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Abstract

The early eye tracking studies of Yarbus provided descriptive evidence that an observer’s task 

influences patterns of eye movements, leading to the tantalizing prospect that an observer’s 

intentions could be inferred from their saccade behavior. We investigate the predictive value of 

task and eye movement properties by creating a computational cognitive model of saccade 

selection based on instructed task and internal cognitive state using a Dynamic Bayesian Network 

(DBN). Understanding how humans generate saccades under different conditions and cognitive 

sets links recent work on salience models of low-level vision with higher level cognitive goals. 

This model provides a Bayesian, cognitive approach to top-down transitions in attentional set in 

pre-frontal areas along with vector-based saccade generation from the superior colliculus. Our 

approach is to begin with eye movement data that has previously been shown to differ across task. 

We first present an analysis of the extent to which individual saccadic features are diagnostic of an 

observer’s task. Second, we use those features to infer an underlying cognitive state that 

potentially differs from the instructed task. Finally, we demonstrate how changes of cognitive state 

over time can be incorporated into a generative model of eye movement vectors without resorting 

to an external decision homunculus. Internal cognitive state frees the model from the assumption 

that instructed task is the only factor influencing observers’ saccadic behavior. While the inclusion 

of hidden temporal state does not improve the classification accuracy of the model, it does allow 

accurate prediction of saccadic sequence results observed in search paradigms. Given the 

generative nature of this model, it is capable of saccadic simulation in real time. We demonstrated 

that the properties from its generated saccadic vectors closely match those of human observers 

given a particular task and cognitive state. Many current models of vision focus entirely on 

bottom-up salience to produce estimates of spatial “areas of interest” within a visual scene. While 

a few recent models do add top-down knowledge and task information, we believe our 
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contribution is important in three key ways. First, we incorporate task as learned attentional sets 

that are capable of self-transition given only information available to the visual system. This 

matches influential theories of bias signals by (Miller and Cohen Annu Rev Neurosci 24:167–202, 

2001) and implements selection of state without simply shifting the decision to an external 

homunculus. Second, our model is generative and capable of predicting sequence artifacts in 

saccade generation like those found in visual search. Third, our model generates relative saccadic 

vector information as opposed to absolute spatial coordinates. This matches more closely the 

internal saccadic representations as they are generated in the superior colliculus.

Keywords

Eye movements; Task; Cognitive state; Dynamic Bayesian network; Temporal model; Cognitive 
model

Introduction

The goal of many psychologists and neuroscientists who study vision is to “reverse 

engineer” the human visual and oculomotor system: that is, to analyze an end product (e.g., 

a sequence of eye movements) to understand the system that produced it. To this end, 

researchers often use two different complementary approaches: decoding and simulation. 

Decoding underlying cognitive function has always been a goal of experimental psychology, 

but the surging popularity of Brain-Computer-Interfaces (BCI) [1] has led to an increased 

interest in this approach, especially as it relates to the use of classifiers on neural (e.g., [2]) 

and behavioral [3] data. Simulation, on the other hand, uses generative algorithms to 

understand cognitive processes by re-creating human-like behavior to determine the 

underlying cause. Simulations are also prevalent in robotics and computer vision 

applications [4]. We begin by first decoding human goals and tasks using data from high-

speed eye tracking, and then second, we simulate relative eye movement properties using a 

generative Bayesian Model.

The human retina has a variable distribution of photoreceptors, with the highest resolution in 

the central fovea. To bring various parts of a scene or image to this high-resolution zone, we 

move our eyes frequently with ballistic eye movements called saccades. Fixations are 

periods of relative stability between saccades, typically lasting between 200 and 300 ms and 

allowing efficient sampling of selected locations. The generation of eye movements involves 

a robust neural network [5] and is influenced by bottom-up image salience [6, 7], 

expectation [8], motion [9], top-down control [10], biases [11, 12], and midlevel attention 

[13, 14].

One way of predicting human fixations is by finding areas of interest in natural images. 

These salience maps are of interest to both psychology and computer vision, and a popular 

way of measuring the success of these algorithms is by comparing the predictions to actual 

human fixations (The MIT Salience benchmark, 15). The most successful algorithms at this 

benchmark have similarities to theories in human visual processing. For example, the classic 

Itti and Koch [6] salience model is based on Feature Integration Theory [15], and the more 

recent and accurate deep learning models mimic layered feature extraction in the early visual 
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cortex [16]. Models of this type have been used in applications such as image classification 

[17], object recognition [18], object segmentation [19], and reducing false alarms in motion 

detection [20]. Models that combine information from multiple sources have also been 

implemented such as [21] who combined bottom-up, top-down, and mid-level visual 

processing. Multi-model cognitive fusion [22, 23] has also been used to combine 

information from multiple modalities.

