservoir computing the readout layer can be more

complex than Eq. (2).

2.2 Simple gradient descent algorithm

Contrary to offline, or batch learning, where the entire

training dataset is used at once to compute the best

readout weights wi, online training approach handles

the data sequentially in order to optimise the perfor-

mance step by step. As discussed in Sec. 1, this allows

the Reservoir Computer to be optimised without ac-

curate knowledge of the underlying hardware, which is

exactly what is required for an analogue readout layer.

This approach can be realised with various algorithms,

and in this work we chose to work with the simple gra-

dient descent algorithm, for ease of implementation on

the FPGA board.

The gradient, or steepest, descent method is an al-

gorithm for finding a local minimum of a function using

its gradient [26]. For the task considered here (see the

next section) we update the readout weights using the

procedure given in [27]

wi(n+ 1) = wi(n) + λ (d(n)− y(n))xi(n), (3)

where λ is the step size, used to control the learning

rate, and d(n) is the task-dependent target signal (see

sections 2.3.1 and 2.3.2). The origin of this procedure

is that if the error at time n is given by (d(n)− y(n))2,

then the derivative of the error with respect to wi gives

(d(n) − y(n))xi(n), i.e. the right-hand side of Eq. (3).

At high values of λ, the weights get close to the optimal

values very quickly (in a few steps), but keep oscillating

around these values. At low values, the weights converge

slowly to the optimal values. In practice, we start with

a high value λ = λ0, and then gradually decrease it

during the training phase until a minimum value λmin
is reached, according to the equation

λ(m+ 1) = λmin + γ (λ(m)− λmin) , (4)

with λ(0) = λ0 and m = bn/kc, where γ < 1 is the

decay rate and k is the update rate for the parame-

ter λ. Previous work has shown that setting λ0 = 0.4,

λmin = 0 and γ = 0.999 is a reasonable choice for

good performance [24]. The update rate k defines the

convergence speed and the resulting error rate : higher

k requires a longer training dataset but offers better

results. More complex optimisation methods could be

used here, such as simulated annealing [28] or stochas-

tic gradient descent [29]. However, the above technique

is very simple and provides sufficiently good results for

this application.

2.3 Benchmark tasks

We tested our system on two benchmark tasks com-

monly used by the reservoir computing community: wire-

less channel equalisation and emulation of a 10-th or-

der Nonlinear Auto Regressive Moving Average system

(NARMA10). Note that, to the best of our knowledge,

the latter has never been tested on an online-trained

reservoir computer.

2.3.1 Wireless channel equalisation

The operating principle of this practically relevant task

is the following. A sequence of symbols d(n) is transmit-

ted through a wireless channel. The receiver records a

sequence u(n), which is a corrupted version of d(n). The

main sources of corruption are noise (thermal or elec-

tronic), multipath propagation, which leads to inter-

symbol interference, and nonlinear distortion induced
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by power amplifiers. The goal is to recover d(n) from

u(n) [1].

The channel input signal d(n) contains 2-bit sym-

bols with values picked randomly from {−3,−1, 1, 3}.
The channel is modelled by a linear system with mem-

ory of length 10 [30]

q(n) = 0.08d(n+ 2)− 0.12d(n+ 1) + d(n)

+ 0.18d(n− 1)− 0.1d(n− 2) + 0.091d(n− 3)

− 0.05d(n− 4) + 0.04d(n− 5) + 0.03d(n− 6)

+ 0.01d(n− 7),

(5)

followed by an instantaneous memoryless nonlinearity

u(n) = q(n) + 0.036q2(n)− 0.011q3(n), (6)

where u(n) is the channel output signal. The reservoir

computer has to restore the clean signal d(n) from the

distorted noisy signal u(n). The performance is mea-

sured in terms of wrongly reconstructed symbols, called

the Symbol Error Rate (SER).

