
Multi-Species Cuckoo Search Algorithm for Global Optimization

Xin-She Yang1, Suash Deb2, Sudhanshu K Mishra3

1) School of Science and Technology, Department of Design Engineering and Mathematics,
Middlesex University, London NW4 4BT, UK.

2) IT & Educational Consultant, Ranchi, India, and Distinguished Professorial Associate,
Decision Sciences and Modelling Program, Victoria University, Melbourne, Australia.

3) Department of Economics, North-Eastern Hill University, Shillong, India.

Citation Details: Xin-She Yang, Suash Deb, Sudhanshu K Mishra, Multi-species cuckoo search algorithm
for global optimization, Cognitive Computation, vol. 10, number 6, 1085-1095 (2018).

Abstract

Background: Many optimization problems in science and engineering are highly nonlinear, and thus
require sophisticated optimization techniques to solve. Traditional techniques such as gradient-based
algorithms are mostly local search methods, and often struggle to cope with such challenging optimiza-
tion problems. Recent trends tend to use nature-inspired optimization algorithms.

Methods: This work extends the standard cuckoo search (CS) by using the successful features of
the cuckoo-host co-evolution with multiple interacting species, and the proposed multi-species cuckoo
search (MSCS) intends to mimic the multiple species of cuckoos that compete for the survival of the
fittest, and they co-evolve with host species with solution vectors being encoded as position vectors. The
proposed algorithm is then validated by 15 benchmark functions as well as five nonlinear, multimodal
design case studies in practical applications.

Results: Simulation results suggest that the proposed algorithm can be effective for finding optimal
solutions and in this case all optimal solutions are achievable. The results for the test benchmarks are
also compared with those obtained by other methods such as the standard cuckoo search and genetic
algorithm, which demonstrated the efficiency of the present algorithm.

Conclusions: Based on numerical experiments and case studies, we can conclude that the proposed
algorithm can be more efficient in most cases, leading a potentially very effective tool for solving
nonlinear optimization problems.

Keywords: Cuckoo search, Nature-inspired algorithm, Multi-species cuckoo search, Neural computing, Optimiza-

tion, Swarm intelligence.

1 Introduction

Many applications involve optimization, and thus require sophisticated optimization algorithms to solve.
Such applications can be very diverse, spanning many areas and disciplines from engineering designs and
scheduling to data mining and machine learning [41, 43, 13, 33, 40]. One of the current trends is to use
metaheuristic algorithms inspired by the successful characteristics in nature. Among these new algorithms,
cuckoo search has been shown to be powerful in solving many problems [41, 43]. This standard version
was mainly designed for single objective optimization problems, which was later extended to multiobjective

1

ar
X

iv
:1

90
3.

11
44

6v
1

 [
cs

.N
E

]
 2

7
M

ar
 2

01
9

optimization [46]. Both versions used simplified characteristics to represent the brood parasitism of some
cuckoo species and their interactions with host birds species.

However, the reality is far more complicated in the cuckoo-host co-evolution systems [10]. The co-
evolution often involves multiple cuckoo species that compete with each other and compete for the resources
of host bird species, while the hosts can also have multiple species. Cuckoo species tend to evolve to lay eggs
with mimicry of the size, colours and texture of the eggs of host birds, often with critical timing advantage,
while host birds can counter-act such parasitism by developing their defensive strategies to identify potential
intruding eggs and minimize the risk of hatching cuckoo eggs. This arms race is both co-evolutionary and
ongoing [11, 27], and the co-evolution seems to promote species richness and subspecies variations as well as
diversity in parasitic cuckoos [21].

One way to model such co-evolution has been proposed by Mishra [22] to use a host-parasite co-
evolutionary approach where both parasites and hosts took random flights and the probability of detection
or rejection of eggs is dynamic, depending on the accumulative success of the parasites such as cuckoos. This
approach has been used to solve both function optimization problems and completing incomplete correlation
matrix [22]. However, this approach only captured a very small part of the major characteristics of the
cuckoo-host co-evolutionary systems.

In order to capture more detailed characteristics of this co-evolution system, in this paper, we extend the
original cuckoo search to a new multi-species co-evolutionary cuckoo search algorithm, which simulates the
main co-evolutionary behaviour of both cuckoo species and host species. Therefore, the paper is organized as
follows. Section 2 summarizes the original cuckoo search and its main equations. Section 3 outlines the novel
features of the new multi-species cuckoo search, followed by the numerical experiments on 15 different test
benchmarks in Section 4. Section 5 presents the results of five different case studies concerning engineering
designs, inverse parameter estimation and data clustering. The paper concludes with discussions about
further research directions in Section 6.

2 The Original Cuckoo Search

Cuckoo search (CS) is a nature-inspired metaheuristic algorithms, developed in 2009 by Xin-She Yang and
Suash Deb [41]. CS is based on the brood parasitism of some cuckoo species. In addition, this algorithm is
enhanced by the so-called Lévy flights [28], rather than by simple isotropic random walks. Recent studies
show that CS is potentially far more efficient than PSO and genetic algorithms [42, 17]. A relatively
comprehensive review of the studies up to 2014 was carried out by Yang and Deb [43].

2.1 Cuckoo Search and its Algorithmic Equations

In the natural world, many cuckoo species (59 species among 141 cuckoo species) engage the so-called obligate
reproduction parasitism strategy. There is an evolutionary arms race between such cuckoo species and their
associated host species [10, 11, 27]. Based on such phenomena, Yang and Deb developed the cuckoo search
in 2009 [41], which uses three simplified rules: 1) Each cuckoo lays one egg at a time, and dumps it in a
randomly chosen nest. 2) The best nests with high-quality eggs will be carried over to the next generations.
3) The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by the host bird
with a probability pa ∈ [0, 1]. In this case, the host bird can either get rid of the egg, or simply abandon the
nest and build a completely new nest at a new location.

