Skip to main content
Log in

Learning Optimal Seeds for Ranking Saliency

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

A variety of methods have been developed for visual saliency analysis, and it is a challenge to detect the most important scene from the input image. In this paper, to improve the shortage that the spatial connectivity of every node in model only via the k-regular graph and the idealistic boundary prior assumption is used in graph-based manifold ranking, we present a new optimal seed method to get saliency map. First, we evaluate the salience value of each region by global contrast-based spatial and color feature. Second, the salience values of the first stage are used to optimize the background and foreground queries (seeds); meanwhile, we tackle boundary cues from hierarchical graph to optimize background seeds. Then, we derive each stage saliency measure by the classical manifold ranking after obtaining optimal seeds. Finally, the final saliency map is obtained by combining the saliency results of two stages. Our algorithm is tested on the five public datasets and compared with nine state-of-the-art methods; the quantitative evaluation indicates that our method is effective and efficient. Our method can handle complex images with different details and can produce more accurate saliency maps than other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xie YL, Lu HC, Yang MH. Bayesian saliency via low and mid-level cues. IEEE Trans Image Process. 2013;5(22):1689–98.

    Google Scholar 

  2. Shen X and Wu Y. A unified approach to salient object detection via low rank matrix recovery. In CVPR; 2012.

  3. Achanta R, SHemami S, Estrada FJ, and Süsstrunk S. Frequency-tuned salient region detection. CVPR; 2009. p. 1597–1604.

  4. Y. Zhai and M. Shan. Visual attention detection in video sequences using spatiotemporal cues. In ACM Multimedia; 2006. p. 815–824.

  5. Cheng MM, Mitra NJ, Huang X, Torr PHS, Hu SM. Global contrast based salient region detection. IEEE TPAMI. 2015;37(3):569–82.

    Article  Google Scholar 

  6. Palmer S. Vision science: photons to phenomenology, volume 1. Cambridge: MIT; 1999.

    Google Scholar 

  7. Klein DA and Frintrop S. Center-surround divergence of feature statistics for salient object detection. ICCV; 2011.

  8. Li WT, Chang HS, Lien KC, Chang HT, Frank Wang YC. Exploring visual and motion saliency for automatic video object extraction. IEEE Trans Image Process. 2013;22(7):2600–10.

    Article  PubMed  Google Scholar 

  9. Ren Z, Gao S, Chia LT, Tsang I. Region-based saliency detection and its application in object recognition. IEEE Trans Circuits Syst Video Technol. 2014;24(5):769–79.

    Article  Google Scholar 

  10. Borji A, Cheng MM, Jiang H, Li J. Saliency object detection: a survey. arXiv preprint arZXiv. 2014;1411–5878.

  11. Chen DY, Luo YS. Preserving motion-tolerant contextual visual saliency for video resizing. IEEE Trans Multimedia. 2013;15(o):1616–27.

    Article  Google Scholar 

  12. Lee YJ, Ghosh J, and Grauman K. Discovering important people and objects for egocentric video summarization. CVPR; 2013. p. 1346–1353.

  13. Perazzi F, Krahenbuhl P, Pritch Y, and Hornung A. Saliency filters: contrast based filtering for salient region detection. In Proc. IEEE Conf. Comput. Vis; 2011. p. 733–740.

  14. M. Cheng, J. Warrell, W. Lin, S. Zheng, V. Vineet, and N. Crook, Efficient salient region detection with soft image abstraction. In Proc. IEEE Conf. Comput, Vis; 2013. p. 1529–1536.

  15. Yang C, Zhang L, Lu H, Ruan X, and Yang MH. Saliency detection via graph-based manifold ranking. In CVPR; 2013. p. 3166–3173.

  16. W. Wang, Y Wang, Q. Huang, and W. Gao. Measuring visual saliency by site entropy rate. In Proc IEEE Conf Comput Vis Pattern Recog; 2010. p. 2368–2375.

