Skip to main content
Log in

Linguistic Interval-Valued Pythagorean Fuzzy Sets and Their Application to Multiple Attribute Group Decision-making Process

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The paper’s aims are to present a novel concept of linguistic interval-valued Pythagorean fuzzy set (LIVPFS) or called a linguistic interval-valued intuitionistic type-2 fuzzy set, which is a robust and trustworthy tool, and to accomplish the imprecise information while solving the decision-making problems. The presented LIVPFS is a generalization of the linguistic Pythagorean fuzzy set, by characterizing the membership and non-membership degrees as the interval-valued linguistic terms to represent the uncertain information. To explore the study, we firstly define some basic operational rules, score and accuracy functions, and the ordering relations of LIVPFS with a brief study of the desirable properties. Based on the stated operational laws, we proposed several weighted averages and geometric aggregating operators to aggregate the linguistic interval-valued Pythagorean fuzzy information. The fundamental inequalities between the proposed operators and their properties are discussed in detail. Finally, a multiple attribute group decision-making (MAGDM) algorithm is promoted to solve the group decision-making problems with uncertain information using linguistic features and the proposed operators. The fundamental inequalities between the proposed operators and their properties are discussed in detail. Also, the illustration of the stated algorithm is given through several numerical examples and compared their performance with the results of the existing algorithms. Based on the stated MAGDM algorithm and the suitable operators, the decision-makers’ can be selected their best alternatives with their own attitude character towards optimism or pessimism choice. The presented LIVPFS is an extension of the several existing sets and is more generalized to utilize the uncertain and imprecise information with a wider range of information. Based on the presented aggregation operators, a decision-maker can select the desired one as per their choices to access the finest alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zadeh LA. Fuzzy sets. Inf Control 1965;8:338–53.

    Article  Google Scholar 

  2. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets Syst 1986;20(1):87–96.

    Article  Google Scholar 

  3. Atanassov K, Gargov G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst 1989;31: 343–9.

    Article  MathSciNet  Google Scholar 

  4. Atanassov K. Intuitionistic fuzzy sets, theory and applications. Heidelberg: Physica; 1999.

    Book  Google Scholar 

  5. Garg H, Kumar K. Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision-making problems. IEEE Trans Fuzzy Syst 2019;27(12):2302–11.

    Article  Google Scholar 

  6. Xu ZS. Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 2007;15:1179–87.

    Article  Google Scholar 

  7. Xu ZS, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 2006;35:417–33.

    Article  MathSciNet  Google Scholar 

  8. Garg H. Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput Ind Eng 2016;101:53–69.

    Article  Google Scholar 

  9. Xu Z, Chen J. On geometric aggregation over interval-valued intuitionistic fuzzy information. Fourth international conference on fuzzy systems and knowledge discovery, 2007. FSKD 2007; 2007. p. 466–71.

  10. Garg H. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. J Ind Manag Optim 2018;14(1):283–308.

    MathSciNet  MATH  Google Scholar 

  11. Yager RR. Pythagorean fuzzy subsets. Procedings joint IFSA world congress and NAFIPS annual meeting, Edmonton, Canada; 2013. p. 57–61.

  12. Peng X, Yang Y. Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int J Intell Syst 2016;31(5):444–87.

    Article  Google Scholar 

  13. Garg H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. J Intell Fuzzy Syst 2016;31(1):529–40.

    Article  Google Scholar 

  14. Garg H. Hesitant Pythagorean fuzzy sets and their aggregation operators in multiple attribute decision making. Int J Uncertain Quantif 2018;8(3):267–89.

    Article  MathSciNet  Google Scholar 

  15. Yager RR, Abbasov AM. Pythagorean membeship grades, complex numbers and decision making. Int J Intell Syst 2013;28:436–52.

    Article  Google Scholar 

  16. Peng X, Yang Y. Some results for Pythagorean fuzzy sets. Int J Intell Syst 2015;30(11):1133–60.

    Article  MathSciNet  Google Scholar 

  17. Zhang XL, Xu ZS. Extension of TOPSIS to multi-criteria decision making with Pythagorean fuzzy sets. Int J Intell Syst 2014;29(12):1061–78.

    Article  MathSciNet  Google Scholar 

  18. Garg H. A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes. Int J Intell Syst 2016;31(12):1234–52.

    Article  Google Scholar 

  19. Garg H. A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int J Intell Syst 2016;31(9):886–920.

    Article  Google Scholar 

  20. Zeng S, Chen J, Li X. A hybrid method for Pythagorean fuzzy multiple-criteria decision making. Int J Inf Technol Decis Mak 2016;15(2):403–22.

    Article  Google Scholar 

  21. Garg H. Confidence levels based Pythagorean fuzzy aggregation operators and its application to decision-making process. Comput Math Org Theory 2017;23(4):546–71.

    Article  Google Scholar 

  22. Peng X. New operations for interval-valued Pythagorean fuzzy set. Sci Iran 2019;26(2):1049–76.

    Google Scholar 

  23. Chen T-Y. Multiple criteria decision analysis under complex uncertainty: a pearson-like correlation-based pythagorean fuzzy compromise approach. Int J Intell Syst 2019;34(1):114–51.

    Article  Google Scholar 

  24. Garg H. Neutrality operations-based pythagorean fuzzy aggregation operators and its applications to multiple attribute group decision-making process. J Ambient Intell Humaniz Comput 2020;11(7):3021–41.

    Article  Google Scholar 

  25. Peng X, Selvachandran G. Pythagorean fuzzy set: state of the art and future directions. Artif Intell Rev 2019;52:1873–927.

    Article  Google Scholar 

  26. Herrera F, Martínez L. A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making. IEEE Trans Syst Man Cybern Part B (Cybern) 2001; 31(2):227–34.

    Article  Google Scholar 

  27. Zhang H. 2014. Linguistic intuitionistic fuzzy sets and application in MAGDM. J Appl Math. Article ID 432092 11 pages. https://doi.org/10.1155/2014/432092.

  28. Chen Z, Liu P, Pei Z. An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. J Comput Intell Syst 2015;8(4):747–60.

    Article  Google Scholar 

  29. Garg H, Kumar K. Group decision making approach based on possibility degree measures and the linguistic intuitionistic fuzzy aggregation operators using Einstein norm operations. J Mult-Valued Logic Soft Comput 2018;31(1/2):175–209.

    MathSciNet  MATH  Google Scholar 

  30. Garg H. Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process. Int J Intell Syst 2018;33(6):1234–63.

    Article  Google Scholar 

  31. Wang J, Wei G, Gao H. Approaches to multiple attribute decision making with interval-valued 2-tuple linguistic pythagorean fuzzy information. Mathematics 2018;6(10):201. https://doi.org/10.3390/math6100201.

    Article  Google Scholar 

  32. Deng X, Wang J, Wei G. Some 2-tuple linguistic pythagorean heronian mean operators and their application to multiple attribute decision-making. J Exp Theoret Artif Intell 2019;31(4):555–74.

    Article  Google Scholar 

  33. Rong Y, Pei Z, Liu Y. Linguistic Pythagorean Einstein operators and their application to decision making. Information 2020;11(1):46.

    Article  Google Scholar 

  34. Lin M, Huang C, Xu Z. 2019. Topsis method based on correlation coefficient and entropy measure for linguistic pythagorean fuzzy sets and its application to multiple attribute decision making. Complexity 2019 (Article ID 6967390). Article ID 6967390, pp 16. https://doi.org/10.1155/2019/6967390.