In the original cuckoo search, there is no distinction between an egg, a nest, or a cuckoo, as each
nest corresponds to one egg which also represents one cuckoo, which makes it much easier to implement
[42]. Mathematically speaking, cuckoo search uses a combination of a local random walk and the global
explorative random walk, controlled by a switching parameter pa. The local random walk can be written as

xt+1
i = xti + βs⊗H(pa − ε)⊗ (xtj − xtk), (1)

where xtj and xtk are two different solutions selected randomly by random permutation, H(u) is a Heaviside
function, ε is a random number drawn from a uniform distribution, and s is the step size. Here β is the
small scaling factor.

2

On the other hand, the global random walk is carried out by using Lévy flights

xt+1
i = xti + α⊗ L(s, λ), (2)

where

L(s, λ) ∼ λΓ(λ) sin(πλ/2)

π

1

s1+λ
, (s� 0), (3)

where α > 0 is the step size scaling factor, which should be related to the scales of the problem of interest.
Here ‘∼’ highlights the fact that the search steps in terms of random numbers L(s, λ) should be drawn
from the Lévy distribution on the right-hand side of Eq. (3), which approximates the Lévy distribution by
a power-law distribution with an exponent λ. In addition, here ⊗ denotes that the multiplication is an
entry-wise operation. The use of Lévy flights makes the algorithm more likely to jump out of any local
optima, enabling a better exploration ability [28, 41, 43].

2.2 Cuckoo Search in Applications

Since the development of the cuckoo search algorithm in 2009, it has been applied in many areas, including
optimization, engineering design, data mining and computational intelligence with promising efficiency. From
the case studies in engineering design applications, it has been shown that cuckoo search has superior
performance to other algorithms for a range of continuous optimization problems [42, 17, 16, 43, 50]. A
review by Yang and Deb covered the literature up to 2013 [43], while a review by Fister et al. covered the
literature up to 2015, and another review by Mohamad et al. focused on applications up to 2014 [24]. The
most recent literature has been carried out by Shehab et al. [32], which covers some of the literature up
to 2017. These reviews have briefly outlined some of the diverse applications using cuckoo search and its
variants.

Other applications include vehicle component optimization [15], wireless sensor networks [12], train-
ing neural networks [35], runoff-erosion modelling [31], phase equilibrium in thermodynamic calculations [3],
network optimization [25], scheduling [7], multilevel color image segmentation [26], biodiesel engine optimiza-
tion [38], graphic objective feature extraction [39], fractional order PID control design [51], vulnerabilities
mitigation [53] and others [45].

In addition, different cuckoo search variants have been developed. For example, a binary cuckoo search
for feature selection has been developed by Pereira et al. [29]. Walton et al. [36] developed a modified
cuckoo search for solving complex mesh generation in engineering simulation, while Zheng and Zhou [52]
provided a variant of cuckoo search using Gaussian process. Mlakar et al. developed a self-adaptive cuckoo
search [23], while Wang et al. enhanced cuckoo search with chaotic maps [37].

As a further extension, Yang and Deb [46] developed a multiobjective cuckoo search (MOCS) algorithm
for engineering design applications. Recent studies have demonstrated that cuckoo search can perform
significantly better than other algorithms in many applications [17, 45, 50].

3 Multi-Species Cuckoo Search

In the original cuckoo search and its many variants, there is only one cuckoo species interacting with one
species of host birds. In the standard cuckoo search, a cuckoo is allowed to lay a single egg and each nest
contains only a single egg. This is a very simplified scenario. In the real-world cuckoo-host systems, it is
observed that multiple cuckoo species co-evolve with multiple host species to compete for survival of the
fittest by brood parasitism [10, 27]. Loosely speaking, cuckoos can evolve to subspecies with speciation,
and they can be subdivided into different gentes targeting at different host species [11, 21]. The interaction
dynamics can be very complex, forming an on-going, co-evolutionary arms race between cuckoo subspecies
and host species as well as different cuckoo species. Studies have shown that such co-evolution may promote
species richness in parasitic cuckoos with the enhanced speciation and extinction rates [21]. Strictly speaking,
different species, subspecies and gentes are used in the biological literature and their meanings are different
[21, 27]; however, we will simply use species here for simplicity.

Based on these characteristics, we can extend the original cuckoo search to capture more realistic cuckoo-
host co-evolution to develop a new multi-species co-evolution cuckoo search, or multi-species cuckoo search
(MSCS) for short.

3

In order to describe the multi-species cuckoo search in detail, we use the following idealized rules/assumptions:

1. There are multiple cuckoo species (m species) that compete and co-evolve with a host species. The
arms race between cuckoo species and the host species obeys the survival of the fittest. Both the best
cuckoos and the best hosts will pass onto the next generation.

2. Each cuckoo of any cuckoo species can lay r eggs inside a randomly selected host nest. Each cuckoo egg
has a probability pa to be discovered (and then abandoned) by the host (thus the survival probability
is 1− pa).

3. Each nest contains q eggs. If the fraction/ratio of cuckoo eggs is higher than 1− pa, the host bird can
abandon the nest and then fly away to build a new nest in a new location.

Based on these rules for MSCS, we can represent them more mathematically. Each solution xi to an
optimization problem is represented by an egg, which corresponds to a D-dimensional vector. Therefore, an
egg is equivalent to a solution, and a nest represents a group of q solutions.

In general, there are m ≥ 1 species with a total population of n, each species has ni (i = 1, ...,m) cuckoos
such that

m∑
i=1

ni = n. (4)

Each cuckoo lays r ≥ 1 eggs. There are w host nests, and each nest can have q ≥ 1 eggs on average. So the
total number of eggs in the host nests are Nh = wq, which should be greater than n. That is, Nh � n. In
nature, it is estimated that approximately 1/4 to 1/2 of eggs in the host nests are cuckoo eggs. Thus, we
can set n = Nh/2 for simplicity.