2.3.2 NARMA10

The goal of this rather academic task is to emulate a

10-th order Nonlinear Auto Regressive Moving Average

system. The input signal u(n) is drawn randomly from

a uniform distribution over the interval [0, 0.5]. The tar-

get output d(n) is defined by the following equation

d(n+ 1) = 0.3d(n) + 0.05d(n)

(
9∑
i=0

d(n− i)

)
+ 1.5u(n− 9)u(n) + 0.1.

(7)

Since the reservoir doesn’t produce d(n) exactly, its per-

formance is measured in terms of an error metric. We

use the Normalised Mean Square Error (NMSE), given

by

NMSE =

〈
(y(n)− d(n))

2
〉

〈
(d(n)− 〈d(n)〉)2

〉 . (8)

A perfect match yields NMSE = 0, while a completely

off-target output gives a NMSE of 1.

2.4 Proposed Experimental Setup

Fig. 2 depicts the proposed experimental setup that

we have investigated using numerical simulations. This

section overviews the three main components: the op-

toelectronic reservoir, the analogue readout layer and

the FPGA board.

2.4.1 Opto-electronic reservoir

The optoelectronic reservoir is based on the same scheme

as in [11,12]. The reservoir states are encoded into the

intensity of incoherent light signal, produced by a su-

perluminiscent diode (Thorlabs SLD1550P-A40). The

Mach-Zehnder (MZ) intensity modulator (Photline MXAN-

LN-10) implements the nonlinear function, its operat-

ing point is adjusted by applying a bias voltage, pro-

duced by a Hameg HMP4040 power supply. Half of the

signal is extracted from the loop and sent to the readout

layer. The optical attenuator (Agilent 81571A) is used

to set the feedback gain α of the system (see Eq. (1)).

The fibre spool consists of approximately 1.6 km of sin-

gle mode fibre, giving a round trip time of T = 7.94 µs.

The resistive combiner sums the electrical feedback sig-

nal, produced by the feedback photodiode (TTI TIA-

525I), with the input signal from the FPGA to drive the

MZ modulator, with an additional amplification stage

of +27 dB (coaxial amplifier ZHL-32A+) to span the

entire Vπ interval of the MZ modulator.

2.4.2 Analogue readout layer

The analogue readout layer uses the same scheme as

proposed in [19]. The optical power it receives from the

reservoir is split in two. Half is sent to the readout pho-

todiode (TTI TIA-525I), and the resulting voltage sig-

nal, containing the reservoir states xi(n), is recorded by

the FPGA for the training process (see Eq. (3)). The

other half is modulated by a dual-output Mach-Zehnder

modulator (EOSPACE AX-2X2-0MSS-12) which ap-

plies the readout weights wi, generated by the DAC

of the FPGA. The outputs of the modulator are con-

nected to a balanced photodiode (TTI TIA-527), which

produces a voltage level proportional to difference of the

light intensities received at its two inputs. This allows to

multiply the reservoir states by both positive and nega-

tive weights [19]. The summation of the weighted states

is performed by a low-pass RC filter. The resistance R of

the filter, not shown on the scheme, is the 50 Ω output

impedance of the balanced photodiode. The resulting

output signal, proportional to y(n), is also recorded by

the FPGA, for training and performance evaluation.

Let us compute explicitly the output of the ana-

logue readout layer. The capacitor integrates the output

of the balanced photodiode with an exponential kernel

and a time constant τ . The impulse response of the RC

filter is given in [31]

h(t) =
1

RC
e

−t
RC =

1

τ
e

−t
τ , (9)
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Fig. 2 Scheme of the proposed experimental setup. The optical and electronic components are shown in black and grey,
respectively. The reservoir layer consists of an incoherent light source (SLD), a Mach-Zehnder intensity modulator (MZ), a
50/50 beam splitter, an optical attenuator (Att), an approximately 1.6 km fibre spool, a feedback photodiode (Pf), a resistive
combiner (Comb) and an amplifier (Amp). The analogue readout layer contains another 50/50 beam splitter, a readout
photodiode (Pr), a dual-output intensity modulator (MZ), a balanced photodiode (Pb) and a capacitor (C). The FPGA board
generates the inputs and the readout weights, samples the reservoir states and the output signal, and trains the system.