These models typically treat the viewed scene coordinates as an invariate map, or spatiotopic 
coordinates. While this is an accurate representation of the viewed scene, the native internal 

visual representation for humans is retinotopic [24], meaning that the representation of 

visual information shifts with every saccade. The superior colliculus (SC) is essential for 

saccade and fixation generation, and superficial layers receive retinotopic input directly from 

the retina as well as other areas [25]. Deeper layers integrate visual information with other 

modalities and coordinate motor responses including oculomotor responses deeper in the 

brain stem. Saccade generation in the SC is based on a retintopic map with neural activation 

on this map triggering a saccade in the matching retinal vector.

There have been attempts to incorporate specific retinal properties into these salience maps 

and models. Adoubib [26], for example, created a model of visual processing in the human 

ventral visual pathway by including information such as viewer distance and retinal 

sampling. The model maintains the same attention selection mechanism as Itti and Koch [6]

—namely a winner take all fixation selection process combined with temporal inhibition 

(IOR, 27)—but uses a point cloud distribution to allow for non-rectangular representation 

and modifies this further with known retinal and angular artifacts. Similarly, Curtsurdis [4] 

has created more all-encompassing models of the full visual pathways, including an aspect 

of cognitive control. These models build on the classic salience model [6] and add object 

maps, goals, saccadic motor execution, and an overseer to control selection. The goal 

module enhances or inhibits appropriate lower level signals, while the Overseer module 

focuses on reward of appropriate actions. Collectively, these models do approximate the 

spatial distribution of fixations on a given image; however, these models do not (a) predict 

other saccadic properties (velocity, for example), (b) provide insight into the cognitive state 

of the viewer, or (c) try to capture known patterns of fixation sequences. Additionally, we 

know that fixation locations are not independent and can be influenced not only by IOR 

(mentioned above) but by the visual system programming saccades in parallel [28, 29]. In 

terms of vector sequences, for example, we know that repeat vectors are more common in 

visual search with an additional peak at reverse vectors [30, 31].

Eye movements provide an overt (but imperfect) measure of attention, so it is tempting to 

suggest that eye movement patterns can provide insight into internal cognitive states. 

Fecteau and colleagues [32] discovered that both saccadic reaction times and neural firing 

rates in the superior colliculus were modified by the degree to which the visual stimulus in 

their receptive field was relevant to the task. This has led to the proposal of an attentional 

network which is tuned to goals and priorities as much as to visual salience [33]. 

Performance in cuing and search has also been shown to be influenced by the current 

attentional set of the observer [34].
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In a seminal experiment, Yarbus [35] demonstrated that different instructions could produce 

different patterns of eye movements for a given image. A single observer was shown the 

painting “The unexpected visitor” by Ilya Repin and given various instructions including the 

following: estimate the material circumstances of the family, give the ages of the people in 

the portrait, remember the clothing worn by the people, and estimate how long the visitor 

had been absent from the family. Patterns of eye movements were shown to be different 

depending on instruction (see Fig. 1), and this result has been replicated for different tasks 

[36–38]. Task has also been shown to influence lower level saccadic properties such as 

number of fixations, gaze duration [39], and fixation duration [40]. Recently, Kardan and 

colleagues [41] showed that task instructions not only influenced saccadic amplitude and 

fixation duration, but also modulated how these performance features were influenced by 

low-level scene features. This suggests that while instructions can influence how we move 

our eyes, the link between task and eye movements may not be direct.

When we provide explicit instructions to our observers regarding the nature of an 

experimental task, instructions are probably one of many factors that influence an observer’s 

internal attentional state. Attention to a task varies over time as measured by behavior, self-

report, and Alpha channel activity [42] and could be modulated in a given task by the locus 

coeruleus-norepinephrine (LC-NE) system to promote either highly engaged (phasic) or 

disengaged (tonic) behavior [43]. To model how task influences saccadic selection, we 

propose a model where current task or instruction is only one influence to observers’ internal 

cognitive state, and this hidden internal state is a driver of saccadic selection. This differs 

from Kardan [41] in that we do not model scene features, but we do include an intermediate 

mechanism—a hidden cognitive state—that could account for the way that task mediates 

gaze control. We also introduce an explicit temporal component that allows this cognitive 

state to change over time within any given instructed task. We also explore a variety of 

saccadic and fixation features to determine which may be more diagnostic of task.

Inferring a category, such as task, from a set of observations is called a classification 
problem in machine learning [44]. A number of recent studies have explored the saccadic-

task correlation using a classification approach; that is, given only an observed set of eye 

movements, can we accurately determine the task that the subject was instructed to perform? 

Greene [45] demonstrated that a simple set of saccadic features such as number of saccades, 

mean saccadic amplitude, and mean fixation duration could successfully predict the observer 

or the image being viewed. However, their method was not able to predict task. Recently, 

researchers using different datasets (tasks and images) and different feature sets (learning 

algorithms and decision rules) have had more success. Henderson et al. [46] were able to 

classify Search and Reading tasks at accuracies of up to 75%, which was well above chance 

for the given tasks. Borji and Itti [3] were able to classify the original data from Greene et al. 