  35. Bustince H, Fernández J, Kolesárová A, Mesiar R. Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst 2013;220:69–77.

    Article  MathSciNet  Google Scholar 

  36. Miguel DL, Bustince H, Fernández J, Induráin E, Kolesárová A, Mesiar R. Construction of admissible linear orders for interval-valued atanassov intuitionistic fuzzy sets with an application to decision making. Inf Fusion 2016;27:189–97.

    Article  Google Scholar 

  37. Miguel DL, Bustince H, Pekala B, Bentkowska U, Da Silva I, Bedregal B, Mesiar R, Ochoa G. Interval-valued atanassov intuitionistic owa aggregations using admissible linear orders and their application to decision making. IEEE Trans Fuzzy Syst 2016;24(6):1586–97.

    Article  Google Scholar 

  38. Bustince H, Galar M, Bedregal B, Kolesarova A, Mesiar R. A new approach to interval-valued choquet integrals and the problem of ordering in interval-valued fuzzy set applications. IEEE Trans Fuzzy Syst 2013;21(6):1150–62.

    Article  Google Scholar 

  39. Garg H, Kumar K. Some aggregation operators for linguistic intuitionistic fuzzy set and its application to group decision-making process using the set pair analysis. Arab J Sci Eng 2018;43(6):3213–27.

    Article  Google Scholar 

  40. Kumar K, Garg H. Prioritized linguistic interval-valued aggregation operators and their applications in group decision-making problems. Mathematics 2018;6(10):209. https://doi.org/10.3390/math6100209.

    Article  Google Scholar 

  41. Xu ZS. A method based on linguistic aggregation operators for group decision making under linguistic preference relations. Inf Sci 2004;166(1–4):19–30.

    Article  Google Scholar 

  42. Garg H, Kumar K. Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. J Ind Manag Optim 2020;16(1):445–67.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 5

Proof

Based on the operational laws for LIVPFNs as defined in Theorem 1, we can directly obtain the first part. However, to show Eq. 13 holds, we apply the steps of the principle of mathematical induction (PMI) on n as below:

By Definition 15 for \({\mathscr{H}}_{i}(i=1,2)\), we have

$$ \begin{array}{@{}rcl@{}} \omega_{i}\mathcal{H}_{i} &=& \left( \left[ \begin{array}{l} s_{h\sqrt{1-\left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}}}, s_{h\sqrt{1-\left( 1-\frac{{b}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}}} \end{array} \right],\right.\\ &&\left.\left[ \begin{array}{l} s_{h\left( \frac{c_{i}}{h}\right)^{\omega_{i}}}, s_{h\left( \frac{d_{i}}{h}\right)^{\omega_{i}}} \end{array} \right] \vphantom{s_{h\sqrt{1-\left( 1-\frac{{a_{i}^{2}}}{h^{2}}\right)^{\omega_{i}}}}}\right) \end{array} $$

Thus, by Definition 16, we have

$$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\mathcal{H}_{1},\mathcal{H}_{2}) = {\omega_{1}}\mathcal{H}_{1} \oplus {\omega_{2}}\mathcal{H}_{2} \\ & =&\left( \left[ \begin{array}{l} s_{h\sqrt{1-\left( 1-\tfrac{{a}_{1}^{2}}{h^{2}}\right)^{\omega_{1}}\left( 1-\tfrac{{a}_{2}^{2}}{h^{2}}\right)^{\omega_{2}}}}, \\ s_{h\sqrt{1-\left( 1-\tfrac{{b}_{1}^{2}}{h^{2}}\right)^{\omega_{1}}\left( 1-\tfrac{{b}_{2}^{2}}{h^{2}}\right)^{\omega_{2}}}} \end{array} \right], \left[ \begin{array}{l} s_{h\left( \tfrac{c_{1}}{h}\right)^{\omega_{2}} \left( \tfrac{c_{2}}{h}\right)^{\omega_{2}}}, \\ s_{h\left( \tfrac{d_{1}}{h}\right)^{\omega_{2}} \left( \tfrac{d_{2}}{h}\right)^{\omega_{2}}} \end{array} \right] \right) \end{array} $$

Hence, it holds for n = 2.

Consider Eq. 13 true for n = k. Then, for n = k + 1, we get

$$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\mathcal{H}_{1},\mathcal{H}_{2},{\ldots} \mathcal{H}_{k+1}) \\ & =&\text{LIVPFWA}(\mathcal{H}_{1},\mathcal{H}_{2},{\dots} \mathcal{H}_{k})\oplus \omega_{k+1} \mathcal{H}_{k+1} \\ &=&\left( \left[ \begin{array}{l} s_{h\sqrt{1-\prod\limits_{i=1}^{k}\left( 1-{a_{i}^{2}}/h^{2}\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{k}\left( 1-{b_{i}^{2}}/h^{2}\right)^{\omega_{i}}}} \end{array} \right], \left[ \begin{array}{l} s_{h\left( \prod\limits_{i=1}^{k}\left( c_{i}/h\right)^{\omega_{i}}\right)}, \\ s_{h\left( \prod\limits_{i=1}^{k}\left( d_{i}/h\right)^{\omega_{i}}\right)} \end{array} \right]\right) \\ &&\oplus \left( \left[ \begin{array}{l} s_{h\sqrt{1-\left( 1-a_{k+1}^{2}/h^{2}\right)^{\omega_{k+1}}}}, \\ s_{h\sqrt{1-\left( 1-b_{k+1}^{2}/h^{2}\right)^{\omega_{k+1}}}} \end{array} \right], \left[ \begin{array}{l} s_{h\left( c_{k+1}/h\right)^{\omega_{k+1}}}, \\ s_{h\left( d_{k+1}/h\right)^{\omega_{k+1}}} \end{array} \right] \right) \\ &=&\left( \left[ \begin{array}{l} s_{h\sqrt{1-\prod\limits_{i=1}^{k+1}\left( 1-{a_{i}^{2}}/h^{2}\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{k+1}\left( 1-{b_{i}^{2}}/h^{2}\right)^{\omega_{i}}}} \end{array} \right], \left[ \begin{array}{l} s_{h\left( \prod\limits_{i=1}^{k+1}\left( c_{i}/h\right)^{\omega_{i}}\right)}, \\ s_{h\left( \prod\limits_{i=1}^{k+1}\left( d_{i}/h\right)^{\omega_{i}}\right)} \end{array} \right] \right) \end{array} $$

i.e., Eq. 13 exists for n = k + 1. Hence, by PMI, Eq. 13 is true for all n. □

Proof of the Theorem 10

Proof

We prove only part (1) here. Since \({\mathscr{H}}_{i}= ([s_{a_{i}},s_{b_{i}}],[s_{c_{i}},s_{d_{i}}] )\), (i = 1, 2, … , n) and \({\mathscr{H}}=([s_{a},s_{b}],[s_{c},s_{d}])\) are LIVPFNs, then we have

