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Abstract
Background In the last years, the Reservoir Computing (RC) framework has
emerged as a state of-the-art approach for efficient learning in temporal domains.
Recently, within the RC context, deep Echo State Network (ESN) models have
been proposed. Being composed of a stack of multiple non-linear reservoir layers,
deep ESNs potentially allow to exploit the advantages of a hierarchical temporal
feature representation at different levels of abstraction, at the same time preserv-
ing the training efficiency typical of the RC methodology.
Methods In this paper, we generalize to the case of deep architectures the fun-
damental RC conditions related to the Echo State Property (ESP), based on the
study of stability and contractivity of the resulting dynamical system.
Results Besides providing a necessary condition and a sufficient condition for the
ESP of layered RC networks, the results of our analysis provide also insights on
the nature of the state dynamics in hierarchically organized recurrent models. In
particular, we find out that by adding layers to a deep reservoir architecture, the
regime of network’s dynamics can only be driven towards (equally or) less sta-
ble behaviors. Moreover, our investigation shows the intrinsic ability of temporal
dynamics differentiation at the different levels in a deep recurrent architecture,
with higher layers in the stack characterized by less contractive dynamics. Such
theoretical insights are further supported by experimental results that show the
effect of layering in terms of a progressively increased short-term memory capacity
of the recurrent models.
Conclusions We provide a basic theoretical tool for the construction and further
studies of deep RC architectures.

Keywords Reservoir Computing · Deep Learning · Echo State Property ·
Stability Analysis · Contractivity

1 Introduction

The study of hierarchically organized deep neural network architectures repre-
sents a research topic in fast growth [26,3,8,14]. Despite the notable success in
real-world applications with significant results in problems such as image pro-
cessing [25], object detection [6] and handwritten digit recognition [7], there are
several open challenges that motivate the research effort in this field [2]. One of the
most prominent aspects is related to the huge computational resources typically
required by training deep neural networks [3], so that the efficiency of training
algorithms is an even more valuable element in this context. Another relevant re-
search topic concerns the extension of the deep learning paradigm to sequential
data processing, which opens the possibility to learn temporal representations at
different levels of abstraction, thereby allowing to naturally model tasks charac-
terized by a hierarchical organization of the temporal information, for instance in
real-world application areas such as text, speech and language processing [37,32,
17,15,9]. Furthermore, hierarchical processing of temporal information has a re-
markable biological plausibility as evidenced by studies in the field of neuroscience
[23,45,13,33,34] and as also exploited in biologically inspired computational mod-
els targeting tasks related to perception and vision (see e.g. [36,1,39]).

In the area of learning in sequential/temporal domains, Reservoir Computing
(RC) [27,46] represents a state-of-the-art paradigm for efficient design and training
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of Recurrent Neural Networks (RNNs) [24]. Although the principles of RC have
been instantiated in different ways in literature (see e.g. [42,28,40]), the reference
RC model in the neuro-computing area is represented by the Echo State Network
(ESN) [18,21]. An ESN implements a discrete-time dynamical system in which
the evolution of state dynamics and the output computation are decoupled both
architecturally and under the point of view of training. Specifically, a recurrent
non-linear reservoir component is used to model the network dynamics and to
provide a temporal context to the external input at each time step. The role of the
reservoir is thereby to encode the input history into a (possibly rich and meaning-
ful for the task) state representation that is then used by a linear non-recurrent
readout component to compute the output. The extreme training efficiency of the
ESN approach derives from the fact that only the readout is trained (typically
by direct methods), while the reservoir is initialized under certain conditions and
then is left untrained. A pivotal role in this context is played by the Echo State
Property (ESP) [18], which characterizes valid ESN dynamics and that essentially
says that the reservoir state should asymptotically depend only on the driving
input signal (the state is an echo of the input), while the influence of initial condi-
tions should progressively vanish with time. The ESP has been studied since the
seminal works on ESNs, resulting in the definition of two conditions for the ESP
to hold, one necessary and one sufficient, which are commonly used in ESN liter-
ature for reservoir initialization [18,27]. Moreover, in recent years, the conditions
for the ESP have been further investigated and refined in successive contributions
[5,49,30,47], witnessing an active and vibrant research interest in the direction of
a deeper understanding of the RC networks’ dynamics.

Recently, a study of layered deep RC architectures has been proposed in [11,12],
with the introduction of the deepESN model. The study of deepESNs, comprising
a hierarchy of multiple untrained reservoir layers, aims on the one hand to better
understand the meaning of stacking RNN layers separately from learning aspects,
and on the other hand to represent a starting point for the design of efficiently
trained deep learning models for temporal data. The preliminary experimental
analysis proposed in [11,12] has evidenced that it is possible to practically exploit
the deep architectural design in conjunction with key reservoir hyper-parameters
to enhance the time-scale differentiation of layers’ dynamics. The results in [11,12]
show that higher layers in the hierarchy can effectively develop progressively slower
dynamics. Moreover, recent literature studies are addressing the impact of ESNs
organized in layered architectures in terms of applications on benchmarks as well as
on real world tasks. Specifically, in [20] an ESN-based hierarchical network has been
proposed, in which each successive layer is trained to estimate the relevance of the
information that is processed at the lower layer, for the final output computation.
Being investigated in relation to the problem of temporal feature discovery at
different scales, the architecture proposed in [20] showed promising results on a
case study with synthetic data. The advantage of multi-layered RC architectures
has also been pointed out on time-series benchmarks in the RC area [29] and on
real world tasks in the area of speech processing using ad-hoc hierarchical RC
settings [43,44]. Overall, such literature works witness the emergence of a growing
application interest in this field and further exacerbates the urgency of a timely
and theoretically rational support to the set up of hierarchical RC networks.

The goal of this paper is to introduce a theoretical ground to the study of
deepESNs under a dynamical system point of view. In particular, we provide an
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analysis of the aspects related to stability and contractivity of state dynamics in
hierarchical reservoir architectures. Based on such investigations, the main result
of this paper is to formulate a necessary condition and a sufficient condition for
the ESP to hold in case of deepESNs. Moreover, as a further outcome, our analysis
provides useful insights that contribute to explain the diversification of state be-
havior in recurrent reservoir layers organized in a stack. In line with the theoretical
nature of this paper’s contribution, the effect of layering on the resulting dynam-
ical regime of deep RC networks is investigated also experimentally by assessing
its impact on the short-term memory capacity (MC) task.

