Skip to main content
Log in

Visual and Category Representations Shaped by the Interaction Between Inferior Temporal and Prefrontal Cortices

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The ability to group items and events into functional categories is a fundamental function for visual recognition. Experimental studies have shown the different roles in information representations of inferior temporal (IT) and prefrontal cortices (PFC) in a categorization task. However, it remains elusive how category information is generated in PFC and maintained in a delay period and how the interaction between IT and PFC influences category performance. To address these issues, we develop a network model of visual system, which performs a delayed match-to-category task. The model consists of networks of V4, IT, and PFC. We show that in IT visual information required for categorization is represented by a combination of prototype features. We also show that category information in PFC is represented by two dynamical attractors weakly linked, resulting from the difference in firing thresholds of PFC neurons. Lower and higher firing thresholds contribute to working memory maintenance and decision-making, respectively. Furthermore, we show that top-down signal from PFC to IT improves the ability of PFC neurons to categorize the mixed images that are closer to a category boundary. Our model may provide a clue for understanding the neural mechanism underlying categorization task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983;6:414–7.

    Article  Google Scholar 

  2. Ungerleider LG, Mishkin M. Two cortical visual systems. Ingle DJ et al. editors. Analysis of visual behavior, pages 549–586, The MIT Press; 1982.

  3. Bruce C, Desimone R, Gross CG. Visual properties of neurons in a polysensory area in superior temporal sulcus in the macaque. J Neurophysiol. 1981;46:369–84.

    Article  CAS  PubMed  Google Scholar 

  4. Desimone R, Albright TD, Gross CG, Bruce C. Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci. 1984;4:2051–62.

    Article  CAS  PubMed  Google Scholar 

  5. Gross CG. Visual functions of inferotemporal cortex. In: Autrum H, Jung R, Loewenstein WR, Mckay D, Teuber HL, editors. Handbook of sensory physiology, Vol. VII/3B. Berlin: Springer; 1973. p. 451–82.

    Google Scholar 

  6. Logothetis NK, Sheinberg DL. Visual object recognition. Annu Rev Neurosci. 1996;19:577–621.

    Article  CAS  PubMed  Google Scholar 

  7. Perrett DI, Rolls ET, Caan W. Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res. 1982;47:329–42.

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka K. Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex. 2003;13:90–9.

    Article  PubMed  Google Scholar 

  9. Baker CI, Behrmann M, Olson CR. Impact of learniong on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci. 2002;5:1210–6.

    Article  CAS  PubMed  Google Scholar 

  10. Booth MC, Rolls ET. View-invariant representations of familiar objects by neurons in the inferior temporal cortex. Cereb Cortex. 1998;8:510–23.

    Article  CAS  PubMed  Google Scholar 

  11. Kobatake E, Wang G, Tanaka K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol. 1998;80:324–30.

    Article  CAS  PubMed  Google Scholar 

  12. Logothetis NK, Pauls J, Possio T. Shape representation in the inferior temporal cortex of monkeys. Curr Biol. 1995;5:552–63.

    Article  CAS  PubMed  Google Scholar 

  13. Miyashita Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature. 1988;335:817–20.

    Article  CAS  PubMed  Google Scholar 

  14. Palmeri TJ, Gauthier I. Visual object understanding. Nat Rev Neurosci. 2004;5:291–303.

    Article  CAS  PubMed  Google Scholar 

  15. Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci. 2010;33:203–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ungerleider LG, Gaffan D, Pelak VS. Projections from inferior temporal cortex to prefrontal cortex via the uncinated fascicle in rhesus monkeys. Exp Brain Res. 1989;76:473–84.

    Article  CAS  PubMed  Google Scholar 

  17. Webster MJ, Bachevalier J, Ungerleider LG. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex. 1994;4:470–83.

    Article  CAS  PubMed  Google Scholar 

  18. Vogels R. Categorization of complex visual images by rhesus monkeys. Part 2: single cell study. Eur J Neurosci. 1999;11:1239–55.