$$ \begin{array}{@{}rcl@{}} &&\text{LIVPFWA}(\mathcal{H}_{1}\oplus \mathcal{H}, \mathcal{H}_{2}\oplus \mathcal{H}, \ldots, \mathcal{H}_{n}\oplus \mathcal{H}) \\ & =& \left( \left[\begin{array}{c} s_{h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a_{i}^{2}}}{h^{2}}\right)\left( 1-\frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{b_{i}^{2}}}{h^{2}}\right)\left( 1-\frac{b^{2}}{h^{2}}\right)\right)^{\omega_{i}}}} \end{array} \right], \left[ \begin{array}{c} s_{h\left( \prod\limits_{i=1}^{n}\left( \frac{c_{i}}{h}\frac{c}{h}\right)^{\omega_{i}}\right)},\\ s_{h\left( \prod\limits_{i=1}^{n}\left( \frac{d_{i}}{h}\frac{d}{h}\right)^{\omega_{i}}\right)} \end{array} \right] \right) \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} &&\text{LIVPFWA}(\mathcal{H}_{1}\otimes\mathcal{H},\mathcal{H}_{2}\otimes\mathcal{H},\ldots,\mathcal{H}_{n}\otimes\mathcal{H}) \\ &=& \left( \left[ \begin{array}{l} s_{h\sqrt{1-\prod\limits_{i=1}^{n}\left( 1-\frac{{a_{i}^{2}}}{h^{2}}\frac{a^{2}}{h^{2}}\right)^{\omega_{i}}}},\\ s_{h\sqrt{1-\prod\limits_{i=1}^{n}\left( 1-\frac{{b_{i}^{2}}}{h^{2}}\frac{b^{2}}{h^{2}}\right)^{\omega_{i}}}} \end{array} \right], \left[ \begin{array}{l} s_{h\sqrt{\prod\limits_{i=1}^{n}\left( 1-\left( 1-\frac{{c}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{c^{2}}{h^{2}}\right)\right)^{\omega_{i}}}},\\ s_{h\sqrt{\prod\limits_{i=1}^{n}\left( 1-\left( 1-\frac{{d}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{d^{2}}{h^{2}}\right)\right)^{\omega_{i}}}} \end{array} \right] \right) \end{array} $$

As \({\mathscr{H}}_{i}\) be LIVPFNs, so by its definition, we have ai, bi, ci, di ∈ [0, h] which implies that \({a}_{i}^{2}/h^{2}\), \({b}_{i}^{2}/h^{2}\), \({c_{i}^{2}}/h^{2}\), \({d_{i}^{2}}/h^{2}\) ∈ [0, 1]. So by using Lemma 3, we get

$$ \begin{array}{@{}rcl@{}} && \frac{{a}_{i}^{2}}{h^{2}} +\frac{a^{2}}{h^{2}}-\frac{{a}_{i}^{2}}{h^{2}}\frac{a^{2}}{h^{2}}\geq \frac{{a}_{i}^{2}}{h^{2}}\frac{a^{2}}{h^{2}} \\ &\Rightarrow& \prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}}\leq \prod\limits_{i=1}^{n}\left( 1-\frac{{a}_{i}^{2}}{h^{2}}\frac{a^{2}}{h^{2}}\right)^{\omega_{i}} \\ &\Rightarrow& h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a_{i}^{2}}}{h^{2}}\right) \left( 1-\frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \\ &&\geq h\sqrt{1-\prod\limits_{i=1}^{n}\left( 1-\frac{{a_{i}^{2}}}{h^{2}}\frac{a^{2}}{h^{2}}\right)^{\omega_{i}}} \end{array} $$
(25)

Similarly, we get

$$ \begin{array}{@{}rcl@{}} h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{b_{i}^{2}}}{h^{2}}\right)\left( 1-\frac{b^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \geq h\sqrt{1-\prod\limits_{i=1}^{n}\left( 1-\frac{{b_{i}^{2}}}{h^{2}}\frac{b^{2}}{h^{2}}\right)^{\omega_{i}}}\\ \end{array} $$
(26)

On the other hand, for \({c}_{i}^{2}/h^{2},c^{2}/h^{2},{d}_{i}^{2}/h^{2},d^{2}/h^{2}\in [0,1]\) for all i and by using Lemma 3, we have \(1-\left (1-\frac {{c}_{i}^{2}}{h^{2}}\right )\left (1-\frac {c^{2}}{h^{2}}\right ) \geq \frac {{c}_{i}^{2}}{h^{2}}\frac {c^{2}}{h^{2}}\) and \(1-\left (1-\frac {{d}_{i}^{2}}{h^{2}}\right )\left (1-\frac {d^{2}}{h^{2}}\right ) \geq \frac {{d_{i}^{2}}}{h^{2}}\frac {d^{2}}{h^{2}}\) which gives

$$ \begin{array}{@{}rcl@{}} h\sqrt{\prod\limits_{i=1}^{n} \left( 1-\left( 1-\frac{{c_{i}^{2}}}{h^{2}}\right)\left( 1-\frac{c^{2}}{h^{2}}\right) \right)^{\omega_{i}} } \geq h\left( \prod\limits_{i=1}^{n} \left( \frac{{c_{i}^{2}}}{h^{2}}\frac{c^{2}}{h^{2}} \right)^{\omega_{i}}\right)\\ \end{array} $$
(27)

and

$$ \begin{array}{@{}rcl@{}} h\sqrt{\prod\limits_{i=1}^{n} \left( 1-\left( 1-\frac{{d}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{d^{2}}{h^{2}}\right) \right)^{\omega_{i}} } \geq h\left( \prod\limits_{i=1}^{n} \left( \frac{{d}_{i}^{2}}{h^{2}}\frac{d^{2}}{h^{2}} \right)^{\omega_{i}}\right)\\ \end{array} $$
(28)

Therefore, by using Eqs. 2528 and 9, we get the result. □

Proof of the Theorem 11

Proof

Here, we shall prove only part (1). For any \({\mathscr{H}}_{i}= ([s_{a_{i}},s_{b_{i}}],[s_{c_{i}},s_{d_{i}}])\), (i = 1, 2, … , n) and \({\mathscr{H}}=([s_{a},s_{b}],[s_{c},s_{d}])\), we have

$$ \begin{array}{@{}rcl@{}} &&\text{LIVPFWA}(\lambda\mathcal{H}_{1}\oplus\mathcal{H},\lambda\mathcal{H}_{2}\oplus\mathcal{H},\ldots,\lambda\mathcal{H}_{n}\oplus\mathcal{H}) \\ &=& \left( \left[ \begin{array}{c} s_{h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{b}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{b^{2}}{h^{2}}\right)\right)^{\omega_{i}}}} \end{array}\right], \left[ \begin{array}{c} s_{h\left( \prod\limits_{i=1}^{n}\left( \left( \frac{c_{i}}{h}\right)^{\lambda}\left( \frac{c}{h}\right)\right)^{\omega_{i}}\right)}, \\ s_{h\left( \prod\limits_{i=1}^{n}\left( \left( \frac{d_{i}}{h}\right)^{\lambda}\left( \frac{d}{h}\right)\right)^{\omega_{i}}\right)} \end{array} \right]\right) \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} &&\text{LIVPFWA}(\mathcal{H}_{1}^{\lambda}\otimes\mathcal{H},\mathcal{H}_{2}^{\lambda}\otimes\mathcal{H},\ldots, \mathcal{H}_{n}^{\lambda}\otimes\mathcal{H})\\ &=& \left( \left[ \begin{array}{c} s_{h\sqrt{1-\prod\limits_{i=1}^{n}\left( 1-\left( \frac{{a}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( \frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n}\left( 1-\left( \frac{{b}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( \frac{b^{2}}{h^{2}}\right)\right)^{\omega_{i}}}} \end{array} \right], \left[ \begin{array}{c} s_{h\sqrt{\prod\limits_{i=1}^{n}\left( 1-\left( 1-\frac{{c}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{c^{2}}{h^{2}}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{\prod\limits_{i=1}^{n}\left( 1-\left( 1-\frac{{d}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{d^{2}}{h^{2}}\right)\right)^{\omega_{i}}}} \end{array} \right] \right) \end{array} $$