[45] (34% accuracy, chance was 25%) and also all seven of Yarbus’ original tasks at above 

chance levels. Borji also went further by identifying saccade metrics that are particularly 

influenced by image-level properties, and therefore less useful for classifying the instruction 

set irrespective of these properties. Specifically, they showed that the position of fixations in 

an image only informed classifier accuracy for trials within that same image (though they 

did not account for spatial patterns like central bias [12, 47] or symmetry [48]).
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In the present paper, we create a model of cognitive state that is capable of generating 

saccadic properties based on instructed task. We will start with a data set that has already 

shown behavioral differences across task and (a) determine which saccadic features are 

diagnostic of task, (b) infer how cognitive state changes over time by clustering eye 

movement properties, and (c) create a generative model of eye movement vectors based on 

shifts of cognitive states for given tasks. We use data from Dodd et al. [49], who asked 

observers to perform one of four tasks, either search for a specified target, remember a 

scene, rate its pleasantness, or view the scene without any particular instructions. They 

observed Inhibition of Return (IOR, which in this case was defined as slower saccadic 

responses to probes presented in a location that had recently been fixated) only during the 

search task, and not during the others. Mills et al. [40] further showed that these instructions 

generate differing spatial and temporal saccadic properties, and further, these saccadic 

properties are sufficient for human observers to infer another’s task [50] or search objective 

[51]. Given that their observers followed the instructions well enough for this difference to 

emerge, we believe that eye movements for these tasks should diverge in other ways that 

could be discovered by our model. We began with an exploration of various saccadic 

features to connect our model to the recent literature and also to determine exactly which 

saccadic and fixation properties were important for accurately predicting instructed task. We 

included saccadic latency (fixation duration), saccade duration, amplitude, peak velocity, 

pupil size, and absolute saccadic angle based on screen direction. Since it is currently 

unclear how to effectively use spatial information across images [3], we chose not to include 

region of interest or absolute coordinate salience map information as input to the classifiers 

or model. While many models of visual salience predict fixation locations in screen or image 

coordinates, our prediction of saccadic vector properties more closely matches their internal 

representation as they are generated in the Superior Colliculus [23]. While we do not 

propose to create a neural model of saccade generation, we do propose a cognitive model of 

late-stage saccadic generation.

Recent classifiers have been shown to be task-sensitive, using mean fixation and saccadic 

data collapsed across individual trials [3]. Since a model of saccadic generation would have 

to work on the level of individual saccades, however, we first looked at which saccadic 

properties, if any, could be diagnostic of task from single saccades as opposed to saccadic 

aggregates from the full trial.

In addition to eye movement patterns, discussions of cognitive state should also include the 

pupil. Pupillary dilation has been linked to degree of arousal [52], memory load [53], and 

attentional load [54]. Recent studies have shown correlations between pupil size and effects 

from the Stroop task [55] and Inhibition of Return [56]. Aston-Jones and Cohen [43] 

proposed in their adaptive gain theory that pupil size is regulated in part by the locus 

coeruleus—norepinephrine system (LCNE). They propose two modes of LC neuronal 

activity: Phasic—reflecting focused performance on an attended task; and Tonic—which 

favors exploration over focus on a single task. Posner and Fan [57] have also suggested LC 

as a key structure in the “alerting” function of attention. Since pupil diameter closely 

correlates with LC neuronal firing frequency [58, 59], pupil size can serve as an additional 

measure of attentional focus in our model.
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Methods

Observers and Stimuli

Data used as input for the classifiers were first reported in Dodd et al. [49]. Over 17,000 

saccades from 53 observers and 67 photographic images were coded as input to a set of 

classifiers. Observers were randomly assigned to a group and given one of the following four 

instructions: Search for the letter Z or N in the scene, memorize the scene and prepare for a 

memory test at the end of the session (not actually tested), rate the pleasantness of the 

picture from 1 to 7, or no specific instruction was given and observers freely viewed the 

image. All tasks lasted for 8 s and are hereafter referred to as Search (n = 14), Memorization 

(n = 13), Preference (n = 14), and View (n = 12). The visual search task included a probe 

after 6 s of search on some trials, so only the first 6 s of eye movements were used from each 

task to equate conditions. Eye movements were measured using an SR Research Eyelink 2 

eye tracker sampling at 500 Hz. Nine-point calibration was conducted for each observer, 

with average validation error of less than .5° visual angle.

Saccade attributes were extracted from each saccade including latency, duration, amplitude, 

peak velocity, and absolute saccadic angle as compared to the screen’s horizontal plane. The 

relative angle (see Figs. 2 and 3) and relative amplitude of the current saccade compared to 

the previous one were also calculated.

Pupil size was normalized for all models to account for individual differences and potential 

luminosity changes across observers. The Z-score for mean pupil size during a fixation was 

calculated based on the mean pupil size for each subject and the Z-score of individual means 

accounts for individual differences in pupil size.