The rest of this paper is organized as follows. The deepESN model is described
in Section 2, introducing the formalism and the notation adopted throughout the
paper. In Section 3 we extend the analysis of shallow reservoir network dynamics
to the case of deep reservoir architectures. First, we introduce the ESP in this con-
text, then we study the stability of deepESNs (allowing us to state the necessary
condition for the ESP of deepESN) and finally we investigate the conditions un-
der which a deepESN implements contraction mappings (resulting in the sufficient
condition for the ESP of deepESN). In Section 4 we provide examples of how the
theoretical findings in Section 3 can be used to comprehend the state dynamics
diversification at the different layers in stacked recurrent architectures. The exper-
imental results on the MC task are reported in Section 5. Finally, conclusions are
drawn in Section 6.

2 Deep Echo State Networks

From an architectural point of view, a deepESN consists in a stack of reservoir
layers, where at each time step t the first layer is fed by the external input, while
successive layers receive input from the output at step t of the previous layer in the
stack. In the following, assuming (for the sake of simplicity) that all the reservoirs
in the stack have the same number of units NR, indicating by NU the external
input dimension and by NL the number of layers, we denote by:

– x(i)(t) ∈ R
NR the state of the reservoir of layer i at step t

– u(t) ∈ R
NU the external input at step t

– W
(i)
in the input-to-reservoir weight matrix for layer i (where W

(i)
in ∈ R

NR×NU

for i = 1, and W
(i)
in ∈ R

NR×NR for i > 1)

– θ
(i) ∈ R

NR the weight vector associated to the unitary input bias for layer i
– Ŵ(i) ∈ R

NR×NR the recurrent reservoir weight matrix for layer i.

Throughout the paper we shall assume that the considered input and reservoir
state spaces are compact sets, although for the ease of notation we shall keep
denoting them as real vector spaces, i.e. as RNU and R

NR , respectively. Moreover,
we will also take into consideration the global state space of a deepESN, defined
as the product of the state spaces of the NL layers. Accordingly, we shall use the
symbol x(t) to denote the global state of the deepESN at step t, taking into account
the states of all the layers, i.e. x(t) = (x(1)(t),x(2)(t), . . . ,x(NL)(t)) ∈ R

NLNR .
Based on the introduced notation, Figure 1 graphically shows the general ar-

chitecture of a deepESN. As it can be observed, from an architectural perspective
we can view a deep recurrent network as obtained by applying a set of constraints
to a shallow fully-connected RNN. Specifically, a hierarchically organized recurrent
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model presents connections (without time-delays) only from lower layers to higher
layers in the stack. On the other hand, connections from higher to lower layers
and connections from the input to layers higher than the first level are avoided.

first layer 

second layer 

 !-th layer 

input layer 

Fig. 1 The reservoir architecture of a deepESN with NL layers.

Still under an architectural perspective, an interesting case that has been in-
vestigated in the RC literature consists in the organization of the reservoir into
sub-groups (or ensembles) of recurrent units, which, at a first glance, can be seen
also in the architecture in Figure 1. Relevant examples in this concern are repre-
sented by the work in [48] in which mechanisms of lateral inhibition among the
different sub-groups are implemented to alleviate the problem of coupling among
the reservoir units’ activations, and by the work in [35] in which the decoupling
effect is pursued by applying negatively correlation learning to the readout linked
to each of the sub-groups. Differently from such approaches, the architecture of a
deepESN is featured by a stacked recurrent architecture, whereas the sub-gropus
have the role of layers without mechanisms to direct control their decoupling. The
relevance of layering with respect to a sub-groups reservoir organization has been
analyzed in terms of the inherent ability to develop richer state dynamics with
multiple time-scales in [11,12].
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As in the shallow case, the reservoir component of a deepESN is used to encode
the history of the received input into a state space that provides a rich representa-
tion of the input signal dynamics, which can then be exploited by a readout tool
to learn the desired (temporal) task. As such, the process of training a deepESN is
analogous to the case of training a shallow ESN, except for the fact that the input
to the readout can take into account the state of the reservoirs at all the layers,
e.g. by concatenating them in a predefined order. Besides this consideration, in the
rest of this paper we will focus on the study of the state dynamics of a deepESN,
generally putting aside the aspects related to the readout training.

From a dynamical systems point of view a deepESN implements an input
driven discrete-time non-linear dynamical system, whose dynamics are governed
by a function F

F : RNU × R
NR × . . .× R

NR

︸ ︷︷ ︸

NL

→ R
NR × . . .× R

NR

︸ ︷︷ ︸

NL

x(t) = F (u(t),x(t− 1))

(1)

that maps the input at step t, i.e. u(t), and the set of reservoir states in the stack
at step t− 1, i.e. x(t− 1), into the set of reservoir states at step t, i.e. x(t).

Considering the layer-wise nature of the deepESN dynamics, we can write F

also as F = (F (1), F (2), . . . , F (NL)), where for each i = 1, . . . , NL the function F (i)

describes the evolution of the state of the i-th layer, i.e. how the state of layer i

depends on the state of the whole network at the previous time step. In particular,
the dynamics of the first layer are the same as in shallow ESNs. By taking into
consideration leaky integrator reservoir units [22], the state update equation for
the first layer is given by:

F (1) : RNU × R
NR → R

NR

x(1)(t) = F (1)(u(t),x(1)(t− 1))

= (1− a(1))x(1)(t− 1) + a(1) tanh(W
(1)
in u(t) + θ

(1) + Ŵ(1)x(1)(t− 1)).
(2)

where a(1) ∈ [0, 1] denotes the leaking rate parameter of the first layer.
For the second layer, the state at step t depends on x(1)(t), i.e. a function of u(t)
and x(1)(t−1), and on x(2)(t−1). Thereby the evolution of the network dynamics
at the second layer can be described as x(2)(t) = F (2)(u(t),x(1)(t−1),x(2)(t−1)).
In general, for i > 1, the state of layer i at step t, i.e. x(i)(t), depends on the states
of the layers 1, 2, . . . , i at step t − 1, i.e. x(1)(t − 1),x(2)(t − 1), . . . ,x(i)(t − 1),
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according to the following state transition function F (i):

F (i) : RNU × R
NR × . . .× R

NR

︸ ︷︷ ︸

i

→ R
NR (with i > 1)

x(i)(t) = F (i)(u(t),x(1)(t− 1),x(2)(t− 1), . . . ,x(i)(t− 1))

= (1− a(i))x(i)(t− 1) + a(i) tanh(W
(i)
in x(i−1)(t) + θ

(i) + Ŵ(i)x(i)(t− 1))

= (1− a(i))x(i)(t− 1) + a(i) tanh(W
(i)
in F (i−1)(u(t),x(1)(t− 1),

x(2)(t− 1), . . . ,x(i−1)(t− 1)) + θ
(i) + Ŵ(i)x(i)(t− 1)).

