Skip to main content
Log in

Multiple Attribute Decision Making Based on Power Muirhead Mean Operators Under 2-Tuple Linguistic Pythagorean Fuzzy Environment

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Due to the uncertainty and complexity of socioeconomic environments and cognitive diversity of decision makers, the cognitive information over alternatives provided by decision makers is usually uncertain and fuzzy. Two-tuple linguistic Pythagorean fuzzy sets (2TLPFSs) provide useful tools to depict the uncertain and fuzzy cognitions of the decision makers over attributes. To effectively handle such common cases, in this paper, some power Muirhead mean (PMM) operator and power dual MM (PDMM) operator operators under 2TLPFS environment are proposed and investigated the methods for multiple attribute decision making(MADM) problems based on the PMM and PDMM operators with 2-tuple linguistic Pythagorean fuzzy numbers (2TLPFNs) are investigated. Firstly, some new PMM and PDMM operators to aggregate 2-tuple linguistic Pythagorean fuzzy cognitive information is developed, such as 2-tuple linguistic Pythagorean fuzzy MM (2TLPFPMM) operator, 2-tuple linguistic Pythagorean fuzzy weighted PMM (2TLPFWPMM) operator, 2-tuple linguistic Pythagorean fuzzy PDMM (2TLPFPDMM) operator, and 2-tuple linguistic Pythagorean fuzzy weighted PDMM (2TLPFNWPDMM) operator, which consider the interrelationship of 2TLPFNs, and can generate more accurate results than the existing aggregation operators. After that, the developed aggregation operator are applied to MADM with 2TLPFNs and two MADM methods are designed, which can be applied to different decision making situations. Based on the proposed operators and built models, two methods are developed to solve the MADM problems with 2TLPFNs and the validity and advantages of the proposed method are analyzed by comparison with some existing approaches. The method proposed in this paper can effectively handle the MADM problems in which the attribute information is expressed by 2TLPFNs, the attributes’ weights are completely known, and the attributes are interactive. Finally, an example for green supplier selection is used to show the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng XM, Gao H. TODIM method for multiple attribute decision making with 2-tuple linguistic Pythagorean fuzzy information. J Intell Fuzzy Syst. 2019;37:1769–80.

    Article  Google Scholar 

  2. Lu JP, Wei C. TODIM method for performance appraisal on social-integration-based rural reconstruction with interval-valued intuitionistic fuzzy information. J Intell Fuzzy Syst. 2019;37:1731–40.

    Article  Google Scholar 

  3. L.A. Zadeh, Fuzzy Sets, in: Information and Control, 1965, pp. 338–356.

  4. Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986;20:87–96.

    Article  Google Scholar 

  5. Atanassov K. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989;33:37–46.

    Article  MathSciNet  Google Scholar 

  6. Torra V. Hesitant Fuzzy Sets. Int J Intell Syst. 2010;25:529–39.

    MATH  Google Scholar 

  7. Zhu B, Xu ZS, Xia MM. Dual Hesitant Fuzzy Sets. J Appl Math. 2012.

  8. Wang HJ, Zhao XF, Wei GW. Dual hesitant fuzzy aggregation operators in multiple attribute decision making. J Intell Fuzzy Syst. 2014;26:2281–90.

    Article  MathSciNet  Google Scholar 

  9. P. Wang, G. Wei, J. Wang, R. Lin, Y. Wei, Dual hesitant q-rung Orthopair fuzzy Hamacher aggregation operators and their applications in scheme selection of construction project, symmetry-Basel, 11 (2019).

    Google Scholar 

  10. subsets, 2013.

  11. Yager RR. Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst. 2014;22:958–65.

    Article  Google Scholar 

  12. Liu PD, Tang GL. Multi-criteria group decision-making based on interval Neutrosophic uncertain linguistic variables and Choquet integral. Cogn Comput. 2016;8:1036–56.

    Article  Google Scholar 

  13. Meng FY, Wang C, Chen XH. Linguistic interval hesitant fuzzy sets and their application in decision making. Cogn Comput. 2016;8:52–68.