Competition can occur at three different levels: intraspecies competition, inter-species competition and
cuckoo-host competition. Even for a single species, cuckoos within the same species can compete for host
nests. For multiple species, one species of cuckoos can compete with cuckoos from other species by egg-
replacing strategy. The most significant competition is the cuckoo-host competition. All these three kinds of
competition interact and co-evolve to form a complex system, leading to potential self-organizing intelligent
behaviour.

Different cuckoo species will compete for survival of the fittest, and they can take over other cuckoos’
territory or replace eggs laid by other cuckoo species. This can be done simply by random swapping its
location vector with another in a dimension-by-dimension manner. This binary random swapping operator
can be realized by

x(new)
a = xa ⊗ (1−Q) + xb ⊗Q, (5)

and
x
(new)
b = xa ⊗Q + xb ⊗ (1−Q), (6)

where xa is randomly selected from cuckoo species a, while xb is selected from cuckoo species b. Here, Q
is a random binary vector with the same length of xa and each of its components is either 1 or 0 [i.e.,
Qk ∈ {0, 1} (k = 1, 2, ..., D)]. For example, Q = [1, 0, 0, 1, 0, 1, 1] is a binary vector in a 7-dimensional space.
Again, ⊗ means that the operation is a component-wise or dimension-wise operation.

The main steps for implementing and simulating the above idealized characteristics are as follows:

1. There are two population sets: a total population of n cuckoos for m cuckoo species (each has its own
population nj (j = 1, 2, ...,m)), and a population of Nh host nests. Thus, there are two initial best
solutions: g∗cs to denote the best cuckoo among all m cuckoo species (each species has its own best
cuckoo g∗j) and g∗h to denote the best host in terms of objective fitness.

2. For each generation of evolution, each cuckoo (say, cuckoo i) from a cuckoo species (say, species j) can
lay r eggs in a randomly selected host nest (say, nest k). The newly laid eggs will replace randomly
selected eggs in the nest (so that the total number of eggs in the nest remain constant q ≥ 1). The
main equation for this action can be carried out by Eq.(1).

3. For any new egg laid by a cuckoo, there is a probability of pa to be discovered. Among q eggs, if the
fraction of cuckoo eggs exceeds 1− pa, the host can abandon the nest completely and fly away to build
a new nest at a new location via Eq.(2).

4

4. Different species of cuckoos will compete for survival and territories, thus they can lay eggs in nests
that other cuckoos just laid. This competition is equivalent to replacing or swapping its own eggs with
another cuckoo’s eggs from different species. Thus, it can be achieved by randomly swapping their
components dimension by dimension via (5) and (6).

5. Random mixing is carried out in terms of egg-laying and nest choices among different cuckoo species
and the host species.

6. Both the best cuckoos and host nests (in terms of their fitness) should pass onto the next generation.

These key steps can be schematically represented as the pseudocode in Algorithm 1. To illustrate the
main ideas, for two species of cuckoos with a total population of n = 40, we have m = 2 and n = 40. If two
species have the same population size, we have n1 = n2 = n/2 = 20. For simplicity, if all nests have the
same number of four eggs in 20 nests, we have q = 4 and w = 20, thus there Nh = 20 ∗ 4 = 80 eggs in all the
nests. In addition, if each cuckoo lays one egg at a time (or r = 1), this means that there are nr = 40 cuckoo
eggs in the cuckoo-host system. Thus, in this case, there are exactly 50% of the eggs belong to cuckoos in
the combined population of cuckoo species and host nests.

Obviously, the number of cuckoo eggs in a particular nest can be randomly distributed from 1 to q = 4.
For pa = 0.25, if there are 3 or 4 eggs in a nest, one egg may typically belong to cuckoos. If the number of
alien eggs is higher, this nest can be abandoned by its host, and thus a new replacement nest with q new
eggs (or randomly generated solutions) will be built in a new location, typically far enough from the original
location.

Initialize parameters, cuckoos and host populations;
Find the best cuckoo g∗cs and best host g∗h;
while stopping criterion is not met do

Choose a cuckoo species randomly (say, species j);
Select a cuckoo in the species randomly (say, i);
Generate a random number ε from [0,1];
if ε < pa (discovery probability) then

Generate a new solution by Eq.(1);
else

Perform a Lévy flight by Eq.(2);
end
Put into a host nest randomly (say, nest k);
Generate a random binary vector Q of D dimensions ;
Swap two randomly selected eggs from two different species by (5) and (6);
Evaluate all new fitness/objectives;
if New solution is better then

Replace the worst egg in nest k by the new solution;
end
Update the best solution g∗cs among all cuckoos;
if cuckoo eggs ratio in nest k is higher than 1− pa then

Perform a Lévy flight and build a new nest at a new location via Eq.(2);
end
Update the current best host g∗h among all nests;
Pass the best cuckoos in each species and host nests to next generation;
Find and record the overall best solution x∗;
Update iteration counter t;

end
Algorithm 1: Multi-species co-evolutionary cuckoo search.

It is worth pointing out that there seems to have some similarity between multi-species cuckoo interactions
and the multi-swarm optimization in the literature [5]. However, there are two key differences here: the multi-
species cuckoo search (MSCS) mimics the co-evolution between parasite cuckoo species and host species, while

5

mutli-swarms mainly split a population of the same kind into subgroups or subswarms. In addition, the share
of information in MSCS is among the same cuckoo species and the same host species, not directly shared
among competing species. Such information-sharing structure can potentially enable extensive exploitation
of local information as well as global information. On the other hand, multi-swarms tend to share information
among all subswarms. Furthermore, different cuckoo species compete for survival, while the multi-swarms
do not compete. These differences mean that MSCS is not a simple multi-swarm system, rather it is an
interacting co-evolving multi-swarm system. Therefore, different characteristics and performance can be
expected.

4 Validation by Numerical Experiments

All new algorithms have to be extensively tested by a diverse range of benchmarks and case studies. As a
preliminary test, we will use a subset of 15 function benchmarks and 5 case studies.