the voltage Q(t) on the capacitor is then given by

Q(t) =

∫ t

−∞
X(s)W (s)h(t− s)ds, (10)

whereX(t) is the continuous signal, containing the reser-

voir states, and W (t) are the readout weights, applied

to the dual-output intensity modulator. The output

y(n) is given by the charge on the capacitor at the dis-

crete times t = nT :

y(n) = Q(nT ). (11)

Since X(t) and W (t) are stepwise functions X(t) =

xi(n) and W (t) = wi for t ∈ [θ(i − 1), θi], where θ =

T/N is the duration of one neuron, we can approximate

the integration by a discrete summation to obtain

y(n) = θ

N∑
i=1

wi

( ∞∑
k=0

xi(n− k)h(N − i−Nk)

)

=
θ

τ

N∑
i=1

wi

( ∞∑
k=0

xi(n− k)e−ρ(N−i−Nk)

)
(12)

where we have introduced the RC integrator ratio ρ =

θ/τ .

The readout layer output y(t) = Q(t) is thus a linear

combination of the reservoir states xi, weighted by wi
and by the exponential kernel of the RC filter. Note

that contrary to usual reservoir computer outputs (see

e.g. Eq. (2), in Eq. (12) the output at time n depends

not only on the current states xi(n), but also on the

states at previous times xi(n− k).

In the previous experimental investigation of the

analogue readout [20], the readout weights wi were com-

puted using ridge regression [32], assuming an output

signal given by Eq. (2). But since the experiment pro-

duced an output similar to Eq. (12) instead, the readout

weights needed to be corrected appropriately. For more

details, we refer to the original paper [20]. In the present

work, the weights wi are adjusted gradually to match

the reservoir output signal y(n) with the target output

d(n) (see Sec. 2.2), without any assumptions about how

these weights actually contribute to the output signal

y(n). This is a much easier tasks, which allows to obtain

better experimental results, as will be shown in Sec. 3.

2.4.3 FPGA board

The reservoir computer is operated by a Xilinx Vir-

tex 6 FPGA chip, placed on a Xilinx ML605 evalua-

tion board. It is paired with a 4DSP FMC151 daugh-

ter card, containing one two-channel ADC (Analog-to-

Digital converter) and one two-channel DAC (Digital-

to-Analog converter). The ADC’s maximum sampling

frequency is 250 MHz with 14-bit resolution, while the

DAC can sample at up to 800 MHz with 16-bit preci-

sion.

The FPGA generates the input signal Mi×u(n) and

sends it into the opto-electronic reservoir. After record-

ing the resulting reservoir states xi(n) from one delay

loop, it executes the simple gradient descent algorithm

in order to update the readout weights wi(n+1). These
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are sent to the readout layer and used to generate the

output signal y(n), also recorded by the FPGA.

2.5 Numerical simulations

All numerical experiments were performed in Matlab.

We used a custom model of our reservoir computer,

based on previous investigations [11,24], that has been

shown to emulate very well the dynamics of the real sys-

tem. The simulations were performed in discrete time,

and took into account the internal structure of the Reser-

voir Computer described above, such as the ring-like

topology, sine nonlinearity and the analogue readout

layer with an RC filter. The simulations allow to try

out different configurations and to scan various experi-

mental parameters, including values that are impossible

to achieve experimentally or imposed by the hardware.

All simulations were performed on a dedicated high-

performance workstation with 12-core CPU and 64 Gb

RAM. Since the convergence of the gradient descent al-

gorithm is quite slow, we limited our investigations to

a fast update rate k = 10 (see Eq. (4)), so that each

simulation lasted about 24 hours.