Clustering

Clustering of attentional states based on saccadic properties was performed using the 

MATLAB clustering and visualization toolbox (Abonyilab.com) with Dunn’s Index used to 

select the optimal number of clusters. Dunn’s Index is a score that reflects the cohesion 

within a cluster and the separateness between clusters [60] and was calculated for numbers 

of clusters from two to 14. We chose 10 clusters as optimal for this data given that fewer 

clusters and higher Dunn’s Index scores were preferred (Fig. 5).

Discrete K-Means clustering with 10 centroids was performed on the mean saccade data for 

each trial to assign the trials to one of the 10 clusters to produce labels for comparisons. The 

value/location of the K centroids and assignment of each observation to a centroid were 

learned by attempting to minimize the within-cluster sum of squares of the error between 

each point in the cluster and cluster centroid.

argminO ∑
i = 1

k
∑

x ∈ Oi

x − μi
2

where Oi is the set of observations currently assigned to cluster I and μI is the mean of points 

in cluster i. The basic K-means algorithm requires the number of clusters to be set and uses 
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Euclidean distance for the centroid calculation, but many options are available [61]. These 

cluster labels were then cross-tabulated with the original instructed tasks.

Dynamic Bayes Network

Bayesian networks are graphical models that treat evidence as observations of random 

variables and edges as directional dependencies between variables (see 62 for an overview 

and tutorial). Probability distribution tables are learned for each node and represent the 

likelihood of the random variable having a value given only its prior probability and the 

probability of its parents—variables it is directly dependent on. Our Bayesian networks were 

trained and tested using the Genie software package [63]. Learning the structure of the DBN 

graph used a Bayesian graph search, although the exact search algorithm is not reported in 

the package documentation. It certainly behaves as others in this class of algorithm by 

computing the posterior probability of potential graphs given the observed data, and 

maximizing the choice of graph given the observed data:

argmaxGP(G D)

Parameter learning for all Bayesian Networks used the Expectation Maximization (EM) 

algorithm [64].

Continuous saccadic data (see Fig. 3 for initial distributions) were discretized into five bins 

with divisions chosen to ensure equal numbers of saccades in each bin. Bin sizes of three 

and seven were also tested to see if binning granularity was important, but classifier results 

were similar in each case. In previous research [45, 46], input data has been preprocessed so 

that training data represented the mean value of that participant for an entire trial. We 

replicated this approach for an initial classifier; however, for the second classifier and the 

DBN model, we chose to include all saccades from all trials. While this increased the overall 

number of training examples to the model, it also increased the variance introduced by 

individual saccades.

Results

Section 1: Classifier

Recent research has established that classifiers can predict task from aggregate trial data [3, 

46, 65], so we divert briefly to demonstrate that our chosen features can replicate these 

earlier results (see Figs. 4 and 5). Ten unique training/testing sets were generated for each of 

the following analyses by randomly sampling the dataset into independent 90/10% splits. We 

performed this 90/10 sampling in three different ways to determine how the classifier would 

perform over the full dataset, across different images and across different subjects. The first 

analysis used 90/10 splits with any sample chosen from the full dataset, but we followed this 

with splits where the training samples were chosen from 90% of the images and tested on 

the remaining 10%. The final analysis split the sampling from 90/10% of subjects. The final 

two analyses were to test how well the classifier generalizes to new images or new subjects 

that were not included in the training set. All results were compared using non-parametric 

Wilcoxon signed-rank test (see 3). Saccadic features and pupil size were trained with an 
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augmented Naïve Bayes network that was able to classify the full data set task at 53.9%, 

which is above chance (25%, t(50) = 3.45, p < .001) and better than a logistic regression 

(MNLR) using the same parameters (accuracy 45.8%; t(50) = 3.31, p < .001). Training and 

testing across images were successful (53.6%, t(50) = 3.45, p < .001), again with all tasks 

classified. Training and testing across subject performed well overall (41.2%, t(50) = 3.45, p 
< .0014), and all tasks except Preference were accurately classified.

This approach is similar to Greene [45] and Henderson et al. [46], in that we preprocessed 

the input data so that each example represented the mean value of that observer for an entire 

trial. We were able to classify task given the mean saccadic data for a trial, but to generate 

individual eye movements or sequences of eye movements within a trial our generative 

model should be able to infer task given the parameters of any individual saccade within a 

trial. The augmented naïve Bayes algorithm was, therefore, retrained with the full set of data 

with each individual eye movement used to train or test the classifier (Table 1).

Overall classifier accuracy to classify the task from just a single eye movement was above 

randomized chance (t = 3.45, p < .001) at 35.8% accuracy, though only Search (53%) and 

View (45.5%) tasks were accurately classified. The resulting classifier was also biased 

towards predicting the Search task, which may have exaggerated its accuracy at the cost of 

reduced Memorize (21.7%) and Preference (23.0%) task accuracy. This differs from the 

earlier classifier trained on aggregate or summary trial data which was able to predict the 

memorize task (see also 43) for successful memorize classification on aggregate trial data. 