4.1 Benchmarks

For this purpose, we have selected 15 benchmark functions with different modalities and objective landscapes
from traditional optimization functions, the CEC2005 test suite and most recent CEC2015 test functions.
The chosen set of benchmarks have diverse properties so that we can test the proposed algorithm more
thoroughly.

The first function is the shifted sphere function f1 from the CEC2005 benchmark suite [34]. This function
has the global minimum f1,min = −450 in the domain −100 ≤ xi ≤ 100.

The second function is Ackley function

f2(x) = −20e−
1
5 (

1
D

∑D

i=1
x2
i)

1/2

− e
1
D

∑D

i=1
cos(2πxi) + 20 + e, (7)

which has its global minimum f∗ = 0 at (0, 0, ..., 0). This function is highly nonlinear and multimodal.
The third function is Yang’s forest-like function

f3(x) =
(D∑
i=1

|xi|
)

exp
[
−

d∑
i=1

sin(x2i)
]
, (8)

which has the global minimum f∗ = 0 at (0, 0, ..., 0) in the domain of −2π ≤ xi ≤ 2π. This function is highly
nonlinear and multimodal, and its first derivatives do not exist at the optimal point due to the modulus |.|
factor.

The fourth function is the shifted Schwefel’s problem with noise in fitness as given in CEC2005 benchmark
suite [34], which has the mean global minimum f4,min = −450 in the domain −100 ≤ xi ≤ 100.

The fifth function is Schwefel’s Problem 2.22 [49]

f5(x) =

D∑
i=1

|xi|+
D∏
i=1

|xi|, (9)

which has the global minimum f5,min = 0 at x = (0, 0, ..., 0) in the domain −10 ≤ xi ≤ 10. This function is
unimodal.

The sixth function is the shifted Rosenbrock function f6 of CEC2005 benchmark suite with the minimum
f6,min = 390 in −100 ≤ xi ≤ 100.

The seventh function is the shifted and rotated Griewank function with the minimum f7,min = −180 in
the domain of 0 ≤ xi ≤ 600.

The eighth function is Function 23 of the CEC2005 benchmarks [34], which is a non-continuous rotated
hybrid composition function with the minimum f8,min = 360 in −5 ≤ xi ≤ 5.

The ninth function is Function 24 of the CEC2005 benchmarks [34], which is a rotated hybrid composition
function with f9,min = 260 in −5 ≤ xi ≤ 5.

The tenth function is Function 25 of the CEC2005 benchmark suite [34], which is a rotated hybrid
composition function without bounds with the minimum of f10,min = 260 in [2, 5]D.

6

The next five functions are taken from the CEC2015 benchmark suite [8, 30]. The 11th function is the
rotated bent cigar function with the minimum f11,min = 100, while the 12th function is the rotated Discus
function with the minimum of f12,min = 200. The 13th function is the shifted and rotated Weierstrass
function with f13,min = 300, and the 14th function is the shifted and rotated Schwefel’s function with
f14,min = 400. Finally, the 15th function is the shifted and rotated Katsuura function with f15,min = 500.
All these functions have variables in the domain of [-100,100]D where D is the dimensionality of the functions.

4.2 Parameter Settings

For the implementations, we have used n1 = n2 = 20, n = 40, r = 1, m = 2, Nh = 80, q = 4 and w = 20
for the two sets of populations. For the parameters in the algorithmic equations, we have used α = =

¯
0.01,

λ = 1.5, pa = 0.25 and a fixed number of iterations tmax = 1000 as the stopping criterion.
In addition, D = 10 is used for all the test functions in the first experiment, then D = 50 is used for

the second numerical experiment, while all other parameter values remain the same. For both the standard
cuckoo search (CS) and the proposed MSCS, we have used ncs = 80 so that the total numbers of function
evaluations remain the same for all algorithms. Thus, the fairness of the comparison in terms of function
evaluations is ensured. The parameter setting has been based on preliminary parametric studies in our own
simulation as well as the suggestions in the literature [41, 43].

4.3 Results

Each algorithm has been run for 100 trials so as to calculate the best (minimum) and means of the obtained
solutions. The error is defined as the absolute value of the difference between the best f(x∗) found by the
algorithm and the true minimum fmin(true). That is

Ef = |f(x∗)− fmin(true)|. (10)

The numerical results are summarized in Table 1 where the best corresponds to the minimum of Ef and the
mean corresponds to the average value of Ef .

From Table 1, we can see that MSCS can obtain better results in all the benchmarks. The diversity
among the cuckoo-host populations in MSCS is higher than those in CS, and the MSCS can be potentially
more robust. This will in general promote the exploration ability of the search process.

Another way of looking at the simulation results is to analyze and compare the convergence behaviour.
In fact, MSCS converges faster than CS for all the test functions by tracing both the minimum objective
values found during iterations. For example, for function f5, its convergence plot is shown in Fig. 1 where
we can see that MSCS converges faster even from the very early iterations.

In order to test the proposed algorithm for solving higher-dimensional problems, we have also tested the
function benchmarks for D = 50. In most literature, researchers tend to use higher numbers of iterations
for higher values of D, typically t = 1000D, but we have used the same settings of the parameters as before;
that is, tmax = 1000. The results are summarized in Table 2.

As we can see from Table 2 that the MSCS obtained better results for almost all functions, except for the
shifted and rotated Weierstrass function f13 where the two algorithms obtained the same orders of results,
but the variation of MSCS is small. This means that the MSCS not only can produce optimal solutions, but
also is sufficiently robust.

5 Practical Applications

To test the proposed MSCS algorithm further, we now use five test problems in real-world applications
with diverse properties and nonlinearity. Three case studies are about designs in engineering and they are
mostly mixed integer programming problems. The fourth case study is the parameter estimation problem
or an inverse problem, which requires to solve a second-order differential equation to calculate the values of
objective function. The final problem is the data clustering using the well-know Fisher’s iris flower data set.