The principal goal of the simulations was to check

how th online learning approach would cope with exper-

imental difficulties encountered in previous works [19,

20]. To that end, we gathered a list of possible issues and

scanned the corresponding experimental parameters in

order to check the system performance. In particular,

we investigated the following parameters:

– The RC integrator ratio ρ. This is the most impor-

tant parameter of the analogue readout layer. While

its accurate measure is not required in our setup –

since we do not correct the readout weights wi – it

defines the integration span of the filter, and thus

the reservoir states that contribute to the output

signal. It can thus significantly influence the results.

Another question of importance is how dependent

the system performance is on the exact value of ρ.

– The MZ modulator bias. Mach-Zehnder modulators

need to be applied a constant voltage to maintain

their transfer function symmetric around zero. The

devices we were using up to now are subject to slight

drifts over time, often resulting in a non-perfectly

symmetric response. We thus checked in simulations

whether such an offset would impact the results.

– The DAC resolution. The precision of the DACs on

the FMC151 daughtercard is limited to 16 bits. Nu-

merical investigations have shown that the preci-

sion of readout weights has a significant impact on

the performance, see e.g. [33–35]. We thus checked

whether the resolution available is enough for this

experiment.

Besides these potentially problematic parameters, we

also scanned the input and feedback gain parameters

(denoted by β and α in Eq. (1)) in order to find the

optimal dynamics of the reservoir for each task.

In a separate set of simulations, we investigated the

applicability of the proposed method to nonlinear read-

out layers. That is, we checked whether the simple gra-

dient descent method would still work with a nonlinear

response of the analogue readout layer with respect to

the reservoir states xi(n) (see Eq. (12)). We picked two

“saturation” functions of sigmoid shape. This choice

arises from the transfer function of common light de-

tectors that are linear at lower intensities and become

nonlinear at higher intensities. We used the following

functions: a logistic function, given by

glg(x) =
2

1 + e−2x
− 1, (13)

and the hyperbolic tangent function, given by

ght(x) = 0.6 tanh (1.8x) . (14)

These functions, glg and ght, do not model any particu-

lar photodiode, but are two simple examples that allow

us to address the above question. Both functions are

plotted in figure 5(b), together with a linear response,

for comparison.

We investigated two possible nonlinearities in the

output layer. In the first case, the readout photodiode

(Pr in figure 2) produces a nonlinear response, while

the balanced photodiode (Pb in figure 2) remains lin-

ear. This scenario, that we shall refer to as “nonlinear

readout”, allows one to investigate what happens when

the reservoir states xi used to compute the output sig-

nal y(n) (see Eq. (2)) differ from those employed to

update the readout weights (see Eq. (3)). Thus in this

case the update rule (Eq. (3)) for the output weights

becomes

wi(n+ 1) = wi(n) + λ (d(n)− y(n)) g(xi(n)), (15)

where g is given by either Eq. (13) or Eq. (14), while

the output layer is given by Eq. (12).

In the second case, called “nonlinear output”, the

readout photodiode is linear, but the balanced photo-

diode exhibits a saturable behaviour. In this case the

update rule Eq. (3) for the output weights is unchanged,

but the output layer Eq. (12) becomes

y(n) =
θ

τ

N∑
i=1

wi

( ∞∑
k=0

g(xi(n− k))e−ρ(N−i−Nk)

)
. (16)
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Note that we have only considered cases with just one

nonlinear photodiode, so as to check whether the differ-

ence between the reservoir states used for training and

those to compute the readout (see Eqs. (3) and (2), re-

spectively) would degrade the performance of the sys-

tem. The scenario with both nonlinear photodiodes is

hence more simple, as the reservoir states are the same

in both equations. One could consider the case with two

photodiodes exhibiting different nonlinear behaviours.