(3)
where a(i) ∈ [0, 1] is the leaking rate parameter of the i-th layer.

In the following we shall assume that the considered reservoir state spaces,
both at individual layers level and at a global level, are endowed with a metric
(i.e. a distance) function induced on the corresponding space by a norm, which we
indicate by ‖ · ‖ in both cases for the ease of notation.

Remark 1 Notice that, without losing generality, the definitions, the derivations
and the results presented in this paper are provided for the case of leaky integrator
reservoir units. However, all the achieved results are still valid for standard tanh

reservoir units, corresponding to the case in which the leaking rate parameter is
equal to 1 for every layer, i.e. a(i) = 1 for i = 1, 2, . . . , NL.

3 Analysis of Deep Echo State Network Dynamics

In this Section we extend the analysis of standard shallow ESN dynamics to the
case of layered architectures, providing a necessary and a sufficient condition for
the ESP to hold for a deepESN.

For shallow ESNs, the ESP represents a distinctive characterization of reservoir
dynamics. Basically, it states that when the network is driven by a long input
sequence, its state will asymptotically depend only on the input itself and the
influence of initial conditions will be progressively forgotten. In [18], the ESP has
been characterized by three equivalent conditions, namely being uniformly state
contracting, state forgetting and input forgetting. Based on such definitions, in [10]
it has been adopted a simple and useful definition for the ESP, which is extended
here for the case of layered reservoir architectures.

To this aim, we use the notation F̂ to denote the iterated version of the deep-
ESN state transition function in equation 1. Given an input sequence of arbitrary
finite length s ∈ (RNU )∗, and the global state of the deepESN x ∈ R

NLNR , F̂ (s,x)
is the global state of the network which has started in the initial state x and has
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been driven by the sequence s, i.e.

F̂ : (RNU )∗ × R
NR × . . .× R

NR

︸ ︷︷ ︸

NL

→ R
NR × . . .× R

NR

︸ ︷︷ ︸

NL

F̂ (s,x) =







x if s = [ ]

F (u(N), F̂ ([u(1),u(2), . . . ,u(N − 1)],x))
if s = [u(1),u(2), . . . ,u(N)]

(4)
where [ ] denotes the null sequence.

Accordingly, the ESP of a deepESN is expressed by the following definition.

Definition 1 (Echo State Property of deepESN)
Assume a deepESN whose global dynamics are ruled by a function F as in equation
1. Then the network has echo states if for each input sequence of length N , sN =
[u(1),u(2), . . . ,u(N)], and for all couples of deepESN initial states x,x′ ∈ R

NLNR ,
the following condition holds:

‖F̂ (sN ,x)− F̂ (sN ,x′)‖ → 0 as N → ∞ (5)

In other words, the distance between the states in which the deepESN is driven
after being fed by the same input sequence, but starting from different initial
conditions, approaches 0 as the length of the input sequence goes to infinity.

Remark 2 Note that if the RC architecture contains only one layer, i.e. for NL = 1
and with network’s dynamics ruled by F (1), the ESP of deepESN in Definition 1
reduces to the literature case of ESP of a standard (shallow) ESN [18,10].

3.1 Stability of deepESN Dynamics

In this Section we provide a necessary condition for the ESP of deep RC networks,
in Theorem 1, for the proof of which it is useful to introduce the following defini-
tions and lemmas, which represent interesting results by themselves and that are
therefore worth of being presented separately.

We introduce the study of stability of deepESN dynamics by investigating local
first-order approximations of the dynamical system in equation 1. Specifically, the
linearized version of the system in equation 1 around the state x0 ∈ R

NLNR can
be described as follows:

x(t) = JF,x(u(t),x0) (x(t− 1)− x0) + F (u(t),x0) (6)

where JF,x(u(t),x0) is the Jacobian of the deepESN state update equation eval-
uated in x0 for external input u(t). By taking into consideration the layer-wise
block organization of F , the Jacobian JF,x(u(t),x0) can be written as a block
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matrix:

JF,x(u(t),x0) =














JF (1),x(1)(u(t),x0) JF (1),x(2)(u(t),x0) . . . JF (1),x(NL)(u(t),x0)

JF (2),x(1)(u(t),x0) JF (2),x(2)(u(t),x0) . . . JF (2),x(NL)(u(t),x0)

...
...

. . .
...

JF (NL),x(1)(u(t),x0) JF (NL),x(2)(u(t),x0) . . . JF (NL),x(NL)(u(t),x0)














(7)

where for every i, j = 1, . . . , NL, JF (i),x(j)(u(t),x0) denotes the partial derivative

of F (i) with respect to x(j)(t− 1), evaluated at x0:

JF (i),x(j)(u(t),x0) =
∂F (i)(u(t),x(1)(t− 1), . . . ,x(i)(t− 1))

∂x(j)(t− 1)

∣
∣
∣
x=x0

(8)

The spectral radius (i.e. the maximum among the eigenvalues in modulus) of
the Jacobian in equation 7 has a relevant role in determining the stability/instability
behavior of the linearized system in equation 6, as stated by the following Lemma 1.
In this regard, we shall use the notation ρ(J) to represent the spectral radius of a
matrix J.

Lemma 1 (Necessary condition for the stability of the linearized sys-
tem around the zero state) Consider the linearized system in equation 6 and
assume a null input sequence as admissible input for the system. Then, a necessary
condition for the stability of the system dynamics around the zero state is given
by:

ρ(JF,x(0u,0)) < 1 (9)

where 0u = [0 . . . 0]T ∈ R
NU denotes the zero input at each pass of the null input

sequence, and 0 = [0 . . . 0]T ∈ R
NLNR is the zero state of the deepESN.