7

Table 1: Errors |f(x∗)− fmin(true)| for D = 10.
CS MSCS

Function Best Mean Best Mean
f1 2.97E-09 1.71E-06 2.21E-11 3.25E-08
f2 2.12E-09 1.69E-08 1.41E-11 5.79E-09
f3 7.02E-07 5.86E-06 3.68E-10 2.41E-09
f4 3.56E-07 2.23E-04 8.17E-08 7.91E-05
f5 4.11E-07 5.39E-06 1.01E-09 5.11E-08
f6 1.25E-09 2.77E-08 7.23E-10 5.98E-09
f7 2.17E-08 5.25E-08 2.49E-09 5.14E-09
f8 4.51E+01 7.26E+02 1.37E+01 9.40E+01
f9 2.65E+02 7.01E+02 3.86E+01 2.08E+01
f10 7.92E+02 7.89E+02 9.32E+01 2.65E+01
f11 8.14E+02 9.01E+02 1.27E+02 6.32E+02
f12 2.59E+02 6.87E+02 3.92E+01 7.41E+01
f13 2.76E+03 8.23E+03 4.62E+02 6.98E+03
f14 5.89E+03 7.54E+03 2.51E+03 3.42E+03
f15 2.83E+03 2.57E+03 1.49E+03 4.07E+03

Figure 1: Convergence plot for f5 during iterations.

8

Table 2: Errors |f(x∗)− fmin(true)| for D = 50.
CS MSCS

Function Best Mean Best Mean
f1 2.21E-06 7.43E-07 5.04E-09 6.37E-07
f2 2.83E-08 9.74E-07 1.42E-09 1.75E-07
f3 3.35E-06 6.21E-05 1.91E-07 3.22E-08
f4 1.94E-05 7.73E-01 3.89E-04 8.79E-01
f5 4.51E-05 6.12E-03 4.81E-06 7.33E-06
f6 3.31E-07 9.17E-06 2.92E-07 9.05E-06
f7 5.27E-06 7.51E-06 3.88E-07 4.71E-06
f8 2.83E+03 8.12E+03 0.91E+03 1.38E+03
f9 8.62E+03 8.90E+03 2.01E+03 8.92E+03
f10 5.22E+04 9.27E+04 1.59E+03 8.33E+03
f11 6.73E+03 7.93E+03 2.25E+02 7.16E+03
f12 3.12E+03 8.89E+03 1.37E+03 4.70E+03
f13 2.24E+04 7.67E+05 2.31E+04 5.91E+04
f14 7.36E+04 4.93E+05 4.98E+04 9.87E+04
f15 5.05E+04 9.28E+04 2.05E+03 6.69E+04

It is worth pointing out that these case studies are seemingly simple, but they are quite hard to solve
due to high nonlinearity, multimodality and irregular search domains. The pressure vessel problem is also a
mixed integer programming problem, which is much harder to solve, compared its continuous counterpart.

5.1 Design of a Spring

Let us start with a simple but nonlinear problem about the design of spring under tension or compression
[2, 9] from a metal wire. There are three design variables: the wire diameter (r), the mean coil diameter (d),
and the number (N) of turns/coils. The objective is to minimize the overall weight of the spring

minimize f(x) = (2 +N)r2d, (11)

subject to nonlinear constraints:

g1(x) = 1− Nd3

71785r4
≤ 0, g2(x) =

d(4d− r)
12566r3(d− r)

+
1

5108r2
− 1 ≤ 0, (12)

g3(x) = 1− 140.45r

d2N
≤ 0, g4(x) = (d+ r)− 1.5 ≤ 0. (13)

Some simple bounds or limits for the design variables are:

0.05 ≤ r ≤ 2.0, 0.25 ≤ d ≤ 1.3, 2.0 ≤ N ≤ 15.0. (14)

Using the proposed MSCS with the same parameter settings given in Section 4.2, the results of 20 different
runs are summarized in Table 3 where comparison is also made. As we can see, MSCS can obtain the best
or the same results as the best results in the literature.

5.2 Pressure Vessel Design

A well-known design benchmark is the pressure vessel design problem that has been used by many researchers.
This problem concerns the minimization of the overall cost of a cylindrical vessel subject to stress and volume
requirements. There are four design variables, including the thickness d1 and d2 for the head and body,
respectively, of the vessel, the inner radius r and the length W of the cylindrical section [6, 9]. The main
objective is

min f(x) = 06224rWd1 + 1.7781r2d2 + 19.64rd21 + 3.1661Wd21, (15)

9

Table 3: Comparison of optimal solutions for spring design.
Author Optimal solution Best objective

Arora [2] (0.053396, 0.399180, 9.185400) 0.01273
Coello [9] (0.051480, 0.351661, 11.632201) 0.01271

Yang and Deb [41] (0.051690, 0.356750, 11.28716) 0.012665
Present (0.051690, 0.356750, 11.28716) 0.012665

Table 4: Comparison of optimal solutions for pressure vessel design.
Author Optimal solution Best objective

Cagnina et al. [6] (0.8125, 0.4375, 42.0984, 176.6366) 6059.714
Coello [9] (0.8125, 0.4375, 42.3239, 200.0) 6288.7445

Yang et al. [47] (0.8125, 0.4375, 42.0984456, 176.6365959) 6059.714
Present (0.8125, 0.4375, 42.0984456, 176.6366) 6059.714

subject to four constraints:

g1(x) = −d1 + 0.0193r ≤ 0, g2(x) = −d2 + 0.00954r ≤ 0, (16)

g3(x) = −4πr3

3
− πr2W − 1296000 ≤ 0, g4(x) = W − 240 ≤ 0. (17)

The inner radius and length are limited to 10.0 ≤ r,W ≤ 200.0. However, the thickness d1 and d2 can only
be the integer multiple of a basic thickness of 0.0625 inches. Thus, the simple bounds for thickness are

1× 0.0625 ≤ d1, d2 ≤ 99× 0.0625. (18)

This is a mixed integer programming because two variables are discrete and the other two variables are
continuous.