    Article  CAS  PubMed  Google Scholar 

  19. Sigala N, Logothetis NK. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature. 2002;415:318–20.

    Article  CAS  PubMed  Google Scholar 

  20. Soga M, Kashimori Y. Functional connections between visual areas in extracting object features critical for a visual categorization task. Vis Res. 2009;49:337–47.

    Article  PubMed  Google Scholar 

  21. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate pre-frontal and inferior temporal cortices during visual categorization. J Neurosci. 2003;23:5235–46.

    Article  CAS  PubMed  Google Scholar 

  22. Mckee JL, Riesenhuber M, Miller EK, Freedman DJ. Task dependence of visual and category representations in prefrontal and inferior temporal cortices. J Neurosci. 2014;34:16065–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanaka K. Inferotemporal cortex and object vision. Annu Rev Neurosci. 1996;19:109–39.

    Article  CAS  PubMed  Google Scholar 

  24. Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci. 2001;4:832–8.

    Article  CAS  PubMed  Google Scholar 

  25. Yamane Y, Tsunoda K, Matsumoto K, Phillips A, Tanifuji M. Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex. J Neurophysiol. 2006;96:3147–56.

    Article  PubMed  Google Scholar 

  26. De Baene W, Ons B, Wagemans J, Vogels R. Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem. 2008;15:717–27.

    Article  PubMed  Google Scholar 

  27. Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001;24:455–63.

    Article  CAS  PubMed  Google Scholar 

  28. Vitay J, Hamkar FH. Sustained activities and retrieval in a computational model of the perirhinal cortex. J Cogn Neurosci. 2008;20:1993–2005.

    Article  PubMed  Google Scholar 

  29. Freedman DJ, Riesenhuber M, Possio T, Miller EK. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001;291:312–6.

    Article  CAS  PubMed  Google Scholar 

  30. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J Neurophysiol. 2002;88:929–41.

    Article  PubMed  Google Scholar 

  31. Cromer JA, Roy JE, Miller EK. Representation of multiple, independent categories in the primate prefrontal cortex. Neuron. 2010;66:796–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fusi S, Miller EK, Rigotti M. Why neurons mix: high dimensionality for higher cognition. Curr Opin Neurobiol. 2016;37:66–74.

    Article  CAS  PubMed  Google Scholar 

  33. Mante V, Sussillo D, Shenoy KV, Newsome WT. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature. 2013;503:78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, et al. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013;497:585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roy JE, Riesenhuber M, Poggio T, Miller EK. Prefrontal cortex activity during flexible categorization. J Neurosci. 2010;30:8519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kohonen T. Self-organizing maps. Third, extended edition, volume 30 of Springer series in information sciences, Springer, NY. 2001.

  37. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neural selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.

    Article  CAS  PubMed  Google Scholar 

  38. Lim S, McKee JI, Woloszyn L, Amit Y, Freedman DJ, Sheinberg D, et al. Inferring learning rules from distributions of firing rates in cortical neurons. Nat Neurosci. 2015;18:1804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoshino O, Inoue S, Kashimori Y, Kambara T. A hierarchical dynamical map as a basic frame for cortical mapping and its application to priming. Neural Comput. 2001;13(8):1781–810.

    Article  CAS  PubMed  Google Scholar 

  40. Durstewitz D, Seamans JK, Sejnowski TJ. Neurocomputational models of working memory. Nat Neurosci. 2000;3:1184–91.

    Article  CAS  PubMed  Google Scholar 

  41. Amit DJ, Brunel N. Model of global spontaneous activity and local structured activity during delay period in the cerebral cortex. Cereb Cortex. 1997;7:237–52.

    Article  CAS  PubMed  Google Scholar 

  42. Amit DJ, Fusi S, Yakovlev V. Paradigmatic working memory (attractor) cell in IT cortex. Neural Comput. 1997;9:1071–92.

    Article  CAS  PubMed  Google Scholar 

  43. Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex. 2000;10:910–23.

    Article  CAS  PubMed  Google Scholar 

  44. Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol. 2000;83:1733–50.