    Article  Google Scholar 

  14. Wang JQ, Kuang J-j, Wang J, Zhang H-y. An extended outranking approach to rough stochastic multi-criteria decision-making problems. Cogn Comput. 2016;8:1144–60.

    Article  Google Scholar 

  15. Peng XD, Yang Y. Some results for Pythagorean fuzzy sets. Int J Intell Syst. 2015;30:1133–60.

    Article  Google Scholar 

  16. James S, Beliakov G. Averaging aggregation functions for preferences expressed as Pythagorean membership grades and fuzzy orthopairs. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE); 2014.

    Google Scholar 

  17. M.Z. Reformat, R.R. Yager, Suggesting recommendations using Pythagorean fuzzy sets illustrated using Netflix movie data, in: A. Laurent, O. Strauss, B. BouchonMeunier, R.R. Yager (Eds.) Information processing and management of uncertainty in knowledge-based systems, Pt I, 2014, pp. 546–556.

  18. Gou XJ, Xu ZS, Ren PJ. The properties of continuous Pythagorean fuzzy information. Int J Intell Syst. 2016;31:401–24.

    Article  Google Scholar 

  19. Garg H. A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int J Intell Syst. 2016;31:886–920.

    Article  Google Scholar 

  20. Zeng SZ, Chen JP, Li XS. A hybrid method for Pythagorean fuzzy multiple-criteria decision making. Int J Inf Technol Decis Mak. 2016;15:403–22.

    Article  Google Scholar 

  21. Ren PJ, Xu ZS, Gou XJ. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl Soft Comput. 2016;42:246–59.

    Article  Google Scholar 

  22. Wang J, Gao H, Wei G. The generalized Dice similarity measures for Pythagorean fuzzy multiple attribute group decision making. Int J Intell Syst. 2019;34:1158–83.

    Article  Google Scholar 

  23. Wei GW, Lu M. Dual hesitant pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making. Arch Control Sci. 2017;27:365–95.

    Article  Google Scholar 

  24. Gao H, Lu M, Wei GW, Wei Y. Some novel Pythagorean fuzzy interaction aggregation operators in multiple attribute decision making. Fund Inform. 2018;159:385–428.

    MathSciNet  MATH  Google Scholar 

  25. Garg H. A linear programming method based on an improved score function for interval-valued Pythagorean fuzzy numbers and its application to decision-making. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems. 2018;26:67–80.

    Article  MathSciNet  Google Scholar 

  26. Wan SP, Jin Z, Dong JY. Pythagorean fuzzy mathematical programming method for multi-attribute group decision making with Pythagorean fuzzy truth degrees. Knowl Inf Syst. 2018;55:437–66.

    Article  Google Scholar 

  27. Wang P, Wang J, Wei G. EDAS method for multiple criteria group decision making under 2-tuple linguistic neutrosophic environment. J Intell Fuzzy Syst. 2019;37:1597–608.

    Article  Google Scholar 

  28. Garg H, Kumar K. Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision-making problems. IEEE Trans Fuzzy Syst. 2019:1–1.

  29. Herrera F, Martinez L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst. 2000;8:746–52.

    Article  Google Scholar 

  30. Herrera F, Martinez L. An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems. 2000;8:539–62.

    Article  MathSciNet  Google Scholar 

  31. Deng XM, Wei GW, Gao H, Wang J. Models for safety assessment of construction project with some 2-tuple linguistic Pythagorean fuzzy Bonferroni mean operators. Ieee Access. 2018;6:52105–37.

    Article  Google Scholar 

  32. X. Deng, J. Wang, G. Wei, M. Lu, Models for multiple attribute decision making with some 2-tuple linguistic Pythagorean fuzzy Hamy mean operators, mathematics, 6 (2018).

    MATH  Google Scholar 

  33. J. Wang, G.W. Wei, H. Gao, Approaches to multiple attribute decision making with interval-valued 2-tuple linguistic Pythagorean fuzzy information, mathematics, 6 (2018).

    Google Scholar 

  34. Deng X, Wang J, Wei G. Some 2-tuple linguistic Pythagorean Heronian mean operators and their application to multiple attribute decision-making. J Expt Theor Artif Intell. 2019;31:555–74.