Since \(0 \leq \left (1-\tfrac {{a_{i}^{2}}}{h^{2}}\right )^{\lambda }\leq 1, 0 \leq \left (1-\frac {a^{2}}{h^{2}}\right ) \leq 1\), \(0\leq \left (\frac {{a}_{i}^{2}}{h^{2}}\right )^{\lambda } \leq 1\), \(0 \leq \left (\frac {a^{2}}{h^{2}}\right )\leq 1\), then based on the Lemma 2, we have

$$ \begin{array}{@{}rcl@{}} && 1-\left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{a^{2}}{h^{2}}\right)\geq \left( \frac{{a}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( \frac{a^{2}}{h^{2}}\right) \\ &\Rightarrow& \prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}}\leq \prod\limits_{i=1}^{n}\left( 1-\left( \frac{{a}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( \frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}} \\ &\Rightarrow& h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \\ &&\geq h\sqrt{1-\prod\limits_{i=1}^{n}\left( 1-\left( \frac{{a}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( \frac{a^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \end{array} $$
(29)

Similarly, we can obtain

$$ \begin{array}{@{}rcl@{}} &&h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{b}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{b^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \\ &&\geq h\sqrt{1-\prod\limits_{i=1}^{n}\left( 1-\left( \frac{{b}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( \frac{b^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \end{array} $$
(30)

and

$$ \begin{array}{@{}rcl@{}} &&h\sqrt{\prod\limits_{i=1}^{n}\left( 1-\left( 1-\frac{{c}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{c^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \\ &&\geq h\sqrt{\prod\limits_{i=1}^{n}\left( \left( \frac{{c}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( \frac{c^{2}}{h^{2}}\right)\right)^{\omega_{i}} } \end{array} $$
(31)

and

$$ \begin{array}{@{}rcl@{}} && h\sqrt{\prod\limits_{i=1}^{n}\left( 1-\left( 1-\frac{{d}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( 1-\frac{d^{2}}{h^{2}}\right)\right)^{\omega_{i}}}\\ &&\geq h\sqrt{\prod\limits_{i=1}^{n}\left( \left( \frac{{d}_{i}^{2}}{h^{2}}\right)^{\lambda}\left( \frac{d^{2}}{h^{2}}\right)\right)^{\omega_{i}} } \end{array} $$
(32)

Therefore, according to Eqs. 2932 and by Eq. 9, result (1) holds. □

Proof of the Theorem 13

Proof

For any \({\mathscr{H}}_{i}=([s_{a_{i}}, s_{b_{i}}], [s_{c_{i}}, s_{d_{i}}])\), we have

$$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\lambda\mathcal{H}_{1}\oplus \mathcal{H}, \lambda\mathcal{H}_{2}\oplus \mathcal{H}, \ldots, \lambda\mathcal{H}_{n}\oplus \mathcal{H}) \\ & =& \left( \left[ \begin{array}{c} s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-a^{2}/h^{2}\right)\left( 1-{a_{i}^{2}}/h^{2}\right)^{\lambda}\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-b^{2}/h^{2}\right)\left( 1-{b_{i}^{2}}/h^{2}\right)^{\lambda}\right)^{\omega_{i}}}} \end{array} \right],\right.\\ &&\left.\left[ \begin{array}{c} s_{h\prod\limits_{i=1}^{n} \left( \left( c/h\right)\left( c_{i}/h\right)^{\lambda}\right)^{\omega_{i}}}, \\ s_{h\prod\limits_{i=1}^{n} \left( \left( d/h\right)\left( d_{i}/h\right)^{\lambda}\right)^{\omega_{i}}} \end{array} \right] \right) \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\mathcal{H}_{1}^{\lambda}\oplus \mathcal{H}, \mathcal{H}_{2}^{\lambda} \oplus \mathcal{H}, \ldots, \mathcal{H}_{n}^{\lambda} \oplus \mathcal{H})\\ &=& \left( \left[ \begin{array}{c} s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-a^{2}/h^{2}\right)\left( 1-\left( {a_{i}^{2}}/h^{2}\right)^{\lambda}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-b^{2}/h^{2}\right)\left( 1-\left( {b_{i}^{2}}/h^{2}\right)^{\lambda}\right)\right)^{\omega_{i}}}} \end{array} \right],\right.\\ && \left.\left[ \begin{array}{c} s_{h\sqrt{\prod\limits_{i=1}^{n} \left( \left( c^{2}/h^{2}\right)\left( 1- \left( 1-{c_{i}^{2}}/h^{2}\right)^{\lambda}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{\prod\limits_{i=1}^{n} \left( \left( d^{2}/h^{2}\right)\left( 1- \left( 1-{d}_{i}^{2}/h^{2}\right)^{\lambda}\right)\right)^{\omega_{i}}}} \end{array} \right] \right) \end{array} $$

Since 0 ≤ ai, bi, ci, dih which implies that \({a_{i}^{2}}/h^{2}\leq 1\). Now, by using Lemma 4, we get

$$ \begin{array}{@{}rcl@{}} && (1-{a}_{i}^{2}/h^{2})^{\lambda} + ({a}_{i}^{2}/h^{2})^{\lambda} \leq 1 \text{ iff } \lambda\geq 1 \\ \text{and} && (1-{a}_{i}^{2}/h^{2})^{\lambda} + ({a}_{i}^{2}/h^{2})^{\lambda} \geq 1 \text{ iff } 0\leq \lambda\leq 1 \end{array} $$

Thus, for λ ≥ 1, we have \((1-{a_{i}^{2}}/h^{2})^{\lambda } \leq 1 - ({a}_{i}^{2}/h^{2})^{\lambda } \) and hence

$$ \begin{array}{@{}rcl@{}} &&\prod\limits_{i=1}^{n} \left( (1-a^{2}/h^{2})(1-{a_{i}^{2}}/h^{2})^{\lambda}\right)^{\omega_{i}} \\ &&\leq \prod\limits_{i=1}^{n} \left( \left( 1-a^{2}/h^{2}\right)\left( 1-\left( {a}_{i}^{2}/h^{2}\right)^{\lambda}\right)\right)^{\omega_{i}} \end{array} $$

which further implies that

$$ \begin{array}{@{}rcl@{}} &&\sqrt{1-\prod\limits_{i=1}^{n} \left( (1-a^{2}/h^{2})(1-{a_{i}^{2}}/h^{2})^{\lambda}\right)^{\omega_{i}}} \\ &&\geq \sqrt{1-\prod\limits_{i=1}^{n} \left( (1-a^{2}/h^{2})(1-({a_{i}^{2}}/h^{2})^{\lambda})\right)^{\omega_{i}}} \end{array} $$

Similarly, we can get

$$ \begin{array}{@{}rcl@{}} &&h\sqrt{1-\prod\limits_{i=1}^{n} \left( (1-b^{2}/h^{2})(1-{b}_{i}^{2}/h^{2})^{\lambda}\right)^{\omega_{i}}}\\ &&\geq h\sqrt{1-\prod\limits_{i=1}^{n} \left( (1-b^{2}/h^{2})(1-({b}_{i}^{2}/h^{2})^{\lambda})\right)^{\omega_{i}}} \end{array} $$