Proof Assuming a constant zero input 0u ∈ R
NU for the system, based on equa-

tions 6, the first-order approximation of the deepESN dynamics around the zero
state 0 ∈ R

NLNR can be expressed as follows:

x(t) = JF,x(0u,0)x(t− 1), (10)

from which it is easy to see that the zero state is a fixed point of the linearized sys-
tem. This means that the trajectory of the system starting from 0 will never move
from it. Moreover, the stability of the zero state as fixed point of equation 10 deter-
mines the asymptotic behavior of the trajectories starting from a state in a small
neighborhood of 0. In our case, linear stability analysis tells us that this behavior
depends on the spectral radius of JF,x(0u,0). Specifically, if ρ(JF,x(0u,0)) ≥ 1
then we cannot guarantee that the zero state is stable. A necessary condition for
the stability of the linearized system around the zero state is therefore given by

ρ(JF,x(0u,0)) < 1 (11)

⊓⊔
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Remark 3 Lemma 1 tells us that if the condition in equation 9 is violated, then
the linearized system in equation 6 exhibits instability around the zero state when
driven by a null input sequence. Such result can be further extended to the non-
linear system of equation 1, by observing [18,5] that if the underlying linear system
is unstable around the zero state then the non-linear system obtained by passing
the state values through a squashing non-linearity (such is tanh) will also show
instability. Thereby, the condition in equation 9 can be also interpreted as a nec-
essary condition for the stability of deepESN dynamics around the zero state.

At this point, in order to formulate a condition for the ESP, we need a way to
compute the Jacobian ρ(JF,x(0u,0)), which is provided by the following Lemma 2.

Lemma 2 (Jacobian of deepESN state transition function) Consider a
deepESN whose dynamics are defined by equations 1, 2 and 3. Then the Jaco-
bian of the deepESN state transition function for null input and zero state, i.e.
ρ(JF,x(0u,0)), can be computed as follows:

ρ(JF,x(0u,0)) = max
k=1,2,...,NL

ρ
(

(1− a
(k))I+ a

(k)Ŵ(k)
)

, (12)

where I ∈ R
NR×NR denotes the identity matrix.

The proof is given in Appendix A.
Based on the results of Lemmas 1 and 2, we can state the following theorem,

which provides a necessary condition for the ESP to hold in the case of a deepESN.

Theorem 1 (Necessary condition for the ESP of a deepESN) Consider a
deepESN whose dynamics is defined by equations 1, 2 and 3, and assume a null
sequence as admissible input for the system. Then, a necessary condition for the
ESP of the deepESN dynamics around the zero state is given by:

ρg = max
k=1,2,...,NL

(

ρ((1− a
(k))I+ a

(k)Ŵ(k))
)

< 1, (13)

where we call ρg the global spectral radius of the deepESN.

Proof As a consequence of Lemma 1 (see Remark 3), and by using the result of
Lemma 2, we can see that a necessary condition for the stability of the deepESN
dynamics around the zero state is given by

ρ(JF,x(0u,0)) = max
k=1,2,...,NL

(

ρ((1− a
(k))I+ a

(k)Ŵ(k))
)

< 1. (14)

By following a similar line of reasoning as in [18], we observe that if the zero state
is not a stable fixed point of the deepESN state update equation 1, then there
exist a state x′

0 in the neighborhood of 0 such that, given the same null input
sequence, the network starting from x′

0 will not converge to 0 (i.e. it will follow
a different trajectory than the one of the system starting in 0), and therefore the
ESP condition in equation 5 is violated. This means that the equation 14 provides
a necessary condition for the ESP of a deepESN.
⊓⊔
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Remark 4 Note that if the RC architecture contains only one layer, i.e. if NL = 1,
the necessary condition for the ESP of a deepESN in Theorem 1 reduces to the
necessary condition for the ESP (around the zero state and for null input sequence)
of standard (shallow) ESNs commonly reported in literature [18,27].

As in typical standard ESN applications, the necessary condition for the ESP
provides a mean for deepESN initialization, consisting in setting the values of
the leaking rate parameters and scaling the recurrent reservoir weight matrices
in the layers of the network hierarchy in accordance to equation 13. However, a
note of caution is due in interpreting the meaning of the condition for the ESP
in Theorem 1, as it is actually valid only in a neighborhood of the zero state,
while in more general cases the stability of network’s dynamics depends also on
the properties of the driving input signals. This aspect has been analyzed in recent
literature on standard RC networks [30,49,47,4], with the aim of characterizing
the state dynamics of (shallow) ESNs also as a function of the input. Although
investigations of this kind are out of the scopes of this paper, we point out here
that depending on the driving input signals, it could be possible that a deepESN
exhibits stable dynamics even if the global spectral radius ρg violates the necessary
condition in equation 13. Thereby, for practical applications of deepESNs, values
of ρg ≥ 1 should also be explored.

Remark 5 Finally, it is worth noticing that, as a consequence of Lemma 2, when
we incrementally add new layers to a deepESN architecture, the Jacobian of the
state update in equation 14 can never decrease. As such, the global spectral radius
ρg of a deepESN is a monotonically non-decreasing function of the number of
layers. Therefore, when we add new layers to a deepESN, the resulting network is
characterized by an identical or less stable dynamical regime.

3.2 Contractivity of deepESN Dynamics

In standard RC networks, the notion of contraction mapping plays a fundamental
role in the analysis of reservoir dynamics in relation to the sufficient condition for
the ESP [10,18]. In order to apply such notion to the state evolution of a deepESN,
we need to pursue the concept of metrics on the deepESN reservoir spaces men-
tioned in Section 2. Specifically, assuming that the reservoir spaces of the layers of a
deepESN are equipped with a distance function, the metric of the global deepESN
state space can be defined by resorting to the notion of metric on the product [31]
of the layers’ state spaces. In particular, in the following, we take into consideration
the distance induced by the L2-norm (i.e. the Euclidean distance) as metric for
the layers’ state spaces, and the maximum product metric as metric for the global
deepESN state space. Accordingly, denoting the distance between two states at any
layer k, x(k),x′(k) ∈ R

NR by ‖x(k)−x′(k)‖, the distance between two global states
x = (x(1),x(2), . . . ,x(NL)) ∈ R

NLNR and x′ = (x′(1),x′(2), . . . ,x′(NL)) ∈ R
NLNR

is defined by [31]:

‖x− x′‖ = max
k=1,2,...,NL

‖x(k) − x′(k)‖. (15)

Furthermore, note that the same distance defined in equation 15 can be used
as metric for the space obtained by the product of the reservoir state spaces
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for any number of layers. Namely, for every i > 0, and for every x(1), . . . ,x(i),
x′(1), . . . ,x′(i) ∈ R

NR , the distance between (x(1), . . . ,x(i)) and (x′(1), . . . ,x′(i)) is
computed as ‖(x(1), . . . ,x(i))− (x′(1), . . . ,x′(i))‖ = maxk=1,2,...,i ‖x

(k) − x′(k)‖.