    Article  Google Scholar 

  35. Muirhead RF. Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proc Edinb Math Soc. 1902;21:144–62.

    Article  Google Scholar 

  36. H. Garg, Nancy, multi-criteria decision-making method based on prioritized Muirhead mean aggregation operator under Neutrosophic set environment, symmetry-Basel, 10 (2018).

    Google Scholar 

  37. Yager RR. The power average operator. Ieee Transactions on Systems Man and Cybernetics Part a-Systems and Humans. 2001;31:724–31.

    Article  Google Scholar 

  38. Liu PD, Khan Q, Mahmood T. Some single-valued neutrosophic power muirhead mean operators and their application to group decision making. J Intell Fuzzy Syst. 2019;37:2515–37.

    Article  Google Scholar 

  39. Liu PD, Khan Q, Mahmood T, Hassan N. T-spherical fuzzy power Muirhead mean operator based on novel operational laws and their application in multi-attribute group decision making. Ieee Access. 2019;7:22613–32.

    Article  Google Scholar 

  40. Xu Z, Yager RR. Power-geometric operators and their use in group decision making. IEEE Trans Fuzzy Syst. 2010;18:94–105.

    Article  Google Scholar 

  41. Qin JD, Liu XW. 2-tuple linguistic Muirhead mean operators for multiple attribute group decision making and its application to supplier selection. Kybernetes. 2016;45:2–29.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiwu Wei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

ᅟThis article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The proof of Theorem 1. According to definition 5, we can obtain

$$ n{\delta}_j{p}_{\sigma (j)}=\left\{\varDelta \left(t\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}}\right),\varDelta \left(t{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{n{\delta}_j}\right)\right\} $$
(26)

Thus,

$$ {\left(n{\delta}_j{p}_{\sigma (j)}\right)}^{\lambda_j}=\left\{\begin{array}{c}\varDelta \left(t{\left(\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}}\right)}^{\lambda_j}\right),\\ {}\varDelta \left(t\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}}\right)\end{array}\right\} $$
(27)

Thereafter,

$$ \overset{n}{\underset{j=1}{\otimes }}{\left(n{\delta}_j{p}_{\sigma (j)}\right)}^{\lambda_j}=\left\{\begin{array}{c}\varDelta \left(t\prod \limits_{j=1}^n{\left(\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}}\right)}^{\lambda_j}\right),\\ {}\varDelta \left(t\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}}\right)\end{array}\right\} $$
(28)

Thereafter,

$$ {\displaystyle \begin{array}{c}\underset{\sigma \in {S}_n}{\oplus}\left(\overset{n}{\underset{j=1}{\otimes }}{\left(n{\delta}_j{p}_{\sigma (j)}\right)}^{\lambda_j}\right)\\ {}=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)}\right),\\ {}\varDelta \left(t\prod \limits_{\sigma \in {S}_n}\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}}\right)\end{array}\right\}\end{array}} $$
(29)

Furthermore,

$$ {\displaystyle \begin{array}{c}\frac{1}{n!}\left(\underset{\sigma \in {S}_n}{\oplus}\left(\overset{n}{\underset{j=1}{\otimes }}{\left(n{\delta}_j{p}_{\sigma (j)}\right)}^{\lambda_j}\right)\right)\\ {}=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right),\\ {}\varDelta \left(t{\left(\prod \limits_{\sigma \in {S}_n}\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}}\right)}^{\frac{1}{n!}}\right)\end{array}\right\}\end{array}} $$
(30)

Therefore,

$$ {\displaystyle \begin{array}{c}2{\mathrm{TLPFPMM}}^{\lambda}\left({p}_1,{p}_2,\dots, {p}_n\right)={\left(\frac{1}{n!}\left(\underset{\sigma \in {S}_n}{\oplus}\left(\overset{n}{\underset{j=1}{\otimes }}{\left(n{\delta}_j{p}_{\sigma (j)}\right)}^{\lambda_j}\right)\right)\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}=\left\{\begin{array}{c}\varDelta \left(t{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\right),\\ {}\varDelta \left(t\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\right)\end{array}\right\}\end{array}} $$
(31)