Further, for \({c}_{i}^{2}/h^{2}\leq 1\) and by using Lemma 4, we get \((1-{c}_{i}^{2}/h^{2})^{\lambda } + ({c_{i}^{2}}/h^{2})^{\lambda } \leq 1\) iff λ ≥ 1 and \((1-{c_{i}^{2}}/h^{2})^{\lambda } + ({c}_{i}^{2}/h^{2})^{\lambda } \geq 1\) iff 0 ≤ λ ≤ 1. Thus, for λ ≥ 1, we have \((1-{c_{i}^{2}}/h^{2})^{\lambda } + ({c}_{i}^{2}/h^{2})^{\lambda } \leq 1\) which implies that

$$ \begin{array}{@{}rcl@{}} && ({c}_{i}^{2}/h^{2})^{\lambda} \leq 1- (1-{c}_{i}^{2}/h^{2})^{\lambda} \\ &\Rightarrow & \prod\limits_{i=1}^{n} \left( (c^{2}/h^{2})({c_{i}^{2}}/h^{2})^{\lambda}\right)^{\omega_{i}} \\&\leq& \prod\limits_{i=1}^{n} \left( (c^{2}/h^{2})(1- (1-{c_{i}^{2}}/h^{2})^{\lambda})\right)^{\omega_{i}} \\ &\Rightarrow & \prod\limits_{i=1}^{n} \left( (c/h)(c_{i}/h)^{\lambda}\right)^{\omega_{i}} \\&\leq& \sqrt{\prod\limits_{i=1}^{n} \left( (c^{2}/h^{2})(1- (1-{c_{i}^{2}}/h^{2})^{\lambda})\right)^{\omega_{i}}} \\ &\Rightarrow & h\prod\limits_{i=1}^{n} \left( (c/h)(c_{i}/h)^{\lambda}\right)^{\omega_{i}} \\&\leq& h\sqrt{\prod\limits_{i=1}^{n} \left( (c^{2}/h^{2})(1- (1-{c_{i}^{2}}/h^{2})^{\lambda})\right)^{\omega_{i}}} \end{array} $$

Similarly, we can get

$$ \begin{array}{@{}rcl@{}} &&h\prod\limits_{i=1}^{n} \left( (d/h)(d_{i}/h)^{\lambda}\right)^{\omega_{i}} \\&\leq& h\sqrt{\prod\limits_{i=1}^{n} \left( (d^{2}/h^{2})(1- (1-{d}_{i}^{2}/h^{2})^{\lambda})\right)^{\omega_{i}}} \end{array} $$

Hence, by Eq. 9, we get the desired result. □

Proof of the Theorem 4

Proof

For LIVPFN \({\mathscr{H}}_{i}=([s_{a_{i}}, s_{b_{i}}], [s_{c_{i}}, s_{d_{i}}])\), we have

$$ \begin{array}{@{}rcl@{}} && \lambda\text{LIVPFWA}(\mathcal{H}_{1},\mathcal{H}_{2},\ldots,\mathcal{H}_{n}) \oplus \mathcal{H} \\ &=& \left( \left[ \begin{array}{l} s_{h\sqrt{1-(1-a^{2}/h^{2})\left( \prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}}}, \\ s_{h\sqrt{1-(1-b^{2}/h^{2})\left( \prod\limits_{i=1}^{n} (1-{b}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}}} \end{array} \right],\right.\\&&\left. \left[ \begin{array}{l} s_{h(c/h)\left( \prod\limits_{i=1}^{n} (c_{i}/h)^{\omega_{i}}\right)^{\lambda}}, \\ s_{h(d/h)\left( \prod\limits_{i=1}^{n} (d_{i}/h)^{\omega_{i}}\right)^{\lambda}} \end{array} \right] \right) \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\mathcal{H}_{1},\mathcal{H}_{2},\ldots,\mathcal{H}_{n})^{\lambda} \oplus \mathcal{H} \\ &=& \left( \left[ \begin{array}{c} s_{h\sqrt{1- (1-a^{2}/h^{2})\left( 1-\left( 1-\prod\limits_{i=1}^{n}(1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}\right)}}, \\ s_{h\sqrt{1- (1-b^{2}/h^{2})\left( 1-\left( 1-\prod\limits_{i=1}^{n}(1-{b}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}\right)}} \end{array} \right],\right.\\ &&\left.\left[ \begin{array}{c} s_{h(c/h)\sqrt{1-\left( 1-\prod\limits_{i=1}^{n} ({c}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}}}, \\ s_{h(d/h)\sqrt{1-\left( 1-\prod\limits_{i=1}^{n} ({d}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}}} \end{array} \right] \right) \end{array} $$

Since \(\prod \limits _{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega _{i}}\leq 1\) and hence by Lemma 4, we get

$$ \begin{array}{@{}rcl@{}} && \left( 1-\prod\limits_{i=1}^{n} (1-{a_{i}^{2}}/h^{2})^{\omega_{i}}\right)^{\lambda}+\left( \prod\limits_{i=1}^{n} (1-{a_{i}^{2}}/h^{2})^{\omega_{i}}\right)^{\lambda} \\ &&\quad\leq 1 \text{ iff } \lambda \geq 1 \\ \text{and} && \left( 1-\prod\limits_{i=1}^{n} (1-{a_{i}^{2}}/h^{2})^{\omega_{i}}\right)^{\lambda}+\left( \prod\limits_{i=1}^{n} (1-{a_{i}^{2}}/h^{2})^{\omega_{i}}\right)^{\lambda} \\ &&\quad\geq 1 \text{ iff } 0 \leq \lambda \leq 1. \end{array} $$

Thus, for λ ≥ 1, we have

$$ \begin{array}{@{}rcl@{}} & &\left( 1-\prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}+\left( \prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda} \leq 1 \\ &\Rightarrow & \left( \prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda} \leq 1 - \left( 1-\prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda} \\ &\Rightarrow & (1-a^{2}/h^{2})\left( \prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda} \\ &&\qquad\leq (1-a^{2}/h^{2})\left( 1 - \left( 1-\prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda} \right) \\ &\Rightarrow & 1-(1-a^{2}/h^{2})\left( \prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda} \\ && \qquad \geq 1- (1-a^{2}/h^{2})\left( 1 - \left( 1-\prod\limits_{i=1}^{n} (1-{a}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda} \right) \\ &\Rightarrow & h\sqrt{1-(1-a^{2}/h^{2})\left( \prod\limits_{i=1}^{n} (1-{a_{i}^{2}}/h^{2})^{\omega_{i}}\right)^{\lambda}} \\ && \geq h\sqrt{1- (1-a^{2}/h^{2})\left( 1 - \left( 1-\prod\limits_{i=1}^{n} (1-{a_{i}^{2}}/h^{2})^{\omega_{i}}\right)^{\lambda} \right)} \end{array} $$

Similarly, we can obtain

$$ \begin{array}{@{}rcl@{}} && h\sqrt{1-(1-b^{2}/h^{2})\left( \prod\limits_{i=1}^{n} (1-{b}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}} \\ && \geq h\sqrt{1 - (1-b^{2}/h^{2})\left( 1 \!\!- \left( 1 - \prod\limits_{i=1}^{n} (1-{b}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda} \right)} \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} &&h(c/h)\left( \prod\limits_{i=1}^{n} (c_{i}/h)^{\omega_{i}}\right)^{\lambda} \\&&\leq h(c/h)\sqrt{1-\left( 1-\prod\limits_{i=1}^{n} ({c}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}} \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} &&h(d/h)\left( \prod\limits_{i=1}^{n} (d_{i}/h)^{\omega_{i}}\right)^{\lambda} \\&&\leq h(d/h)\sqrt{1-\left( 1-\prod\limits_{i=1}^{n} ({d}_{i}^{2}/h^{2})^{\omega_{i}}\right)^{\lambda}} \end{array} $$