Based on such considerations, we can provide definitions of contractivity for
the state transition functions of a deepESN at a layer level, in Definition 2, and
at a global level, in Definition 3.

Definition 2 (Contractivity of layers’ state transition function)
Assume a deepESN whose state dynamics at layer i are described by the state
transition function F (i), defined as in equation 2 for i = 1, and as in equation 3
for i > 1. The function F (i) implements a contraction with respect to the state
space if there exist a coefficient C(i) ∈ R, with 0 ≤ C(i) < 1, such that:
(a) if i = 1
∀u ∈ R

NU , ∀x(1),x′(1) ∈ R
NR :

‖F (1)(u,x(1))− F
(1)(u,x′(1))‖ ≤ C

(1)‖x(1) − x′(1)‖ (16)

(b) if i > 1
∀u ∈ R

NU , ∀x(1), . . . ,x(i),x′(1), . . . ,x′(i) ∈ R
NR :

‖F (i)(u,x(1), . . . ,x(i))− F (i)(u,x′(1), . . . ,x′(i))‖ ≤

C(i)‖(x(1), . . . ,x(i))− (x′(1), . . . ,x′(i))‖
(17)

In other words, F (i) is Lipschitz continuous (with respect to the state space)
with a Lipschitz constant C(i) < 1, which we call contraction coefficient of F (i).
In this case we also say that the dynamics of the deepESN at layer i is contractive.
Moreover, note that higher values of the contraction coefficients C(i) lead to less
contractive dynamics.

Definition 3 (Contractivity of global state transition function)
Assume a deepESN whose state dynamics are described by the state transition
function F in equation 1. The function F implements a contraction with respect
to the state space if there exists a coefficient C ∈ R, with 0 ≤ C < 1, such that
∀u ∈ R

NU , ∀x(1), . . . ,x(NL),x′(1), . . . ,x′(NL) ∈ R
NR :

‖F (u,x(1), . . . ,x(NL))− F (u,x′(1), . . . ,x′(NL))‖ ≤

C‖(x(1), . . . ,x(NL))− (x′(1), . . . ,x′(NL))‖
(18)

In other words, F is Lipschitz continuous (with respect to the state space) with
a Lipschitz constant C < 1, which we also call contraction coefficient of F . In this
case we also say that the global deepESN reservoir dynamics is contractive. Note
that higher values of the contraction coefficient C lead to less contractive network
dynamics.

Grounded in Definitions 2 and 3, the following lemmas provide sufficient con-
ditions for obtaining deepESN state transition functions implementing contraction
mappings.
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Lemma 3 (Sufficient condition for contractivity of layer’s dynamics)
Consider a deepESN in which the state dynamics at layer i are described by the
state transition function F (i), defined as in equation 2 for i = 1, and as in equation
3 for i > 1. Then a sufficient condition for the contractivity of the dynamics of
the reservoir at layer i is given by:
(a) if i = 1

C
(1) = (1− a

(1)) + a
(1)‖Ŵ(1)‖ < 1 (19)

(b) if i > 1, and assuming F (i−1) is contractive with coefficient C(i−1) < 1

C
(i) = (1− a

(i)) + a
(i)

(

C
(i−1)‖W

(i)
in ‖+ ‖Ŵ(i)‖

)

< 1 (20)

The proof is provided in Appendix B.
It is worth to observe that the sufficient conditions in Lemma 3, besides rep-

resenting the ground for the following results reported in this Section, provide
as corollary interesting insights on the effective diversification of the temporal
dynamics emerging in the layers of a hierarchically organized RC network. This
aspect is addressed and discussed through an illustrative example in Section 4.

Lemma 4 (Sufficient condition for contractivity of global dynamics)
Consider a deepESN in which the state dynamics is defined by means of equa-
tions 1, 2 and 3. Assume that for every i = 1, . . . , NL the dynamics at layer i is
contractive (according to Definition 2) with a Lipschitz constant C(i) identified in
Lemma 3, then a sufficient condition for the contractivity of the global deepESN
reservoir dynamics is given by:

C = max
k=1,2,...,NL

(

C
(k)

)

< 1 (21)

Proof ∀u ∈ R
NU and ∀x(1), . . . ,x(NL),x′(1), . . . ,x′(NL) ∈ R

NR it results that:

‖F (u,x(1), . . . ,x(NL))− F (u,x′(1), . . . ,x′(NL))‖ =

‖(F (1)(u,x(1)), F (2)(u,x(1),x(2)), . . . , F (NL)(u,x(1), . . . ,x(NL)))−

(F (1)(u,x′(1)), F (2)(u,x′(1),x′(2)), . . . , F (NL)(u,x′(1), . . . ,x′(NL)))‖ =

max
k=1,2,...,NL

(

‖F (k)(u,x(1), . . . ,x(k))− F (k)(u,x′(1), . . . ,x′(k))‖
)

≤

max
k=1,2,...,NL

(

C(k)‖(x(1), . . . ,x(k))− (x′(1), . . . ,x′(k))‖
)

≤

max
k=1,2,...,NL

(

C(k)
)

‖(x(1), . . . ,x(NL))− (x′(1), . . . ,x′(NL))‖

(22)

from which it follows that C = max
k=1,2,...,NL

(

C(k)
)

is a Lipschitz constant of F ,

thus if C < 1, F is a contraction according to Definition 3.
⊓⊔

The condition of contractivity of global dynamics in Lemma 4 allows to ensure
the ESP of deepESNs, as stated in the following Theorem 2.
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Theorem 2 (Sufficient condition for the ESP of a deepESN) Consider a
deepESN whose dynamics is defined by equations 1, 2 and 3. Assume that the deep-
ESN is characterized by globally contractive dynamics according to the conditions
in Lemma 4, with a Lipschitz constant C < 1, and that the reservoir state space
at every layer is bounded with diameter D. Then the deepESN satisfies the ESP.

The proof is given in Appendix C.

Remark 6 Note that if the considered RC architecture consists of only one layer,
i.e. if NL = 1, then the sufficient condition for the ESP of a deepESN in Theorem 2
reduces to the sufficient condition reported in literature for the ESP of a standard
(shallow) ESN [18,27], i.e. ultimately to the condition in equation 19.

4 On the Diversification of Layers’ Dynamics

In this Section we show how the results of our analysis on the contractivity of
deepESN state transition functions can be used to investigate the intrinsic dif-
ferentiation among the temporal dynamics developed by the layers of a stacked
recurrent network.