Appendix 2

The proof of Eq. (12) is a 2TLPFN. Let

$$ {\displaystyle \begin{array}{c}\frac{\varDelta^{-1}\left({s}_{\phi_j},{\varphi}_j\right)}{t}={\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}\frac{\varDelta^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)}{t}=\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\end{array}} $$

Proof. ① Since \( 0\le \frac{\Delta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\le 1, \) we get

$$ 0\le 1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\le 1\kern0.5em and\kern0.5em 0\le \prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\le 1 $$
(32)

Then,

$$ \kern1.65em 0\le {\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}\le 1 $$
(33)
$$ 0\le {\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\le 1 $$
(34)

That means \( 0\le {\Delta}^{-1}\left({s}_{\phi_j},{\varphi}_j\right)\le t \), so ① is maintained, similarly, we can get \( 0\le {\Delta}^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)\le t \).

  1. Since\( {\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\le 1 \), we get the following inequality:

$$ {\displaystyle \begin{array}{c}\begin{array}{c}{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\\ {}={\left(1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}+1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\end{array}\\ {}\begin{array}{c}\le {\left(1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}+1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}=1\end{array}\mathrm{i},\mathrm{e}.,\\ {}0\le {\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\le 1\end{array}} $$

That means \( 0\le {\left({\Delta}^{-1}\left({s}_{\phi_j},{\varphi}_j\right)\right)}^2+{\left({\Delta}^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)\right)}^2\le {t}^2 \),so ② is maintained. Then, we discuss the properties of 2TLPFPMM operator.

Appendix 3

The proof of property 2.

Let \( {p}^{+}=\left({\max}_i\left({S}_{\phi_i},{\varphi}_i\right),{\min}_i\left({S}_{\theta_i},{\vartheta}_i\right)\right)=\left\{{\left({s}_{\phi_i},{\varphi}_i\right)}^{+},{\left({s}_{\theta_i},{\vartheta}_i\right)}^{-}\right\}\left(i=1,2,\dots, n\right) \) and\( {p}^{-}=\left({\min}_i\left({S}_{\phi_i},{\varphi}_i\right),{\max}_i\left({S}_{\theta_i},{\vartheta}_i\right)\right)=\left\{{\left({s}_{\phi_i},{\varphi}_i\right)}^{-},{\left({s}_{\theta_i},{\vartheta}_i\right)}^{+}\right\} \), we can obtain

$$ {\left(1-{\left(\frac{\varDelta^{-1}{\left({s}_{\phi_i},{\varphi}_i\right)}^{+}}{t}\right)}^2\right)}^{n{\delta}_j}\le {\left(1-{\left(\frac{\varDelta^{-1}{\left({s}_{\phi_i},{\varphi}_i\right)}^{-}}{t}\right)}^2\right)}^{n{\delta}_j} $$
(35)

Then,

$$ \prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}{\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}^{+}}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\ge \prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}{\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}^{-}}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j} $$
(36)

Thereafter,

$$ {\displaystyle \begin{array}{c}\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}{\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}^{+}}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\\ {}\le \prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}{\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}^{-}}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\end{array}} $$
(37)

Furthermore,

$$ {\displaystyle \begin{array}{c}t{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}{\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}^{+}}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}\ge t{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}{\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}^{-}}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\end{array}} $$
(38)

That means\( {\Delta}^{-1}{\left({s}_{\phi_i},{\varphi}_i\right)}^{+}\ge {\Delta}^{-1}{\left({s}_{\phi_i},{\varphi}_i\right)}^{-} \). Similarly, we can obtain \( {\Delta}^{-1}\left({s}_{\theta_i},{\vartheta}_i\right)\le {\Delta}^{-1}{\left({s}_{\theta_i},{\vartheta}_i\right)}^{-} \), this indicates p+ ≥ p. So property 2 is right. It is clear that the 2TLPFPMM operator lacks the property of monotonicity.