Using the same parameter settings as before, the results of 20 independent runs are summarized and
compared in Table 4. In fact, all these algorithms can find the global optimal solution as found by Yang et
al. [47].

5.3 Speed Reducer Design

The speed reducer design is an engineering design benchmark, which has 7 design variables such as the face
width of the gear, number of teeth, and diameter of the shaft and others [18]. All these variables can take
continuous values, except for x3 which is an integer.

The objective to minimize the cost function

f(x) = 0.7854
[
x1x

2
2(3.3333x23 + 14.9334x3 − 43.0934) + (x4x

2
6 + x5x

2
7)
]

−1.508x1(x26 + x27) + 7.4777(x36 + x37), (19)

subject to 11 constraints:

g1(x) =
27

x1x22x3
− 1 ≤ 0, g2(x) =

397.5

x1x22x
2
3

− 1 ≤ 0, (20)

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0, g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0, (21)

g5(x) =
1.0

110x36

√
(
745.0x4
x2x3

)2 + 16.9× 106 − 1 ≤ 0, (22)

10

Table 5: Comparison of optimal solutions for the speed reducer problem.
Author Optimal solution Best objective

Akhtar et al. [1] (3.5061, 0.7, 17, 7.549, 7.8593, 3.3656,5.28977) 3008.08
Cagnita et al. [6] (3.5, 0.7, 17, 7.3, 7.8, 3.350214, 5.286683) 2996.348165

Yang & Gandomi [44] (3.5, 0.7, 17, 7.3, 7.71532, 3.35021, 5.2875 2994.467
Present (3.5, 0.7, 17, 7.3, 7.8, 3.34336449, 5.285351) 2993.749589

Table 6: Measured response of a simple vibration system.
t 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
yd(t) 0.00 0.59 1.62 2.21 1.89 0.69 -0.99 -2.53 -3.36 -3.15 -1.92

g6(x) =
1.0

85x37

√
(
745.0x5
x2x3

)2 + 157.5× 106 − 1 ≤ 0, (23)

g7(x) = x2x3 − 40 ≤ 0, g8(x) = 5x2 − x1 ≤ 0, (24)

g9(x) = x1 − 12x2 ≤ 0, g10(x) = (1.5x6 + 1.9)− x4 ≤ 0, (25)

g11(x) = (1.1x7 + 1.9)− x5 ≤ 0. (26)

In addition, the simple bounds for the variables are: 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28 (integers
only), 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.4, 2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5.

The results of the 20 independent runs are summarized and comparison has been made in Table 5. As
we can see, MSCS obtained the best result. Since there is no literature about the analysis of this problem
and we do not know what the global best solution should be, we can only say that 2993.749589 is the best
result achieved so far.

5.4 Parameter Identification of Vibrations

For a simple vibration problem, there are two unknown parameters µ and ν to be estimated from the
measurements of the vibration amplitudes. The governing equation is

d2y(t)

dt2
+ µ

dy(t)

dt
+ νy(t) = 40 cos(3t). (27)

In general, the solution is a damped harmonic motion. However, for fixed µ = 4 and ν = 5 with an initial
values of y(0) = 0 and y′(0) = 0, there is an analytical solution [48], which can be written as

y(t) = e−2t[cos(t)− 7 sin(t)] + 3 sin(3t)− cos(3t). (28)

For a real system with a forcing term 40 cos(3t), we do not know the parameters, but the vibrations can
be measured. For example, in an experiment, there are N = 11 measurements as shown in Table 6.

The task is to estimate the values of the two parameters. However, one of the main challenges is that
the calculation of the objective function that is defined as the sum of errors squared. That is

f(x) =

N∑
i=1

(yi,predicted − yi,d)2, (29)

where the predicted y(t) has to be obtained by solving the second-order ordinary differential equation (27)
numerically and iteratively for every guessed set of µ and ν.

Using the MSCS with a population of 40 cuckoos and the same parameter setting given in Section 4.2.
We have run the algorithm for 20 times, and the mean values of estimate parameters are: µ∗ = 4.025 and
ν∗ = 4.981, which are very close to the true values of µ = 4.000 and ν = 5.000.

11

Table 7: Accuracy comparison for Iris data set.
Method Author accuracy

K-means and PSO Kao et al. [19] 89.3%
MKF-Cuckoo Binu et al. [4] 95.0%

K-means Khan & Ahmad [20] 76.4%
K-means with CCIA Khan & Ahmad [20] 88.7%

MSCS this paper 97.1%

5.5 Iris Classification

To test the MSCS algorithm further, we use it to solve the classification problem of the well-known Fisher’s
Iris flower data set. This data set has 150 data points or instances with 4 attributes and 3 distinct classes
[14]. We use the data from the UCI Machine Learning Repository1.

We have encoded the centres of the clusters as the solution vectors so as to minimize the overall intra-
clustering distances. Although the parameter settings are the same as before, the number of iterations is
limited to 100 so as to be comparable with the results from the literature [4]. The best values obtained
are compared with the results obtained by other methods such as the hybrid k-means and PSO approach
[19], multiple kernel based fuzzy c-means with cuckoo search [4], and k-means with improved feature based
cluster centre initialization algorithm (CCIA) [20].

The optimization results are summarized in Table 7. As we can see, MSCS obtained the best result
which signifies an improvement over the best results obtained by multiple kernel fuzzy c-means based cuckoo
search approach (MKF-cuckoo) [4].

The results and simulation we have obtained so far are indeed encouraging. Obviously, we will carry out
more thorough evaluations of the proposed approach in the future work. So let us summarize the work we
have done so far in this paper.