Using aggregate data as classifier input and test examples likely removes saccadic outliers 

that are otherwise more difficult to classify. Classifiers built on each saccade as individual 

input and test samples, while less accurate on some tasks, are a more complete 

representation of saccadic behavior.

The overall classifier results demonstrate that our data set and algorithm can replicate other 

recent classifiers [3, 46, 65]. Our inability to correctly classify most trials in the Preference 

task across subject demonstrates that, unsurprisingly, not all tasks can generate distinct 

patterns of eye movements relative to all other tasks. When forming a preference, individual 

differences in eye movements may combine features of the other tasks, such as looking for 

details, remembering, and just passive looking. Thus, the accuracy of a classifier will depend 

critically on which tasks are included in the set [3, 45].

Section 2: Clustering Cognitive State

A computational cognitive model has a different primary goal than a machine learning 

classifier. While a classifier strives to produce the highest accuracy, a model strives to 

improve our understanding of a complex system through simulation. A classifier may make 

use of any algorithm that improves its accuracy regardless of whether it is biologically 

plausible and can, in fact, exceed human performance on some tasks [66]. While 

computational cognitive models still may use accurate predictions of experimental data as 

one measure of fit, they must also match and test our theoretical understanding of the 

cognitive processes involved, and an improved theoretical understanding may initially come 

with reduced classification accuracy for a single dataset. Though clusters of gaze location 

have been used to highlight salient features in video [9], our approach is the first we are 
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aware of to cluster saccadic features so as to infer underlying cognitive state. Our current 

goal is to maintain as much of our classifier accuracy as possible while moving from a 

classifier to a more formal model of top-down influences in eye movement generation. 

Obviously, the function of the cognitive system we are trying to model here is not to classify 

eye movements, but to generate them. Therefore, the final stage after creating the model is to 

test the model’s ability to generate realistic saccade sequences.

In the previous section, we assumed that the internal state of each observer reflected which 

one of the four instruction sets they had been given, which in turn generated saccades from 

separate—albeit potentially overlapping—distributions. We were able to associate individual 

eye movements with a particular task instruction, but can this help us formulate a generative 

model of the control settings that drive eye movement selection? If each distinct control 

setting generated saccades with different characteristics, then we should be able to discover 

these distributions through their saccadic behavior. It is likely that each task would not 

correspond to a single cognitive state, so we will not begin with that assumption. We begin 

by trying to determine the number of hidden control settings used by observers to generate 

saccades. Second, we will use a Dynamic Bayesian Network (DBN) [67] to show how these 

hidden control settings could be modeled as bias signals of state change in a Dynamic 

Bayesian Network (DBN).

In Bayesian terms, cognitive state is a “hidden” node, meaning that we cannot observe it 

directly with the present data. We begin by determining the optimal number of distribution 

clusters for cognitive state based on their statistical cohesion. If attentional or cognitive task 

control settings generate different distributions of saccades as suggested in “Section 1: 

Classifier”, the number of these distributions should be derivable from the data. We can also 

test whether these clusters roughly correspond to the classification accuracy seen in “Section 

1: Classifier”. For example, given the accurate classification of the Search task, we would 

expect to discover a single cluster which includes most of these eye movements and/or trials. 

The Preference task, however, could simply reflect a frequent switch between clusters that 

otherwise reflect searching, or inspecting. To differentiate the instructed task from the 

inferred internal state, we will continue using Search, Memorize, Preference, and View as 

the tasks from “Section 1: Classifier” but refer to the assumed internal states as searching, 

memorizing, judging, and inspecting.

The cross tabulation (Fig. 6a) demonstrates significant overlap between instruction task and 

internal state (Chi2 [68] = 183, p < .001). For example, Cluster 5 shows strong affiliation to 

the Viewing task, while Clusters 1, 8, and 10 are under-represented in Viewing. Likewise, 

Search has high overlap with Cluster 1. While Cluster 5 is strongly represented in all four 

tasks, this is not diagnostic of task and likely represents a default saccadic generation state, 

such as inspecting, shared by many tasks and internal states. Given that the best fitting 

clusters for the Preference task (clusters 1 and 5) also fit with other tasks, it is not surprising 

that the classifier had the most difficulty with this task. This could be evidence that forming 

a preference simply alternates other tasks such as searching and memorizing.

Not only might tasks contain multiple internal states, but the transitions between states 

might differ. Even though state nine is not common in any task (Fig. 6a), once an observer 
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enters that state, they are likely to continue (see Table 2) regardless of state. States one and 

two are well represented in all tasks; however, the transitions between these states differ. For 

example, in the Viewing task, transitions to state two are more likely from either state one or 

two, while Memory and Preference tasks are more likely to transition to state one. Search, 

which was one of the easier tasks to classify, was more likely to maintain state one or two 

once the observer entered that state. These transitional differences are also highlighted in 

Fig. 6b–e which show the relative likelihood of transitions compared to average transition 

performance across all tasks. Given the temporal nature of these state transition differences, 

we propose a model of cognitive state that is sensitive to changes in state over time, even 

within a given task.