Specifically, we consider a base deepESN architecture with NL layers, in which
the hyper-parameters of the model take the same values in all the layers, i.e. for

every i = 1, . . . , NL, we have that a(i) = α, ‖Ŵ(i)‖ = ω and ‖W
(i)
in ‖ is fixed to 1.

In this setting, referring to the outcomes of Lemma 3, we compute the values of
the contraction coefficients C(i) of the different layers in the network hierarchy.

By solving the recurrence in equations 19 and 20 we obtain:

C(i) = 1− αi + ω
i∑

k=1

αk

=







ω i if α = 1

(1− αi)(1 + αω
1−α

) if α < 1

(23)

from which we can see that C(i) is an increasing function of the layer number i,
indicating that the contraction coefficient gradually increases in higher layers.

Here it is worth noticing that, in general, we cannot say that for each state
transition function F (i) the value of C(i) found out in Lemma 3 is the smallest
among its possible Lipschitz constants, and in this sense the contraction coeffi-
cients computed by applying equation 19, 20, and 23 actually represent upper
bounds to the effective contractivity of the state dynamics. As such, beyond the
numerical values of C(i), what is really interesting for the scopes of our analy-
sis is the qualitative trend of differentiation among the layers. Furthermore, note
that the contraction coefficient of a contractive dynamical system is related to its
memory length, as pointed out in the context of RNNs and ESNs in [41,16,10].
Thereby, the differentiation of the values of the contraction coefficient across the
layered deepESN architecture, as evidenced in a base deepESN setting by equa-
tion 23, implies a different extent of the memory length among the different layers,
with higher layers in the stack being characterized by less contractive dynamics
and longer memory.
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A graphical representation of this characterization is reported in Figure 2. In
particular, Figure 2(a) shows the values of the contraction coefficients computed
by equation 23 for a 5-layers deepESN with α = 0.5 and different values of ω in
the range 0.1 − 0.9, while Figure 2(b) corresponds to the case in which ω = 0.9
and α varies in the range 0.1−1.0. From Figure 2(a) it is possible to observe, with
respect to the number of the layers, the clear increasing trend of the contraction
coefficients, whose values scale with the value of ω. For what concerns the α

parameter, in Figure 2(b) we can see how the increasing trend of the contraction
coefficients, scaling with the value of α, has a different behavior depending on
the particular value of α. In particular, while the growth is linear for α = 1, a
progressively stronger saturation effect is evident for values of α closer to 0.

Fig. 2 Contraction coefficient of deepESN layers. (a): α = 0.5 and ω varying in 0.1 − 0.9,
(b): ω = 0.9 and α varying in 0.1− 1.0.

Finally, we can draw two main lines of observations. First, we can qualitatively
characterize the inherent differentiation among the layers of a hierarchically orga-
nized recurrent network in relation to the occurrence of temporal dynamics with
progressively longer memory length, with a saturation effect ruled by the values
of network’s hyper-parameters. Second, the growth of the contraction coefficient,
obtained by increasing the number of layers in the architecture, explains the intrin-
sic increase of the memory length in deep recurrent networks as an architectural
effect of the layering. In this concern, it is useful to recall that, on the basis of the
result of Lemma 4, the maximum value of the contraction coefficient among the
network’s layers characterizes the contractivity of the global network dynamics,
and thereby the extent of its memory length.

5 Short-term Memory Capacity

The relation between the memory length of recurrent networks’ dynamics and the
effect of layering is further investigated through the experimental assessment of
the short-term memory of the hierarchically organized RC networks. To this end
we considered the MC task [19], which consists in recovering delayed versions of
a temporal input signal whose elements u(t) are randomly drawn from a uniform
distribution in [−0.8, 0.8]. The dataset contained a total number of 6000 time
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Fig. 3 Averaged MC values (and standard deviations) on the test set achieved by deepESN
for increasing number of layers, plotted with respect to the total number of reservoir units
(with 20 units per layer). For comparison, results achieved by shallow ESN under the same
hyper-parametrization settings are reported as well. (a): α = 0.5 and ω = 0.9, (b): α = 1.0
and ω = 0.9.

steps, of which the first 5000 have been used for training and the remaining 1000
for test. Denoting by yd(t) the output of the readout unit trained to reconstruct
the input signal with delay d, i.e. u(t− d), the MC of the network is defined as

MC =
∞∑

d=0

r
2(u(t− d), yd(t)), (24)

where r2(u(t − d), yd(t)) represents the squared correlation coefficient between
u(t− k) and yd(t).

In line with the analysis reported in Section 4, we adopted a base deepESN
architecture in which the reservoir hyper-parameters have the same value in all

the layers, i.e. a(i) = α, ‖Ŵ(i)‖ = ω and ‖W
(i)
in ‖ = ωin for every i = 1, . . . , NL.

We considered deepESNs in which each layer contained NR = 20 fully connected
reservoir units, varying the number of layers NL from 1 to 5, thereby varying
the total number of reservoir units in the range 20 − 100. By following a similar
approach to e.g. [38], we practically implemented the MC task by using a finite
number of delayed signals equal to 200, i.e. twice the maximum number of total
reservoir units, and we used a value of ωin = 0.1. With the only scope of compar-
ative analysis (and without aiming at reaching the best performance on the task),
we conducted experiments with ω = 0.9 and α ∈ {0.5, 1}, and for each reservoir
hyper-parametrization we independently instantiated a number of 10 reservoir
guesses (for random initialization), over which the results have been averaged.
For comparison, we also ran experiments with standard (shallow) ESNs, using the
same hyper-parametrizations considered for the experiments with deepESNs, and
organizing in this case the total number of reservoir units (variable in the range 20
- 100) into a single fully connected reservoir layer. Hence, the experiments consid-
ered five steps with a growing number of units/layers for the standard/deep cases.
Note that, since the total number of reservoir units is the same for deepESN and
standard ESN in each of the five steps, the same number of free parameters for
the readout, and hence the same time complexity, are considered in the two cases.

The results achieved on the test set of the MC task are illustrated in Fig-
ure 3, respectively in correspondence of the setting with α = 0.5 and ω = 0.9 in
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Figure 3(a), and with α = 1 and ω = 0.9 in Figure 3(b). Results clearly show
that the MC of deepESN networks increases as the number of layer is increased.
Remarkably, this characterization does not simply depend on the increasing num-
ber of reservoir units, but it is actually due to the layered organization of the
recurrent architecture, as testified by the fact that the MC value of deepESN
systematically outperforms the result achieved by shallow ESN with the same
hyper-parametrization and total number of reservoir units. Moreover, the gap be-
tween the MC of deepESN and of shallow ESN tends to increase when a larger
number of layers are considered. We can also note that results obtained in corre-
spondence of the setting with α = 1 are consistently better than those achieved
with α = 0.5. In particular, for the 5-layered deepESN setting the achieved MC
value is 18.52± 0.43, for α = 0.5, and 23.58± 0.83, for α = 1.