6 Discussions

The original cuckoo search has been extended to capture more realistic characteristics of cuckoo-host co-
evolution systems. We have thus developed a multi-species cuckoo search for solving optimization problems
using multiple cuckoo species competing and co-evolving with host species. We then tested the proposed
approach using a set of 15 function benchmarks to show that the proposed algorithm can indeed work
well. Preliminary results suggest that MSCS can have a higher convergence rate and obtain better results in
general. In addition, we have used 5 different case studies from engineering designs, parameter estimation and
data clustering to further test the proposed algorithm. Our simulation results and subsequent comparison
have shown that the MSCS can indeed find the optimal solutions that are either better and comparable with
the results obtained by other methods.

The essence of multi-species co-evolution is to use more than one species so as to see how different
species interact and compete. In the present studies, we have just used m = 2 species for the cuckoo-host
co-evolution. Future work will focus on more than two species and more detailed parametric studies using
different numbers of species m with varied population sizes. In addition, it would gain more insight by tuning
the key parameters in the algorithm to see how they may affect the overall performance of the algorithm.

Furthermore, in the real-world cuckoo-host co-evolution systems, there are multiple cuckoo species in-
teracting with multiple host species, which can have much more complex behaviour and characteristics.
The current approach with the preliminary tests consists of only a single host species with multiple cuckoo
species. A possible extension can be the multiple host bird species compete and co-evolve with multiple
cuckoo species. For example, the common cuckoos can lay eggs in many different host species including
garden warblers and reed warblers [27]. The number of eggs laid by cuckoos and inside nests can be random.
It can also be useful to carry out further tests of this algorithm using a more extensive set of benchmarks
and real-world case studies.

1http://archive.ics.uci.edu/ml/datasets/Iris

12

Acknowledgement: The authors would like to thank the anonymous reviewers for their constructive
comments.

References

[1] Akhtar S, Tai K, Tay T. A socio-behavioural simulation model for engineering design optimization.
Engineering Optimization 2002; 34(4): 341–454.

[2] Arora JS. Introduction to Optimum Design. New York: McGraw-Hill; 1989.

[3] Bhargava V, Fateen, SEK, Bonilla-Petriciolet A. (2013). Cuckoo search: a new nature-inspired opti-
mization method for phase equilibrium calculations. Fluid Phase Equilibria 2013; 337:191–200.

[4] Binu D, Selvi M, Aloysius G. MKF-cuckoo: hyrbidization of cuckoo search and multiple kernel-based
fuzzy c-means algorithm. AASRI Procedia 2013; 4: 243–249.

[5] Blackwell T and Branke J, Multi-swarm optimization in dynamic environments, in: Applications of
Evolutionary Computing, EvoWorkshops 2004, Lecture Notes in Computer Science, Vol. 3005, Springer,
Berlin, 2004; 489–500.

[6] Cagnina LC, Esquivel SC, Coello Coello CA. Solving engineering optimization problems with the simple
constrained particle swarm optimizer. Informatica 2008; 32:319–326.

[7] Chandrasekaran K, Simon SP. Multi-objective scheduling problem: hybrid appraoch using fuzzy as-
sisted cuckoo search algorithm. Swarm and Evolutionary Computation 2012; 5(1): 1–16.

[8] Chen Q, Liu B, Zhang Q, Suganthan PN, Qu BY, Problem definition and evaluation criteria for
CEC2015 special session and competition on bound constrained single-objective computationally expen-
sive numerical optimization, Technical Report, Commputational Intelligence Laboratory, Zhengzhou
University, China and Technical Report, Nanyang Technology Univesity, Singapore, Nov. 2014.

[9] Coello Coello CA. Use of a self-adaptive penalty approach for engineering optimization problems.
Computers in Industry 2000; 41: 113-127.

[10] Davies NB and Brooke ML. Co-evolution of the cuckoo and its hosts. Scientific American 1991;
264(1):92-98.

[11] Davies NB. Cuckoo adaptations: trickery and tuning. Journal of Zoology 2011; 284(1): 1–14.

[12] Dhivya M and Sundarambal M. Cuckoo search for data gathering in wireless sensor networks. Int. J.
Mobile Communications 2011; 9(4): 642-656.

[13] Dubey HM, Pandit M, Panigrahi BK, A biologically inspired modified flower pollination algorithm for
solving dispatch problems in modern power systems. Cognitive Computation 2015; 7(5): 594–608.

[14] Duda RO, Hart PE. Pattern Classification and Scene Analysis. New York: John Wiley and Sons; 1973.

[15] Durgun I, Yildiz AR. Structural design optimization of vehicle components using cuckoo search algo-
rithm. Materials Testing 2012; 3(3): 185-188.

[16] Fister Jr I, Fister D, Fister I. A comprehensie review of cuckoo search: variants and hybrids. Int. J.
Mathematical and Numerical Optimisation 2013; 4(4): 387–409.

[17] Gandomi AH, Yang XS, Alavi AH. Cuckoo search algorithm: a metaheuristic approach to solve struc-
tural optimization problems. Engineering with Computers 2013; 29(1): 17–35.

[18] Golinski J. An adaptive optimization system applied to machine synthesis. Mech. Mach. Theory 1973;
8(4): 419–436.

13

[19] Kao Y-T, Zahara E, Kao I-W. A hybridized approach to data clustering. Expert Systems with Appli-
cations 2008; 34(3): 1754–1762.

[20] Khan SS, Ahmad A. Cluster center initialization algorithm for k-means clustering. Pattern Recognition
Letters 2004; 25(11): 1393–1302.

[21] Krüger O, Sorenson MD, Davies NB. Does co-evolution promote species richness in parasitic cuckoos?
Proc. Roy. Soc. B 2009; 276(1674): 3871–3879.

[22] Mishra SK. Global optimization of some difficult benchmark functions by host-parasite co-evolutionary
algorithm. Economics Bulletin 2013; 33(1): 1–18.

[23] Mlakar U, Fister Jr I, Fister I. Hybrid self-adaptie cuckoo search for global optimization. Swarm and
Evolutionary Computation 2016; 29: 47–72.

[24] Mohamad AB, Zain AM, Bazin NEN, Cuckoo search algorithm for optimization problems – A literature
review and its applications. Applied Artificial Intelligence 2014; 28 (5): 419–448.