In that situation, similar to the results we will show in

Sec. 3, we expect the algorithm to cope with the differ-

ence up to a certain point, before running into troubles.

For this reason, we leave that scenario for future inves-

tigations.

3 Results

3.1 Linear readout: RC circuit

In this section we present our numerical results and

answer the questions raised in the previous section.

For each of the two tasks considered here, we per-

formed three kinds of simulations: we scanned the RC

integrator ratio ρ = θ/τ in the first simulation, the MZ

bias in the second, and the resolution of the DAC in

the third. Furthermore, since different values of these

parameters may work better with different dynamics of

the reservoir, we also scanned the input gain β and the

feedback gain α in all three simulations independently,

and applied the optimal values in each case.

For both tasks, we used a network with N = 50

neurons, as in most previous experimental works [11,

14,16,20]. The reservoir was trained on 83000 inputs,

with an update rate k = 10, and then tested over 105

symbols for the channel equalisation task and 104 in-

puts for NARMA10 task. For statistical purposes, we

ran each simulation 10 times, with different random

input masks. In the following figures, averaged results

over the masks are plotted, while the error bars give the

standard deviation over the different input masks. Re-

sults related to the channel equalisation task are plotted

with solid lines, while dashed lines correspond to those

for NARMA10.

For the channel equalisation task, our system yields

SERs between 10−4 and 10−3 depending on the input

mask, as summarised in Tab. 1 (first line). This is com-

parable to previous experiments with the same opto-

electronic reservoir: error rates of order of 10−4 were

reported in [11] using a digital readout and in [20] with

an analogue readout, using an RLC filter. The first ex-

perimental analogue system, using a simple RC circuit,

as we did in this work, performed significantly worse,

with SER of order of 10−2 [19]. That is, online learn-

ing does not outperform other methods, but allows to

obtain significantly better results with a simpler setup.

As for the NARMA10 task, we obtain a NMSE of

0.20 ± 0.02. Previous experiments with a digital read-

out layer produced 0.168± 0.015 [11] and 0.107± 0.012

[16]. With an analogue readout layer, the best NMSE

reported was 0.230±0.023 [20]. Our system thus slightly

outperforms the analogue approach, and gets close to

the digital one, except for the very good result obtained

with a different reservoir, based on a passive cavity [16].

Again, our results were obtained with a simple setup

and no modelling of the readout, contrary to [20].

Furthermore, the error rates obtained here can be

significantly lowered with more training, as has been

demonstrated numerically and experimentally in [24].

To keep reasonable simulation times (about 24 hours

per simulation), we limited the training to 83000 in-

put values, with an update rate k = 10. Higher up-

date rates can be used experimentally, since running the

opto-electronic setup is much faster than simulating it.

We thus expect to obtain lower error rates experimen-

tally with longer training sets and update rates up to

k = 200. To illustrate this point with results reported

in [24], short training sets with k = 10 yielded SERs

of order of 10−4 for the channel equalisation task. In-

creasing k up to 200 allowed to decrease the error rate

down to 5.7× 10−6.

Figures 3(a) and 3(b) show the influence of input

and feedback gain parameters on the performance of the

system. All curves present a pronounced minimum, ex-

cept for the input gain β for the NARMA10 task, where

values above 0.6 seem to produce comparable results.

Note that the channel equalisation task requires a low

input signal with β = 0.2, while NARMA10 works best

with stronger input and β = 0.8. As for the feedback

gain, NARMA10 shifts the system close to the chaotic

regime with α = 0.95, while channel equalisation works

better with α = 0.8.