Overall, the results presented in this Section represent an experimental evi-
dence that confirms the observations made in Section 4, and practically show that
the short-term memory of RC networks is actually amplified as an effect of lay-
ering, where the extent of such increase might be modulated by the values of the
network’s hyper-parameters (i.e. by the value of α in our case).

6 Conclusions

The study of deep recurrent models is still in its initial phases. In this paper we
have proposed an analysis of the state dynamics in deep recurrent architectures,
establishing fundamental conditions for the ESP of deepESNs that extend and
generalize known results in standard RC literature to the case of layered RC net-
works. As such, the work in this paper yields a basic tool for concretely creating
and studying deepESNs. In particular, through the study of the stability of deep-
ESN dynamics we have provided a necessary condition for the ESP that is related
to a global spectral radius of the system, which turned out to be a non-decreasing
function of the number of layers in the architecture. Moreover, the analysis of the
contractivity of deepESN dynamics allowed us to formulate a sufficient condition
for the ESP, related to the value of key RC hyper-parameters.

As a further result of our investigation, we have provided insights on the in-
herent differentiation among the temporal dynamics developed in the layers of a
hierarchically organized recurrent neural architecture. Already in a base deepESN
setting, in which hyper-parameters of the network take the same values in every
layer, the state dynamics are characterized by progressively increasing contraction
coefficients. This aspect contributes to explain the intrinsic gain of the memory
length in deeper recurrent networks, as also empirically shown through numerical
simulations on the MC task.

A Proof of Lemma 2

Let us consider the Jacobian of deepESN state transition function in equation 1 evaluated
at u(t) and x(t − 1). From equation 8 we can easily see that for every j > i, we have that
J
F (i),x(j) (u(t),x(t−1)) is a zero matrix, as the hierarchical structure of the deepESN architec-

ture (see Figure 1 and equations 2 and 3) tells us that state update at layer i does not depend
on the previous state of the system at higher layers in the stack (i.e. at layers j, with j > i).
Thereby we can notice that JF,x(u(t),x(t − 1)) has the structure of a lower-triangular block
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matrix. As such, the eigenvalues of JF,x(u(t),x(t− 1)) are the eigenvalues of the matrices on
its block diagonal, i.e. the eigenvalues of J

F (i),x(i) (u(t),x(t − 1)) for every i = 1, 2, . . . , NL.

Accordingly, we have that the spectral radius of JF,x(u(t),x(t − 1)) is the maximum among
the spectral radii of its diagonal blocks, i.e.

ρ(JF,x(u(t),x(t− 1))) = max
k=1,2,...,NL

(

ρ(J
F (k),x(k) (u(t),x(t− 1))

)

. (25)

With the aim of computing the diagonal block matrices J
F (k),x(k) (u(t),x(t− 1)), we observe

that from equation 8 we have that

J
F (k),x(k) (u(t),x(t− 1)) =

∂F (k)(u(t),x(1)(t−1),...,x(k)(t−1))

∂x(k)(t−1)
=

∂

∂x(k)(t−1)

(

(1− a(k))x(k)(t− 1) + a(k) tanh(W
(k)
in F (k−1)(u(t),x(1)(t− 1), . . . ,x(k−1)(t− 1))+

θ(k) + Ŵ(k)x(k)(t− 1))
)

=

(1− a(k))I+ a(k)















1− (x̃
(k)
1 (t))2 0 . . . 0

0 1− (x̃
(k)
2 (t))2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 1− (x̃
(k)
NR

(t))2















Ŵ(k)

(26)

where for j = 1, 2, . . . , NR, x̃
(k)
j (t) are the elements of x̃(k)(t) = tanh(W

(k)
in F (k−1)(u(t),x(1)(t−

1),x(2)(t− 1), . . . ,x(k−1)(t− 1)) + θ(k) + Ŵ(k)x(k)(t− 1)).
Considering zero input and state, from equation 26, we can derive that for every k =

1, 2, . . . , NL

ρ(J
F (k),x(k) (0u,0)) = ρ

(

(1− a(k))I+ a(k)Ŵ(k)
)

(27)

and therefore equation 25 becomes

ρ(JF,x(0u,0)) = max
k=1,2,...,NL

ρ
(

(1− a(k))I+ a(k)Ŵ(k)
)

. (28)

⊓⊔

B Proof of Lemma 3

case (a): This case follows from the case of contractivity in standard shallow ESNs [10]. Indeed,

∀u ∈ R
NU and ∀x(1),x′(1) ∈ R

NR

‖F (1)(u,x(1))− F (1)(u,x′(1))‖ =

‖(1− a(1))x(1) + a(1) tanh(W
(1)
in u+ θ(1) + Ŵ(1)x(1))−

(1− a(1))x′(1) − a(1) tanh(W
(1)
in u+ θ(1) + Ŵ(1)x′(1))‖ =

‖(1− a(1))(x(1) − x′(1)) + a(1)(tanh(W
(1)
in u+ θ(1) + Ŵ(1)x(1))−

tanh(W
(1)
in u+ θ(1) + Ŵ(1)x′(1)))‖ ≤

(1− a(1))‖x(1) − x′(1)‖+ a(1)‖W
(1)
in u+ θ(1) + Ŵ(1)x(1)−

W
(1)
in u− θ(1) − Ŵ(1)x′(1)‖ ≤

(1− a(1))‖x(1) − x′(1)‖+ a(1)‖Ŵ(1)‖‖x(1) − x′(1)‖ =

(

(1− a(1)) + a(1)‖Ŵ(1)‖
)

‖x(1) − x′(1)‖

(29)
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from which it follows that C(1) = (1 − a(1)) + a(1)‖Ŵ(1)‖ is a Lipschitz constant for F (1).