Thus, based on these inequalities and by Eq. 9, we get the desired result. □

Proof of the Theorem 15

Proof

To prove (1) for any LIVPFN \({\mathscr{H}}_{i}=([s_{a_{i}}, s_{b_{i}}],[s_{c_{i}},\) \( s_{d_{i}}])\), we have

$$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\lambda\mathcal{H}_{1}\otimes \mathcal{H}, \lambda\mathcal{H}_{2}\otimes\mathcal{H},\ldots, \lambda\mathcal{H}_{n} \otimes \mathcal{H}) \\ &=& \left( \left[ \begin{array}{l} s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( 1-(A^{2}/h^{2})\left( 1-(1-{a_{i}^{2}}/h^{2})^{\lambda}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( 1-(B^{2}/h^{2})\left( 1-(1-{b_{i}^{2}}/h^{2})^{\lambda}\right)\right)^{\omega_{i}}}} \end{array} \right],\right.\\ &&\left. \left[ \begin{array}{l} s_{h\left( \prod\limits_{i=1}^{n} \sqrt{1-\left( 1-\frac{C^{2}}{h^{2}}\right)\left( 1-\left( \frac{{c_{i}^{2}}}{h^{2}}\right)^{\lambda}\right)} \right)^{\omega_{i}}}, \\ s_{h\left( \prod\limits_{i=1}^{n} \sqrt{1-\left( 1-\frac{D^{2}}{h^{2}}\right)\left( 1-\left( \frac{{d}_{i}^{2}}{h^{2}}\right)^{\lambda}\right)} \right)^{\omega_{i}}}, \end{array} \right] \right) \\ & &\text{LIVPFWA}(\lambda\mathcal{H}_{1}, \lambda\mathcal{H}_{2}, \ldots, \lambda\mathcal{H}_{n}) \\ &=& \left( \left[ \begin{array}{l} s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-{a}_{i}^{2}/h^{2}\right)^{\lambda}\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-{b_{i}^{2}}/h^{2}\right)^{\lambda}\right)^{\omega_{i}}}}, \end{array} \right], \left[ \begin{array}{l} s_{h\left( \prod\limits_{i=1}^{n}\left( \frac{c_{i}}{h}\right)^{\lambda}\right)^{\omega_{i}}}, \\ s_{h\left( \prod\limits_{i=1}^{n}\left( \frac{d_{i}}{h}\right)^{\lambda}\right)^{\omega_{i}}} \end{array} \right] \right) \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\lambda\mathcal{H}_{1}\oplus\mathcal{H}, \lambda\mathcal{H}_{2}\oplus\mathcal{H},\ldots, \lambda\mathcal{H}_{n} \oplus\mathcal{H}) \\ &=& \left( \left[ \begin{array}{c} s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( (A^{2}/h^{2})\left( 1-{a_{i}^{2}}/h^{2}\right)^{\lambda}\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( (B^{2}/h^{2})\left( 1-{b_{i}^{2}}/h^{2}\right)^{\lambda}\right)^{\omega_{i}}}} \end{array} \right],\right.\\ &&\left. \left[ \begin{array}{c} s_{h\left( \prod\limits_{i=1}^{n} \left( \frac{c_{i}}{h}\right)^{\lambda}\left( \frac{C}{h}\right)\right)^{\omega_{i}}}, \\ s_{h\left( \prod\limits_{i=1}^{n} \left( \frac{d_{i}}{h}\right)^{\lambda}\left( \frac{D}{h}\right)\right)^{\omega_{i}}} \end{array} \right] \right) \end{array} $$

We first prove \(\text {LIVPFWA}(\lambda {\mathscr{H}}_{1}\otimes {\mathscr{H}}, \lambda {\mathscr{H}}_{2}\otimes {\mathscr{H}}, \ldots , \lambda {\mathscr{H}}_{n}\otimes {\mathscr{H}}) \leq \text {LIVPFWA}(\lambda {\mathscr{H}}_{1}, \lambda {\mathscr{H}}_{2},\ldots , \lambda {\mathscr{H}}_{n})\).

As \(A^{2}/h^{2}, 1-{a_{i}^{2}}/h^{2} \in [0,1]\) and hence \((A^{2}/h^{2})\left (1-(1-{a}_{i}^{2}/h^{2})^{\lambda } \right ) \leq 1-(1-{a}_{i}^{2}/h^{2})^{\lambda } \) which implies that \(1-A^{2}/h^{2}\left (1-(1-{a}_{i}^{2}/h^{2})^{\lambda }\right ) \geq (1-{a_{i}^{2}}/h^{2})^{\lambda }\) and thus

$$ \begin{array}{@{}rcl@{}} && \prod\limits_{i=1}^{n} \left( 1-A^{2}/h^{2}\left( 1-(1-{a}_{i}^{2}/h^{2})^{\lambda}\right) \right)^{\omega_{i}}\\ &&\quad\geq \prod\limits_{i=1}^{n} \left( (1-{a}_{i}^{2}/h^{2})^{\lambda}\right)^{\omega_{i}} \\ &\Rightarrow & h\sqrt{1-\prod\limits_{i=1}^{n} \left( 1-A^{2}/h^{2}\left( 1-(1-{a_{i}^{2}}/h^{2})^{\lambda}\right) \right)^{\omega_{i}}} \\ &&\quad\leq h\sqrt{\prod\limits_{i=1}^{n} 1-\left( (1-{a_{i}^{2}}/h^{2})^{\lambda}\right)^{\omega_{i}}} \end{array} $$

Similarly, we can obtain

$$ \begin{array}{@{}rcl@{}} && h\sqrt{1-\prod\limits_{i=1}^{n} \left( 1-B^{2}/h^{2}\left( 1-(1-{b}_{i}^{2}/h^{2})^{\lambda}\right) \right)^{\omega_{i}}} \\ &&\quad\leq h\sqrt{\prod\limits_{i=1}^{n} 1-\left( (1-{b_{i}^{2}}/h^{2})^{\lambda}\right)^{\omega_{i}}} \\ &\text{and ~~} & h\left( \prod\limits_{i=1}^{n} \sqrt{1-\left( 1-\frac{C^{2}}{h^{2}}\right)\left( 1-\left( \frac{{c}_{i}^{2}}{h^{2}}\right)^{\lambda}\right)} \right)^{\omega_{i}} \\ &&\quad\leq h\left( \prod\limits_{i=1}^{n}\left( \frac{c_{i}}{h}\right)^{\lambda}\right)^{\omega_{i}} \\ &\text{and ~~} & h\left( \prod\limits_{i=1}^{n} \sqrt{1-\left( 1-\frac{D^{2}}{h^{2}}\right)\left( 1-\left( \frac{{d}_{i}^{2}}{h^{2}}\right)^{\lambda}\right)} \right)^{\omega_{i}} \\ &&\quad\leq h\left( \prod\limits_{i=1}^{n}\left( \frac{d_{i}}{h}\right)^{\lambda}\right)^{\omega_{i}} \end{array} $$

According to Eq. 9, we have \(\text {LIVPFWA}(\lambda {\mathscr{H}}_{1}\otimes {\mathscr{H}}, \lambda {\mathscr{H}}_{2}\otimes {\mathscr{H}}, \ldots , \lambda {\mathscr{H}}_{n}\otimes {\mathscr{H}})\)\(\text {LIVPFWA}(\lambda {\mathscr{H}}_{1}\), \(\lambda {\mathscr{H}}_{2}\), …, \(\lambda {\mathscr{H}}_{n})\).