    Article  CAS  PubMed  Google Scholar 

  45. Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol. 2008;100:1407–19.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. Dynamic coding for cognitive control in prefrontal cortex. Neuron. 2013;78:364–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sussillo D, Toyoizumi T, Mass W. Self-tuning of neural circuits through short-term synaptic plasticity. J Neurophysiol. 2007;97:4079–95.

    Article  PubMed  Google Scholar 

  48. Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319:1543–6.

    Article  CAS  PubMed  Google Scholar 

  49. Fiebig F, Lansner A. A spiking working memory model based on Hebbian short-term potentiation. J Neurosci. 2017;37:83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chaisangmongkon W, Swaminathan SK, Freedman DJ, Wang JX. Computing by robust transience: how the front-parietal network performs sequential, category-based decisions. Neuron. 2017;93:1504–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2:1019–25.

    Article  CAS  PubMed  Google Scholar 

  52. Riesenhuber M, Poggio T. Neural mechanisms of object recognition. Curr Opin Neurobiol. 2002;12:162–8.

    Article  CAS  PubMed  Google Scholar 

  53. Knoblich U, Freedman DJ, Riesenhuber M. Categorization in IT and PFC; model and experiments, vol. 2002-007. Cambridge: MIT AI Laboratory; 2002.

    Google Scholar 

  54. Minami T, Inui T. Roles of prefrontal neurons in delayed maching-to-category task: a modeling study. Neurocomputing. 2005;65-66:609–16.

    Article  Google Scholar 

  55. Pannunzi M, Gigante G, Mattia M, Deco D, Fusi S, Giudice PD. Learning selective top-down control enhances performance in a visual categorization task. J Neurophysiol. 2012;108:3124–37.

    Article  PubMed  Google Scholar 

  56. Ding S, Meng L, Han Y, Xue Y. A review of feature binding theory and its functions observed in perceptual process. Cogn Comput. 2017;9:194–206.

    Article  Google Scholar 

  57. Jamalian A, Beuth F, Hamkar FH. The performance of a biologically plausible model of visual attention to localize objects in a virtual reality. In: Villa AEP, et al., editors. Notes in Computer Science, vol. 9887. Switzerland: Springer International Publishing; 2016. p. 447–54.

    Google Scholar 

  58. Wyatte D, Curran T, O’Relly R. The limit of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. J Cogn Neurosci. 2012;24:2248–61.

    Article  PubMed  Google Scholar 

  59. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.

    Article  CAS  PubMed  Google Scholar 

  60. Reynolds JH, Pasternak T, Desimone R. Attention increases sensitivity of V4 neurons. Neuron. 2000;26:703–14.

    Article  CAS  PubMed  Google Scholar 

  61. Azouz R, Gray CM. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neuron in vivo. Proc Natl Acad Science U S A. 2000;97:8110–5.

    Article  CAS  Google Scholar 

  62. Azouz R, Gray CM. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron. 2003;37:513–23.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci. 2006;9:534–42.

    Article  CAS  PubMed  Google Scholar 

  64. Rainer G, Miller EK. Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur J Neurosci. 2002;15:1244–54.

    Article  PubMed  Google Scholar 

  65. Rainer G, Rao SC, Miller EK. Prospective coding for objects in primate prefrontal cortex. J Neurosci. 1999;19:5493–505.

    Article  CAS  PubMed  Google Scholar 

  66. Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  67. Spratling MW. A hierarchical predictive coding model of object recognition in natural images. Cogn Comput. 2017;9:151–67.

    Article  CAS  Google Scholar 

  68. Arnal LH, Giraud A-L. Cortical oscillations and sensory predictions. Trends Cogn Neurosci. 2012;16:390–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Fujita.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, Y., Fujita, K. & Kashimori, Y. Visual and Category Representations Shaped by the Interaction Between Inferior Temporal and Prefrontal Cortices. Cogn Comput 10, 687–702 (2018). https://doi.org/10.1007/s12559-018-9570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-018-9570-0

Keywords

Navigation