  17. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20(11):1254–9.

    Article  Google Scholar 

  18. Bruce N and Tsotos JK. Saliency based on information maximization. NIPS; 2006. p. 155–162.

  19. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, et al. Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell. 2011;33(2):353–67.

    Article  PubMed  Google Scholar 

  20. Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell. 2012;34(10):1915–26.

    Article  PubMed  Google Scholar 

  21. Ma YF and Zhang HJ. Contrast-based image attention analysis by using fuzzy growing. In ACM International Conference on Multimedia; 2003. p. 374–381.

  22. Yan Q, Xu L, Shi JP, and Jia JY. Hierarchical saliency detection. In CVPR; 2013. p. 1155–1162.

  23. Harel J, Koch C, Perona P. Graph-based visual saliency. In Advances in Neural Information Processing Systems. 2006. p. 545–552.

  24. Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Wang W, Wang L and Tan T. An effective regional saliency model based extended site entropy rate. In ICPR; 2012. p. 1407–1410.

  26. Jiang Z and Davis L. Submodular salient region detection. In Proc IEEE Conf Comput Vis Pattern Recog; 2013. p. 2043–2050.

  27. Jiang P, Ling H, Yu J, and Peng J. Salient region detection by UFO: uniqueness, focusness and objectness. In ICCV; 2013.

  28. Jiang BW, Zhang LH, Lu HC. Saliency detection via absorbing markov chain. Proc IEEE Int Conf Comput Vis Sydney. 2013;2013:1665–72.

    Google Scholar 

  29. Gopalakrishnan V, Hu Y, Rajan D. Random walks on graphs for salient object detection in images. IEEE Trans Image Process. 2010;19(12):3232–42. https://doi.org/10.1109/TIP.2010.2053940.

    Article  PubMed  Google Scholar 

  30. Cheng X, Du P, Guo J. Ranking on data manifold with sink points. IEEE Trans Knowl Data Eng. 2013;25(1):177–91.

    Article  Google Scholar 

  31. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Ssstrunk S. SLIC super-pixels compared to state-of-the-art super-pixel methods. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2274–82.

    Article  PubMed  Google Scholar 

  32. Perazzi F, Krahenbuhl P, Pritch Y, and Hornung A. Saliency filters: contrast based filtering for salient region detection. In CVPR; 2012. p. 733–740.

  33. Hou X and Zhang L. Saliency detection: a spectral residual approach. In IEEE CVPR; 2007. p. 1–8.

  34. Murray N, Vanrell M, Otazu X, and Parraga CA. Saliency estimation using a non-parametric low-level vision model. In IEEE CVPR; 2011. p. 433–440.

Download references

Acknowledgements

This work was supported by the grant of the National Natural Science Foundation of China (61671018, 61672204), Major Science and Technology Project of Anhui Province (17030901026), Key Constructive Discipline Project of Hefei University (2016xk05), MOE Youth Project of Humanities and Social Sciences (15YJC860034), Natural Science Foundation of Anhui Higher Education Institutions (KJ2016A604), Key Project of Hefei University (16ZR21ZDA), Youth Backbone Visiting Research Key Project at Abroad (gxfxZD2016219), National Statistical Science Research Project of China (2014LZ32), Horizontal Cooperative Research Project of Fuyang Normal University (XDHX2016021).

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. F011601), National Nature Science Foundation of China (No. 61672204), Humanity and Social Science Youth Foundation of Ministry of Education of China (Grant No. 15YJC860034), Natural Science Foundation of Anhui Province of China (Grant No. KJ2016A604), and Natural Science Foundation of Fuyang Normal University (Grant No. 2017FSKJ11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, L., Wang, X. et al. Learning Optimal Seeds for Ranking Saliency. Cogn Comput 10, 347–358 (2018). https://doi.org/10.1007/s12559-017-9528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-017-9528-7

Keywords

Navigation