Later, we prove \(\text {LIVPFWA}(\lambda {\mathscr{H}}_{1}, \lambda {\mathscr{H}}_{2},\ldots , \lambda {\mathscr{H}}_{n}) \leq \text {LIVPFWA}(\lambda {\mathscr{H}}_{1}\oplus {\mathscr{H}}, \lambda {\mathscr{H}}_{2}\oplus {\mathscr{H}}, \ldots , \lambda {\mathscr{H}}_{n}\oplus {\mathscr{H}}) \).

For \(A^{2}/h^{2}, {a}_{i}^{2}/h^{2}\leq 1\), we have \((A^{2}/h^{2})(1-{a_{i}^{2}}/h^{2})^{\lambda } \leq (1-{a_{i}^{2}}/h^{2})^{\lambda }\) which implies that \(1-\prod \limits _{i=1}^{n}\left ((A^{2}/h^{2})(1-{a}_{i}^{2}/h^{2})^{\lambda }\right )^{\omega _{i}} \geq 1-\prod \limits _{i=1}^{n} \left ((1-{a_{i}^{2}}/h^{2})^{\lambda }\right )^{\omega _{i}}\) and hence, we get

$$ \begin{array}{@{}rcl@{}} &&h\sqrt{1-\prod\limits_{i=1}^{n}\left( (A^{2}/h^{2})(1-{a}_{i}^{2}/h^{2})^{\lambda}\right)^{\omega_{i}}} \\ &&\quad\geq h\sqrt{1-\prod\limits_{i=1}^{n} \left( (1-{a}_{i}^{2}/h^{2})^{\lambda}\right)^{\omega_{i}}}. \end{array} $$

Similarly, we have

$$ \begin{array}{@{}rcl@{}} &&h\sqrt{1-\prod\limits_{i=1}^{n} \left( (B^{2}/h^{2})(1-{b_{i}^{2}}/h^{2})^{\lambda}\right)^{\omega_{i}}} \\ &&\geq h\sqrt{1-\prod\limits_{i=1}^{n} \left( (1-{b_{i}^{2}}/h^{2})^{\lambda}\right)^{\omega_{i}}}. \end{array} $$

Now, for \({c_{i}^{2}}/h^{2}, C^{2}/h^{2}\leq 1\), we can derive that

$$ \begin{array}{@{}rcl@{}} & &h\left( \prod\limits_{i=1}^{n} \left( \frac{c_{i}}{h}\right)^{\lambda}\left( \frac{C}{h}\right)\right)^{\omega_{i}} \leq h\left( \prod\limits_{i=1}^{n}\left( \frac{c_{i}}{h}\right)^{\lambda}\right)^{\omega_{i}} \\ &\text{and ~~} & h\left( \prod\limits_{i=1}^{n} \left( \frac{d_{i}}{h}\right)^{\lambda}\left( \frac{D}{h}\right)\right)^{\omega_{i}} \leq h\left( \prod\limits_{i=1}^{n}\left( \frac{d_{i}}{h}\right)^{\lambda}\right)^{\omega_{i}} \end{array} $$

Hence, by Eq. 9, we get \(\text {LIVPFWA}(\lambda {\mathscr{H}}_{1},\lambda {\mathscr{H}}_{2},\ldots ,\) \( \lambda {\mathscr{H}}_{n}) \leq \text {LIVPFWA}(\lambda {\mathscr{H}}_{1}\oplus {\mathscr{H}}, \lambda {\mathscr{H}}_{2}\oplus {\mathscr{H}}, \ldots , \lambda {\mathscr{H}}_{n}\oplus {\mathscr{H}}) \).

Based on these two steps, we get the desired result. □

Proof of Theorem 16

Proof

We shall prove the parts (1) and (5), while others can be proved analogously.

  1. 1)

    For two LIVPFNs \({\mathscr{H}}_{i}=([s_{a_{i}}, s_{b_{i}}], [s_{c_{i}}, s_{d_{i}}])\) and \(\xi _{i}=([s_{A_{i}}, s_{B_{i}}], [s_{C_{i}}, s_{D_{i}}])\), we have

    $$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\mathcal{H}_{1}\oplus\xi_{1},\mathcal{H}_{2}\oplus\xi_{2},\ldots,\mathcal{H}_{n}\oplus\xi_{n}) \\ & =& \left( \left[ \begin{array}{c} s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-\frac{{a_{i}^{2}}}{h^{2}}\right)\left( 1-\frac{{A_{i}^{2}}}{h^{2}}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-\frac{{b_{i}^{2}}}{h^{2}}\right)\left( 1-\frac{{B_{i}^{2}}}{h^{2}}\right)\right)^{\omega_{i}}}} \end{array} \right],\right.\\&&\left. \left[ \begin{array}{c} s_{h\left( \prod\limits_{i=1}^{n}\left( \frac{c_{i}}{h}\right)\left( \frac{C_{i}}{h}\right)\right)^{\omega_{i}}}, \\ s_{h\left( \prod\limits_{i=1}^{n}\left( \frac{d_{i}}{h}\right)\left( \frac{D_{i}}{h}\right)\right)^{\omega_{i}}} \end{array} \right] \right) \end{array} $$

    and

    $$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\mathcal{H}_{1}\otimes\xi_{1},\mathcal{H}_{2}\otimes\xi_{2},\ldots,\mathcal{H}_{n}\otimes\xi_{n}) \\ & =& \left( \left[ \begin{array}{c} s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( 1-\left( \frac{{a}_{i}^{2}}{h^{2}}\right)\left( \frac{{A}_{i}^{2}}{h^{2}}\right)\right)^{\omega_{i}}}}, \\ s_{h\sqrt{1-\prod\limits_{i=1}^{n} \left( 1-\left( \frac{{b}_{i}^{2}}{h^{2}}\right)\left( \frac{{B}_{i}^{2}}{h^{2}}\right)\right)^{\omega_{i}}}} \end{array} \right],\right.\\ &&\left. \left[ \begin{array}{c} s_{h\left( \prod\limits_{i=1}^{n}\sqrt{1-\left( 1-\frac{{c}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{C}_{i}^{2}}{h^{2}}\right)}\right)^{\omega_{i}}}, \\ s_{h\left( \prod\limits_{i=1}^{n}\sqrt{1-\left( 1-\frac{{d}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{D}_{i}^{2}}{h^{2}}\right)}\right)^{\omega_{i}}} \end{array} \right] \right) \end{array} $$

    For \({a_{i}^{2}}/h^{2}, A^{2}/h^{2}\leq 1\) and hence by Lemma 2, we get \(1-\left (1-\frac {{a_{i}^{2}}}{h^{2}}\right )\left (1-\frac {{A_{i}^{2}}}{h^{2}}\right ) \geq \left (\frac {{a}_{i}^{2}}{h^{2}}\right )\left (\frac {{A}_{i}^{2}}{h^{2}}\right )\) which implies that

    $$ \begin{array}{@{}rcl@{}} && \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right) \leq 1-\left( \frac{{a}_{i}^{2}}{h^{2}}\right)\left( \frac{{A}_{i}^{2}}{h^{2}}\right) \\ &\Rightarrow & \prod\limits_{i=1}^{n} \left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}}\\ &&\quad \leq \prod\limits_{i=1}^{n} \left( 1-\left( \frac{{a}_{i}^{2}}{h^{2}}\right)\left( \frac{{A}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}} \\ &\Rightarrow & h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}}}\\ && \geq h\sqrt{1-\prod\limits_{i=1}^{n} \left( 1-\left( \frac{{a}_{i}^{2}}{h^{2}}\right)\left( \frac{{A}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}}} \end{array} $$