Figure 4(a) shows the results of the scan of the RC

integrator ratio ρ. Both tasks work well on a relatively

wide range of values, with NARMA10 much less sensi-

tive to ρ than channel equalisation. In particular, the

channel is equalised best with ρ = 0.03. With N = 50,

this corresponds to τ = T/0.03N = 5.29 µs, which is

shorter than the roundtrip time T = 7.94 µs. On the

other hand, NARMA10 output is best reproduced with

ρ = 0.003, which yields τ = T/0.003N = 52.93 µs. This

is significantly longer than the roundtrip time T , mean-

ing that reservoir states from previous time steps are

also taken into account for computation of an output

value. This is not surprising, since NARMA10 function

has a long memory (see Eq. (7)). However, this memory
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Fig. 3 Reservoir computer performances for different input (β) and feedback (α) gains (solid lines: channel equalisation,
dashed lines: NARMA10). (a) While channel equalisation is relatively sensitive to β, NARMA10 works well in a wide range
of values. Note that although it seems that higher input gain would give better results, the dashed curve actually rises slightly
for large β, and the optimum input gain is around 0.8. (b) Both tasks require a system with significant memory (feedback
gain at least α = 0.8), and even a near-chaotic regime for NARMA10 (α = 0.95).

effect in the readout layer is not crucial, as the system

performs equally well with higher ρ and thus lower τ .

All in all, these results are very encouraging for upcom-

ing experiments, as they show that an accurate choice

of capacitor is not crucial for the performance of the

system.

Figure 4(b) illustrates the impact of the bias of the

readout Mach-Zehnder modulator on the reservoir com-

puter performance. NARMA10 task is clearly more af-

fected by this offset, as the NMSE grows quickly from a

bias of roughly 0.06. The SER, on the other hand, stays

low until 0.1. For a MZ modulator with Vπ = 4.5 V

this corresponds to a tolerance of roughly 0.1 V, which

is superior to expected experimental deviations. The

Hameg power supply that we use to bias the modulator

(see Sec. 2.4) has a resolution of 0.001 V.

Figure 5(a) shows that the 16-bit DAC resolution is

not an issue for this experiment, as the minimal preci-

sion required for good performance is 8 bits, for both

tasks.

3.2 Nonlinear readout

Table 1 sums up the results obtained with a nonlinear

readout layer. We used optimal experimental param-

eters, as described above, and generated new sets of

data for the training and test phases. We investigated

two scenarios and used two functions of sigmoid shape,

x → glg(x) and x → ght(x), as described in section

2.5. The system was trained over 83000 inputs, with

an update rate k = 10, and tested over 105 symbols

for the channel equalisation task and 104 inputs for

NARMA10. We report error values averaged over 10

trials with different random input masks, as well as the

standard deviations. The figures show that the perfor-

mance deterioration is more manifest with the hyper-

bolic tangent function ght, as it is much more nonlin-

ear than the logistic function glg. Overall, the added

nonlinearity does not have a significant influence on

the results in both cases. The SER roughly doubles,

at most, for the channel equalisation task. The impact

on NARMA10 is barely noticeable, as the error increase

of 5% is smaller than the standard deviation. Using of-

fline training on the same system (i.e. with nonlinear

output) we observed an increase of the SER by one

order of magnitude for the channel equalisation task,

and a 30% increase of the NMSE with the NARMA

task. These results show that online training is very

well suited for experimental analogue layers, as it can

cope with realistic components that do not have a per-

fectly linear response.