Section 3: A Model of Task and Internal States

Given that mean saccadic properties on trials can be formulated as distinct clusters (See Fig. 

5) and that these clusters are related to task instruction, we present a generative model of eye 

movements where the internal state is represented by a Dynamic Bayesian Network (DBN). 

We propose that internal state of the visual system can be represented by a Markov chain 

with saccades selected from a distribution influenced primarily by the current internal state 

of the model. Choice of state and state transition is handled by the DBN in such a way as to 

avoid a selection “homunculus” through a state transition process which depends entirely on 

the current cognitive state and experimenter instructions. This mimics the bias signals for 

cognitive control as suggested by Miller and Cohen [69] where the state is self-selecting as 

an integral part of the DBN itself. An analogy for these bias signals used by the authors was 

a “self-switching railroad track” and is comparable to the way a DBN switches temporal 

states using only information that is internally available to the model. As seen with the 

cluster/task cross tabulation, there is not an exact overlap between instructed task and 

grouping of saccadic behavior suggesting that instruction alone is insufficient to determine 

state. State transition analyses also suggest that patterns of internal state change differently 

according to which instructed task was given. Our DBN will learn these hidden state 

transitions in order to improve the model beyond instruction task alone.

Saccades were generated by the model through a random selection from saccadic property 

distributions as determined by the cognitive state associated with the current state of the 

model (Fig. 7a). The only input into state selection at time t is the previous state (time t − 1) 

and input knowledge of the instructed task (Figs. 7b and 8). Miller and Cohen’s [69] bias 

signal is modeled as a random likelihood transition from one internal state to another given 

the current state and task. While instructed task will influence the successive states, it will 

do so in conjunction with internal state likelihood and according to the learned joint 

probability distribution for the hidden state transitions given a particular task. To learn these 

transitions, we will use the individual saccade data (see classifier C from previous section) 

which, while a less accurate classifier than the mean trial data, will allow us to generate 

individual eye movements with our model for a given instructed task. Although “Section 1: 

Classifier” and “Section 2: Clustering Cognitive State” helped justify the choice of 

parameters to include in the final model, neither section had a direct influence on learning 

the structure or probability matrices of the model. We maintained the choice of saccadic 

variables and the learned optimal number of states, but the probability distribution tables 
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correlating task with cognitive state were learned as part of the model using same cross 

validation scheme outlined below.

Prediction accuracy was again calculated for instructed task given the eye movement 

properties of an individual saccade. With the internal state as an intermediate, hidden state 

separating the saccadic data from the instructed task, the new model was still able to predict 

the task with 36.4% accuracy and was better than chance (t = 3.45, p < .001) as measured by 

the Wilcox signed rank test. While improving the theoretical basis of the model, we were 

still able to classify individual saccades with the same accuracy (t < 1) as the original 

classifier(35.8%). Task prediction was also less biased than the original classifier with 

preference (23%) and memorize (25.4%) roughly at chance, though they were still likely to 

be misclassified as Search.

Although cross validation should prevent overfitting of the probability distribution tables, we 

wanted to check our model for overfitting from the variables themselves, and to determine if 

all features are diagnostic in the scope of the original classifier. We removed saccadic and 

pupil features one at a time and compared resulting models by their Aikake Information 

Criterion (AIC) [70]. AIC is a measure of model fit which compares likelihood scores 

penalized by model size and is defined by the formula, where ln(M) is the log likelihood of 

the trained model and P is the number of parameters:

AIC = − 2ln(M) + 2p

Although the DBN shifts focus from the classifier to the generative model, it still performs 

better as a task classifier (smaller AIC) than the Augmented Naïve Bayes despite the 

additional parameter of the cognitive hidden state (DBN AIC = 1,536,532; classifier AIC = 

1,632,743). Since AIC allows comparison of non-nested models, we also compared the full 

DBN model with each possible reduced model to keep the one with the lowest scored AIC. 

This process was repeated iteratively until further reductions in model parameters did not 

improve AIC score. Reducing the initial model (AIC = 1,536,532) by the first parameter 

showed an improvement (smaller AIC) regardless of which parameter was removed, with the 

exception of saccadic angle (AIC = 1,537,500). The lowest score was for the model with 

pupil size removed (AIC = 1,493,033). Removing additional parameters from this model did 

not, however, result in lower scores (all AICs > 150,000). Removing most single parameters 

from the full model improved the fit in the first stage, but improvements did not extend to 

removing multiple parameters. This suggests that many parameters contained redundant 

information regarding the instructed task. This is consistent with Kardan [65] who found that 

classifiers performed better if they accounted for feature dependencies.