Thus if C(1) < 1 then F (1) is a contraction (see Definition 2).

case (b): In this case, assuming F (i−1) is a contraction with a Lipschitz constant C(i−1) < 1,

∀u ∈ R
NU and ∀x(1), . . . ,x(i),x′(1), . . . ,x′(i) ∈ R

NR

‖F (i)(u,x(1), . . . ,x(i))− F (i)(u,x′(1), . . . ,x′(i))‖ =

‖(1− a(i))x(i) + a(i) tanh(W
(i)
in F (i−1)(u,x(1), . . . ,x(i−1)) + θ(i) + Ŵ(i)x(i))−

(1− a(i))x′(i) − a(i) tanh(W
(i)
in F (i−1)(u,x′(1), . . . ,x′(i−1)) + θ(i) + Ŵ(i)x′(i))‖ =

‖(1− a(i))(x(i) − x′(i)) + a(i)(tanh(W
(i)
in F (i−1)(u,x(1), . . . ,x(i−1)) + θ(i) + Ŵ(i)x(i))−

tanh(W
(i)
in F (i−1)(u,x′(1), . . . ,x′(i−1)) + θ(i) + Ŵ(i)x′(i)))‖ ≤

(1− a(i))‖x(i) − x′(i)‖+ a(i)‖W
(i)
in F (i−1)(u,x(1), . . . ,x(i−1)) + θ(i) + Ŵ(i)x(i)−

W
(i)
in F (i−1)(u,x′(1), . . . ,x′(i−1))− θ(i) − Ŵ(i)x′(i)‖ =

(1− a(i))‖x(i) − x′(i)‖+ a(i)‖W
(i)
in (F (i−1)(u,x(1), . . . ,x(i−1))−

F (i−1)(u,x′(1), . . . ,x′(i−1))) + Ŵ(i)(x(i) − x′(i))‖ ≤

(1− a(i))‖x(i) − x′(i)‖+ a(i)
(

‖W
(i)
in ‖‖F (i−1)(u,x(1), . . . ,x(i−1))−

F (i−1)(u,x′(1), . . . ,x′(i−1))‖+ ‖Ŵ(i)‖‖x(i) − x′(i)‖
)

≤

(1− a(i))‖x(i) − x′(i)‖+ a(i)
(

‖W
(i)
in ‖C(i−1) ‖(x(1), . . . ,x(i−1))−

(x′(1), . . . ,x′(i−1))‖+ ‖Ŵ(i)‖‖x(i) − x′(i)‖
)

≤

(1− a(i))‖(x(1), . . . ,x(i))− (x′(1), . . . ,x′(i))‖+ a(i)
(

C(i−1)‖W
(i)
in ‖‖(x(1), . . . ,x(i))−

(x′(1), . . . ,x′(i))‖+ ‖Ŵ(i)‖‖(x(1), . . . ,x(i))− (x′(1), . . . ,x′(i))‖
)

=

(1− a(i))‖(x(1), . . . ,x(i))− (x′(1), . . . ,x′(i))‖+

a(i)
(

C(i−1)‖W
(i)
in ‖+ ‖Ŵ(i)‖

)

‖(x(1), . . . ,x(i))− (x′(1), . . . ,x′(i))‖ =

[

(1− a(i)) + a(i)
(

C(i−1)‖W
(i)
in ‖+ ‖Ŵ(i)‖

)]

‖(x(1), . . . ,x(i))− (x′(1), . . . ,x′(i))‖

(30)

from which we can see that C(i) = (1 − a(i)) + a(i)
(

C(i−1)‖W
(i)
in ‖+ ‖Ŵ(i)‖

)

is a Lipschitz

constant for F (i), and thereby whenever C(i) < 1 it results that F (i) is a contraction (see
Definition 2).

⊓⊔

C Proof of Theorem 2

Proof Given any input string of lengthN , denoted by sN = [u(1), . . . ,u(N)], and for every cou-

ple of deepESN global states x = (x(1), . . . ,x(NL)) ∈ R
NLNR and x′ = (x′(1), . . . ,x′(NL)) ∈

R
NLNR , we have that:
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‖F̂ (sN ,x)− F̂ (sN ,x′)‖ =

‖F̂ ([u(1), . . . ,u(N)],x)− F̂ ([u(1), . . . ,u(N)],x′)‖ =

‖F (u(N), F̂ ([u(1), . . . ,u(N − 1)],x))−

F (u(N), F̂ ([u(1), . . . ,u(N − 1)],x′))‖ ≤

C‖F̂ ([u(1), . . . ,u(N − 1)],x)− F̂ ([u(1), . . . ,u(N − 1)],x′)‖ =

C‖F (u(N − 1), F̂ ([u(1), . . . ,u(N − 2)],x))−

F (u(N − 1), F̂ ([u(1), . . . ,u(N − 2)],x′))‖ ≤

C2‖F̂ ([u(1), . . . ,u(N − 2)],x)− F̂ ([u(1), . . . ,u(N − 2)],x′)‖ ≤

. . .

CN−1‖F̂ ([u(1)],x)− F̂ ([u(1)],x′)‖ =

CN−1‖F (u(1), F̂ ([ ],x))− F (u(1), F̂ ([ ],x′))‖ =

CN−1‖F (u(1),x)− F (u(1),x′)‖ ≤

CN ‖x− x′‖ =

CN max
k=1,2,...,NL

‖x(k) − x′(k)‖ ≤

CND

(31)

from which it follows that ‖F̂ (sN ,x)− F̂ (sN ,x′)‖ is upper bounded by a term that approaches
0 as N → ∞. Thereby the ESP condition in Definition 1 holds.
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7. Cireşan, D., Meier, U., Gambardella, L., Schmidhuber, J.: Deep, big, simple neural nets
for handwritten digit recognition. Neural computation 22(12), 3207–3220 (2010)

8. Deng, L., Yu, D.: Deep learning. Signal Processing 7, 3–4 (2014)
9. El Hihi, S., Bengio, Y.: Hierarchical recurrent neural networks for long-term dependencies.

In: NIPS, pp. 493–499 (1995)
10. Gallicchio, C., Micheli, A.: Architectural and markovian factors of echo state networks.

Neural Networks 24(5), 440–456 (2011)
11. Gallicchio, C., Micheli, A.: Deep reservoir computing: A critical analysis. In: Proceedings

of the 24th European Symposium on Artificial Neural Networks (ESANN), pp. 497–502.
i6doc.com (2016)

12. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: A critical experimental
analysis. Neurocomputing (2016). (Accepted)

13. Gerstner, W., Kistler, W.: Spiking neuron models: Single neurons, populations, plasticity.
Cambridge university press (2002)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning (2016). Book in preparation for
MIT Press, http://www.deeplearningbook.org

15. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural
networks. In: 2013 ieee international conference on Acoustics, speech and signal processing
(ICASSP),, pp. 6645–6649. IEEE (2013)
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