[25] Moravej Z, Akhlaghi A. A novel approach based on cuckoo search for DG allocation in distribution
network. Electrical Power and Energy Systems 2013; 44(1): 672–679.

[26] Pare S, Kumar A, Bajaj V, Singh GK. A multilevel color image segmentation technique based on
cuckoo search algorithm and energy curve, Applied Soft Computing 2016; 47:76–102.

[27] Payne RB. The Cuckoos. Oxford: Oxford University Press; 2005.

[28] Pavlyukevich I. Lévy flights, non-local search and simulated annealing. J. Computational Physics 2007;
226(2):1830-1844.

[29] Pereira LAM, Rodrigues D, Almeida TNS, Ramos CCO, Souza AN, Yang XS, Papa JP. A binary cuckoo
search and its application for feature selection. in: Cuckoo Search and Firefly Algorithm. Studies in
Computational Intelligence 2013; Vol.516, pp.141–154.

[30] Qu BY, Liang JJ, Wang ZY, Chen Q, Suganthan PN, Novel benchmark functions for continuous
multimodal optimization with comparative results, Swarm and Evolutionary Computation 2016; 26(1):
23-34.

[31] Santos CAG, Freire PKMM, Mishra SK. Cuckoo search via Lévy fligths for optimization of a physically-
based runoff-erosion model. Journal of Urban and Environmental Engineering 2012; 6(2): 123–131.

[32] Shehab M, Khader AT, Al-Betar MA. A survy on applications and variants of the cuckoo search
algorithm. Applied Soft Computing 2017; https://doi.org/10.1016/j.asoc.2017.02.034

[33] Siddique N, Adeli H, Nature-inspired chemical reaction optimisation algorithms. Cognitive Computa-
tion 2017; 9: 411-422.

[34] Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S. Problem definitions and
evaluation criteria for the CEC2005 special session on real-parameter optimization, Technical Report
of Nanyang Technological University, Singapore and KanGAL Report, IIT Kanpur, India; 2005.

[35] Valian E, Mohanna S, Tavakoli S. Improved cuckoo search algorithm for feedforward neural network
training. Int. J. Articial Intelligence and Applications 2011; 2(3): 36–43.

[36] Walton S, Hassan O, Morgan K, Brown MR. Modified cuckoo search: a new gradient free optimization
algorithm. Chaos, Solitons & Fractals 2011; 44(9): 710-718.

[37] Wang GG, Deb S, Gandomi AH, Zhang ZJ, Alavi AH. Chaotic cuckoo search. Soft Computing 2016;
20(9): 3349–62.

[38] Wong PK, Wong KI, Vong CM, Cheung CS. Modeling and optimization of biodiesel energy performance
using kernel-based extreme learning machine and cuckoo search. Renewable Energy 2015; 74: 640–647.

14

[39] Woźniak M, Polap D, Napoli C, Tramontana E. Graphic object feature extraction system based on
cuckoo search algorithm. Expert Systems with Applications 2016; 66: 20–31.

[40] Wu TQ, Yao M, Yang, JH. Dophin swarm extreme learning machine. Cognitive Computation 2017;
9(2): 275–284.

[41] Yang XS, Deb S. Cuckoo search via Lévy flights, in: Proc. of World Congress on Nature & Biologically
Inspired Computing (NaBic 2009), India, IEEE Publications, USA. 2009; pp. 210–214

[42] Yang XS, Deb S. Engineering optimization by cuckoo search. Int. J. Math. Modelling Num. Optimisation
2010; 1(4): 330–343.

[43] Yang XS, Deb S. Cuckoo search: recent advances and applications. Neural Computing and Applications
2014; 24(1): 169-174.

[44] Yang XS, Gandomi AH. Bat algorithm: a novel approach for global engineering optimization. Engi-
neering Computations 2012; 29(5): 464–483.

[45] Yang XS. Cuckoo Search and Firefly Algorithm: Theory and Applications. Studies in Computational
Intelligence, Vol. 516, Springer; 2014.

[46] Yang XS, Deb S. Multiobjective cuckoo search for design optimization. Computers and Operations
Research 2013; 40(6): 1616-1624.

[47] Yang XS, Huyck C, Karamanoglu M, Khan N. True global optimality of the pressure vessel design
problem: a benchmark for bio-inspired optimisation algorithms. Int. J. Bio-Inspired Computation 2013;
5(6): 329–335.

[48] Yang XS. Engineering Mathematics with Examples and Applications. London: Academic Press; 2017.

[49] Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Computation 1999;
3(2): 82-102.

[50] Yildiz AR. Cuckoo search algorithm for the selection of optimal machine parameters in milling opera-
tions. Int. J. Adv. Manuf. Technol. 2013; 64(1): 55–61.

[51] Zamani AA, Tavakoli S, Etedali S. Fractional order PID control design for semi-active control of smart
base-isolated structures: a multi-objective cuckoo search approach. ISA Tractions 2017; 67: 222-232.

[52] Zheng HQ, Zhou Y. A novel cuckoo search optimization algorithm based on Gauss distribution. J.
Computational Information Systems 2012; 8(10): 4193–4200.

[53] Zineddube M. Vulnerabilities and mitigation techniques toning in the cloud: a cost and vulnerablities
coverage optimization approach using cuckoo search algorithm with Lévy flights. Computers & Security
2015; 48: 1–18.

15

	1 Introduction
	2 The Original Cuckoo Search
	2.1 Cuckoo Search and its Algorithmic Equations
	2.2 Cuckoo Search in Applications

	3 Multi-Species Cuckoo Search
	4 Validation by Numerical Experiments
	4.1 Benchmarks
	4.2 Parameter Settings
	4.3 Results

	5 Practical Applications
	5.1 Design of a Spring
	5.2 Pressure Vessel Design
	5.3 Speed Reducer Design
	5.4 Parameter Identification of Vibrations
	5.5 Iris Classification

	6 Discussions