Generative models can be tested in ways other than classification. Since Dynamic Bayesian 

models are generative, meaning that they are capable of generating new instances of 

observations given a trained model, we used the completed model to generate simulated 

parameters for 10,000 saccades. These saccades were sampled from all tasks and attentional 

sets and compared to the original saccades from observers’ data. If the model accurately 

reflects the generative process of saccade selection given a specific task and state, then the 

observers’ and model’s data should be comparable. We performed a linear mixed effects 
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model of human vs Bayesian model for each saccade parameter given the subject and task as 

fixed factors and cognitive state as a random factor. There was no significant difference in 

the human and Bayesian data sets (all Fs < 1) suggesting that the model was able to 

accurately capture these parameters.

Finally, since the DBN should be able to capture temporal saccadic dependencies in 

observers’ data, we wanted to test whether the model was also capable of reproducing 

temporal patterns. One such pattern is the large increase in forward saccades and the smaller 

increase in return saccades when considering the current saccadic angular vector compared 

to the previous vector. Observers’ data for the current tasks (Fig. 9b) is comparable to 

saccadic analyses from similar research [13, 14] in that saccadic angle at given time t(x) is 

dependent on the angle of saccade at time t(x − 1). Saccades generated from the classifier in 

“Section 1: Classifier” do not code these temporal dependencies and simply choose from the 

distribution of typical absolute angles. These absolute angles have an overall horizontal bias 

in absolute angle, resulting in a relative angle bias of repeating this direction. The DBN does 

code temporal dependencies, however, and the relative saccadic angle of saccades generated 

from the DBN shows the tendency to repeat saccadic direction and the smaller tendency to 

reverse direction found in other search studies [13, 14].

General Discussion

While a Bayesian representation is not a neural level model, we believe that our DBN is 

grounded as a plausible cognitive description of neural task states and saccadic selection. 

The prefrontal cortex (PFC) is associated with executive control, including an “attentional 

set” or cognitive state that provides a framework for selecting task-relevant information [71, 

72]. Different regions of the PFC activate depending on the nature of this information and 

processing resources needed for a given attentional set [72]. Switching between these states 

could be implemented in the PFC through a control system that biases activity to the 

appropriate network given any combination of sensory input, current state, and desired 

consequences [69] or possibly directed by the measured distance between current state and 

subjective goal [73]. Once selected, the appropriate state would guide top-down selection of 

eye movements through connections to the frontal eye fields [74, 75]. While our model only 

considers top-down influences of saccade generation, it could be extended to include 

bottom-up generation as has been done with the Superior Colliculus [76], with input from a 

salience map [2] or priority map [21, 33]. For example, Corbetta and Shulman [77] suggest 

distinct but overlapping networks drive attention, with a temporoparietal network driving 

bottom-up attention, which can interrupt activity in the frontal-parietal network associated 

with top-down attentional control, via a trigger in inferior frontal cortex. In the context of 

our DBN model, states could be implementations of top-down attentional control, and low 

level information could provide information in the decision to switch states. It should be 

noted that attentional control and salience information might not be simply additive, as 

shown in Kardan [41].

Although Adaptive Gain Theory (AGT) [78] suggests that pupil size should correlate with 

internal cognitive state [79], our model was able to maintain an accurate representation of 

task and saccadic features without the use of pupil size as an additional variable. While 
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models of foraging are improved by including pupil size and LG-NE [80], our pupil size was 

modeled as being influenced by cognitive state in the model to a similar, yet independent, 

extent as saccadic properties. It is possible that these saccadic properties contained 

redundant information making pupil size unnecessary. Our cognitive state did differ from 

AGT in that it consisted of five discrete stages of pupil size as opposed to a binary split of 

tonic and phasic mode [43, 78]. The original data for our study [49] were also not conducted 

under ideal conditions for detecting pupil size differences, so it is possible that pupil data 

could contribute more reliable state information when collected under conditions with better 

light control. Our final model was able to maintain the same classification accuracy from the 

data of a single saccade as the augmented Bayes Classifier in “Section 1: Classifier” while 

improving the overall information criteria for the full network and more accurately 

accounting for what we know of attentional state and cognitive control. It is also possible 

that pupil responses would best be modeled as a separate network from saccadic generation, 

although the network learning in the section-one classifier optimized pupil size as integrated 

with saccadic features.

We were also able to train a Bayesian classifier to recognize the instructed task given only 

saccadic attributes as input data. Two tasks, Search and View, were classified consistently 

above chance even when only given input from a single eye movement. The accuracy of 

predicting the Search task was expected since the original data set showed behavioral 

differences in generating observable Inhibition of Return [49] and other saccade properties 

[40]. Saccadic tendencies to continue forward and the increase in return saccades in 

particular become pronounced in the temporal DBN model where intersaccadic 

dependencies could be learned. Memorize was also classified above chance but only when 

mean eye movement data from the entire trial was included. The Preference task was only 

classified above chance when pooling data from all images and trials and did not generalize 

across subjects.