    Similarly, we have

    $$ \begin{array}{@{}rcl@{}} &&h\sqrt{1-\prod\limits_{i=1}^{n} \left( \left( 1-\frac{{b}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{B}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}}}\\ && \quad\geq h\sqrt{1-\prod\limits_{i=1}^{n} \left( 1-\left( \frac{{b}_{i}^{2}}{h^{2}}\right)\left( \frac{{B}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}}} \end{array} $$

    Now, for non-membership components, we have \({c_{i}^{2}}/h^{2}, C^{2}/h^{2}\leq 1\) and again by Lemma 2, we get

    $$ \begin{array}{@{}rcl@{}} && 1-\left( 1-\frac{{c}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{C}_{i}^{2}}{h^{2}}\right) \geq \left( \frac{{c_{i}^{2}}}{h^{2}}\right)\left( \frac{{C_{i}^{2}}}{h^{2}}\right) \\ &\Rightarrow & \prod\limits_{i=1}^{n} \left( 1-\left( 1-\frac{{c}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{C}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}}\\ && \geq \prod\limits_{i=1}^{n} \left( \left( \frac{{c}_{i}^{2}}{h^{2}}\right)\left( \frac{{C}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}} \end{array} $$
    $$ \begin{array}{@{}rcl@{}} &\Rightarrow & h\prod\limits_{i=1}^{n} \sqrt{\left( 1-\left( 1-\frac{{c}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{C}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}}} \\ &&\geq h\prod\limits_{i=1}^{n} \left( \left( \frac{c_{i}}{h}\right)\left( \frac{C_{i}}{h}\right) \right)^{\omega_{i}} \end{array} $$

    Similarly, we get

    $$ \begin{array}{@{}rcl@{}} &&h\prod\limits_{i=1}^{n} \sqrt{\left( 1-\left( 1-\frac{{d}_{i}^{2}}{h^{2}}\right)\left( 1-\frac{{D}_{i}^{2}}{h^{2}}\right) \right)^{\omega_{i}}} \\ &&\geq h\prod\limits_{i=1}^{n} \left( \left( \frac{d_{i}}{h}\right)\left( \frac{D_{i}}{h}\right) \right)^{\omega_{i}} \end{array} $$

    Hence, by Eq. 9, we get desired result.

  2. 5)

    For any two LIVPFNs \({\mathscr{H}}_{i}=([s_{a_{i}}, s_{b_{i}}], [s_{c_{i}}, s_{d_{i}}])\) and \(\xi _{i}=([s_{A_{i}}, s_{B_{i}}], [s_{C_{i}}, s_{D_{i}}])\), we have

    $$ \begin{array}{@{}rcl@{}} && \text{LIVPFWA}(\mathcal{H}_{1},\mathcal{H}_{2},\ldots,\mathcal{H}_{n}) \otimes \text{LIVPFWA}(\xi_{1},\xi_{2},\ldots,\xi_{n}) \\ & =& \left( \left[ \begin{array}{c} s_{h\sqrt{ \left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right) \left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right) } }, \\ s_{h\sqrt{ \left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{b}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right) \left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{B}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right) } } \end{array} \right],\right.\\ &&\left.\left[ \begin{array}{c} s_{h\sqrt{ 1-\left( 1-\prod\limits_{i=1}^{n} \left( \frac{{c}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( \frac{{C}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right) } }, \\ s_{h\sqrt{ 1-\left( 1-\prod\limits_{i=1}^{n} \left( \frac{{d}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( \frac{{D}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right) } } \end{array} \right] \right) \end{array} $$

    As \(\prod \limits _{i=1}^{n}\left (1-\frac {{a}_{i}^{2}}{h^{2}}\right )^{\omega _{i}}, \prod \limits _{i=1}^{n}\left (1-\frac {{A}_{i}^{2}}{h^{2}}\right )^{\omega _{i}} \leq 1\) and thus by Lemma 2, we have

    $$ \begin{array}{@{}rcl@{}} && 1- \left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right)^{\omega_{i}} \right) \\ && \qquad \geq \prod\limits_{i=1}^{n}\left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\omega_{i}} \prod\limits_{i=1}^{n}\left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right)^{\omega_{i}} \\ &\Rightarrow & 1- \left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( 1-\frac{{A_{i}^{2}}}{h^{2}}\right)^{\omega_{i}} \right) \\ && \qquad \geq \prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)\cdot \left( 1-\frac{{A_{i}^{2}}}{h^{2}}\right)\right)^{\omega_{i}} \\&\Rightarrow & \left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{a_{i}^{2}}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right)^{\omega_{i}} \right) \\ && \qquad \leq 1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)\cdot \left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right)\right)^{\omega_{i}} \end{array} $$
    $$ \begin{array}{@{}rcl@{}} &\Rightarrow & h\sqrt{\left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right)^{\omega_{i}} \right)} \\ && \qquad \leq h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{a}_{i}^{2}}{h^{2}}\right)\cdot \left( 1-\frac{{A}_{i}^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \end{array} $$

    Similarly, we have

    $$ \begin{array}{@{}rcl@{}} && h\sqrt{\left( 1-\prod\limits_{i=1}^{n}\left( 1-\frac{{b}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( 1-\frac{{B_{i}^{2}}}{h^{2}}\right)^{\omega_{i}} \right)} \\ && \qquad \leq h\sqrt{1-\prod\limits_{i=1}^{n}\left( \left( 1-\frac{{b_{i}^{2}}}{h^{2}}\right)\cdot \left( 1-\frac{{B}_{i}^{2}}{h^{2}}\right)\right)^{\omega_{i}}} \end{array} $$
    $$ \begin{array}{@{}rcl@{}} && h\sqrt{1-\left( 1-\prod\limits_{i=1}^{n} \left( \frac{{c}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( \frac{{C}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right) } \\ && \qquad \geq h\left( \prod\limits_{i=1}^{n}\left( \frac{c_{i}}{h}\right)\left( \frac{C_{i}}{h}\right)\right)^{\omega_{i}} \\ &\text{and ~~ } & h\sqrt{1-\left( 1-\prod\limits_{i=1}^{n} \left( \frac{{d}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right)\left( 1-\prod\limits_{i=1}^{n} \left( \frac{{D}_{i}^{2}}{h^{2}}\right)^{\omega_{i}}\right) } \\ && \qquad \qquad \qquad \geq h\left( \prod\limits_{i=1}^{n}\left( \frac{d_{i}}{h}\right)\left( \frac{D_{i}}{h}\right)\right)^{\omega_{i}} \end{array} $$

    Hence, based on these inequalities and by Eq. 9, the part (5) is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H. Linguistic Interval-Valued Pythagorean Fuzzy Sets and Their Application to Multiple Attribute Group Decision-making Process. Cogn Comput 12, 1313–1337 (2020). https://doi.org/10.1007/s12559-020-09750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-020-09750-4

Keywords

Navigation