4 Conclusion

In this work we propose the online learning technique to

improve the performance of analogue readout layers for

photonic reservoir computers. We demonstrate an opto-

electronic setup with an output layer based on a simple

RC filter, and test it, using numerical simulations, on

two benchmark tasks. Training the setup online, with

a simple gradient descent algorithm, allows to obtain
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Fig. 4 Impact of the RC integrator ratio (ρ) and the readout MZ modulator bias on the reservoir computer performance (solid
lines: channel equalisation, dashed lines: NARMA10). (a) Ratios within ρ ∈ [0.03, 0.08] are suitable for channel equalisation
and ρ ∈ [0.002, 0.07] for NARMA10. Remarkably, inaccurate choice of ρ, and thus τ , will not result in significant performance
loss, as long as the value lies approximately in the optimal interval. (b) Although the NARMA10 task is more sensitive to this
bias, both tasks work reasonably well with a bias up to 0.06, which is superior to expected experimental deviations.
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Fig. 5 (a) Impact of the DAC resolution on the reservoir computer performance (solid lines: channel equalisation, dashed
lines: NARMA10). The results show that the 16-bit resolution of the FMC151 daughtercard is sufficient for this application.
(b) Nonlinear response curves of the photodiodes: hyperbolic tangent function ght (solid line) and logistic function glg (dotted
line). The linear response is plotted with a thick grey line.

the same level of performance as with a digital read-

out layer. Furthermore, our approach doesn’t require

any modelling of the underlying hardware, and is ro-

bust against possible experimental imperfections, such

as inaccurate choice of parameters or components. It is

also capable of dealing with a nonlinearity in the read-

out layer, such as saturable response of the photodiodes.

Finally, we expect the conclusions of the present inves-

tigation, namely the advantage of online training, to

be applicable to all hardware reservoir computers, and

not restricted to the delay dynamical opto-electronic

systems used for the sake of illustration in the present

work.

Note that the proposed setup is rather slow for prac-

tical applications. With a roundtrip time of T = 7.94 µs,

its bandwidth is limited to 126 kHz. This is significantly

lower than e.g. a standard Wi-Fi 802.11g channel with a

bandwidth of 20 MHz. The speed limit of the system is

set by the bandwidth of the different components, and

in particular of the ADC and DAC. However, the speed
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Readout
Transfer Chan. Equal. NARMA10
function (SER ×10−3) (NMSE)

Linear x 1.1± 0.7 0.20± 0.02

Nonlinear glg(x) 1.3± 0.9 0.21± 0.03
readout ght(x) 1.2± 0.8 0.21± 0.02

Nonlinear glg(x) 2.0± 1.6 0.21± 0.02
output ght(x) 2.5± 2.1 0.21± 0.01

Table 1 Summary of reservoir computer performances with
nonlinear readout layers, measured with error metrics related
to the tasks considered here. All values are averaged over 10
random input masks and presented with their standard devia-
tions. We used two functions with sigmoid shape to model the
response of the photodiodes. We investigated two scenarios:
in the “nonlinear readout” configuration, the readout photo-
diode Pr is nonlinear, while the balanced photodiode Pb is
linear, and vice versa in the “nonlinear output” scheme. The
linear case x → x is shown for comparison. For both tasks,
the added nonlinearity does not significantly deteriorate the
system performance.

of the setup can be easily increased. For instance, with

T = 50 ns (and thus, a bandwidth of 20 MHz), and

keeping N = 50, the reservoir states should have a du-

ration of 1 ns, and hence the ADC and DAC should

have bandwidths significantly above 1 GHz. Such com-

ponents are readily available commercially. As an illus-

tration of how a fast system would operate, we refer to

the optical experiment [15] in which information was

injected into a reservoir at rates beyond 1 GHz.

The results reported in this work will serve as a basis

for future investigations involving experimental valida-

tion of the proposed method. Experimental realisation

of an efficient analogue readout layer would allow build-

ing fully-analogue high-performance RCs, abandon the

slow digital post-processing and take full advantage of

the fast optical components. Such setups could be ap-

plied to emerging communication channels [36]. Fur-

thermore, fully-analogue setups would open the possi-

bility of feeding the output signal back into the reser-

voir, thus significantly enriching its dynamics and mak-

ing it capable of solving signal generation tasks. Recent

investigations reported a reservoir computer with dig-

ital output feedback capable of periodic and chaotic

signal generation [35,37]. Replacing the digital layer in

these implementations with an analogue solution would

significantly increase the speed of such generators. Our

work thus brings an efficient solution to an important

problem in the reservoir computing field, potentially

leading to a significant speed gain and a broader range

of applications.
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