Given the generative nature of this model, it is capable of saccadic simulation in real time. 

We demonstrated that the properties from its generated saccades closely match those of 

human observers given a particular task and cognitive state. Future work is planned to 

include bottom-up influences as well as individual differences to separate the contribution of 

top-down cognitive state and the LC-NE system.
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Properties included in classifier and model

• Latency

• Duration

• Amplitude

• Peak velocity

• Absolute saccadic angle

• Pupil size
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Data training steps for the Dynamic Bayesian Network

1. Verify usefulness of saccadic features

2. Calculate the optimal number of hidden attentional states using Dunn’s index

3. Cluster saccadic and pupil data (a) Test that clusters of attentional state 

correlate with instructed task

4. Construct DBN model with new nodes for observed pupil size and hidden 

attentional states

5. Test model against original data, and against expected saccadic sequences
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Fig. 1. 
Scene and instructions from Yarbus, (1967), Fig. 107. Reprinted with permission, 2017 

(Springer)
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Fig. 2. 
Illustration of saccadic angle (a) relative to the vector of the previous saccade or (b) 

compared to the absolute horizontal vector of the screen

MacInnes et al. Page 21

Cognit Comput. Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Density plots for saccadic features split by task. Saccadic features show potential for being 

diagnostic of task, in particular duration, amplitude, and velocity
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Fig. 4. 
Classifier accuracy for Augmented Naïve Bayes (a) Network and Multinomial Logistic 

Regression (b) predicting task from saccadic and pupil features. The Naïve Bayes 

outperformed the MNLR and was above chance predicting View (V), Memorize (M), and 

Search (S) tasks, though both classifiers had difficulty with the Preference (P) task
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Fig. 5. 
Dunn’s Index calculates the compactness and separateness of clusters. The highest index 

score suggests ten clusters as an optimal number of hidden cognitive states
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Fig. 6. 
a Cross tabulation mosaic of task condition and absolute likelihood of a clustered internal 

state. Blocks represent proportion of clustered saccades for each task/cluster combination. 

Since clusters are based on individual saccades instead of mean trial values, the result echoes 

the saccade classifier with View and Search being more highly distinguishable. Transition 

heat maps for b View, c Search, d Preference, and e Memorize represent the difference in 

likelihood from the overall data that a task will observe a transition from state A 

(verticalaxis) to state B (horizontal-axis)
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Fig. 7. 
Dynamic Bayesian Network a with hidden cognitive state of the observer influenced only by 

instructed task and state at previous time. State influences the selection of saccadic 

properties while that state is active. Nodes inside the temporal plate are free to change with 

each time unit (saccade), while Task is held steady throughout the trial. The circular gray 

arrow represents temporal dependency and in this model is restricted to the hidden cognitive 

state and saccade angle. The same model b with time “unrolled” to better show the temporal 

dependency. Task is only set once for the entire sequence, while cognitive state and saccadic 

direction have the potential to update on every time unit based on the original task and the 

previous state. Other eye movement and pupil properties also change every time unit but 

only based on the current cognitive state
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Fig. 8. 
Boxplot of the confusion matrix for the Dynamic Bayesian model (a). Saturated boxes are 

proportion of saccades correctly matching the generating task, while faded boxes are 

proportions that are misclassified as one of the other three tasks. For comparison, the 

classifier for individual saccades from “Section 1: Classifier” is shown (b)
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Fig. 9. 
Densities of relative saccadic direction for the a individual saccade classifier from “Section 

1: Classifier”, b observer data from the experiment, and c Dynamic Bayesian model from 

“Section 3: A Model of Task and Internal States.” The model and classifier were trained 

only on absolute saccadic angle as a feature, yet the temporal aspect of the DBN captured 

sequence/pair information in the likelihood that each given saccadic angle at t(x) would be 

followed by a saccadic angle at t(x + 1)
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Table 1

Accuracy for all tasks for classifiers with training folds chosen using the full dataset, by Image and by Subject. 

Asterisks indicate above-chance classification

Overall accuracy View Memorize Preference Search

Training folds

 All Data 53.9* 80.3* 44.3* 35.7* 55.0*

 By Subject 53.6* 79.0* 42.0* 41.0* 51.0*

 By Image 41.2* 67.8* 33.8* 24.2 38.8*

 Individual saccade 35.8* 53.0* 21.7 23.0 45.5*
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Table 2

Table of most likely state transitions in absolute values. Given the task and previous state. “transitions” that 

repeat the same cluster mean that internal state is most likely to remain the same over time for that task

Previous state View Mem. Pref. Search

1 2 1 1 1

2 2 1 1 2

3 8 8 3 3

4 4 4 4 5

5 4 5 5 5

6 4 5 5 5

7 2 2 2 1

8 8 3 8 8

9 9 9 9 9

10 4 5 5 5
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