Appendix 4

The proof of Theorem 2. According to definition 5, we can obtain

$$ {\displaystyle \begin{array}{c}\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}{p}_{\sigma (j)}\\ {}=\left\{\varDelta \left(t\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}}\right),\varDelta \left(t{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)\right\}\end{array}} $$
(39)

Thus,

$$ {\left(\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}{p}_{\sigma (j)}\right)}^{\lambda_j}=\left\{\begin{array}{c}\varDelta \left(t{\left(\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}}\right)}^{\lambda_j}\right),\\ {}\varDelta \left(t\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}}\right)\end{array}\right\} $$
(40)

Thereafter,

$$ {\displaystyle \begin{array}{c}\overset{n}{\underset{j=1}{\otimes }}{\left(\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}{p}_{\sigma (j)}\right)}^{\lambda_j}\\ {}=\left\{\begin{array}{c}\varDelta \left(t\prod \limits_{j=1}^n{\left(\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}}\right)}^{\lambda_j}\right),\\ {}\varDelta \left(t\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}}\right)\end{array}\right\}\end{array}} $$
(41)

Thereafter,

$$ {\displaystyle \begin{array}{c}\underset{\sigma \in {S}_n}{\oplus}\left(\overset{n}{\underset{j=1}{\otimes }}{\left(\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}{p}_{\sigma (j)}\right)}^{\lambda_j}\right)\\ {}=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}\right),\\ {}\varDelta \left(t\prod \limits_{\sigma \in {S}_n}\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}}\right)\end{array}\right\}\end{array}} $$
(42)

Furthermore,

$$ {\displaystyle \begin{array}{c}\frac{1}{n!}\left(\underset{\sigma \in {S}_n}{\oplus}\left(\overset{n}{\underset{j=1}{\otimes }}{\left(\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}{p}_{\sigma (j)}\right)}^{\lambda_j}\right)\right)\\ {}=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right),\\ {}\varDelta \left(t{\left(\prod \limits_{\sigma \in {S}_n}\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}}\right)}^{\frac{1}{n!}}\right)\end{array}\right\}\end{array}} $$
(43)

Therefore,

$$ {\displaystyle \begin{array}{c}2{\mathrm{TLPFWPMM}}_w^{\lambda}\left({p}_1,{p}_2,\dots, {p}_n\right)={\left(\frac{1}{n!}\left(\underset{\sigma \in {S}_n}{\oplus}\left(\overset{n}{\underset{j=1}{\otimes }}{\left(\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}{p}_{\sigma (j)}\right)}^{\lambda_j}\right)\right)\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}=\left\{\begin{array}{c}\varDelta \left(t{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\right),\\ {}\varDelta \left(t\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\right)\end{array}\right\}\end{array}} $$
(44)

Appendix 5

The proof of Eq. (16) is a 2TLPFN. Let

$$ {\displaystyle \begin{array}{c}\frac{\varDelta^{-1}\left({s}_{\phi_j},{\varphi}_j\right)}{t}={\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}\frac{\varDelta^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)}{t}=\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\end{array}} $$

Proof. ① Since \( 0\le \frac{\Delta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\le 1, \) we get

$$ 0\le 1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\le 1\kern0.5em and\kern0.5em 0\le \prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\le 1 $$
(45)

Then,

$$ \kern1.65em 0\le {\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}\le 1 $$
(46)
$$ 0\le {\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\le 1 $$
(47)

That means \( 0\le {\Delta}^{-1}\left({s}_{\phi_j},{\varphi}_j\right)\le t \), so ① is maintained, similarly, we can get \( 0\le {\Delta}^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)\le t \).

② Since \( {\left(\frac{\Delta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\Delta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\le 1 \), we get the following inequality:

$$ {\displaystyle \begin{array}{c}\begin{array}{c}{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\\ {}={\left(1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}+1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\end{array}\\ {}\begin{array}{c}\le {\left(1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}+1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}=1\end{array}\mathrm{i}.\mathrm{e}.,\\ {}0\le {\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\le 1.\end{array}} $$

That means\( 0\le {\left({\varDelta}^{-1}\left({s}_{\phi_j},{\varphi}_j\right)\right)}^2+{\left({\varDelta}^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)\right)}^2\le {t}^2 \), so ② is maintained.

Appendix 6

The proof of Theorem 3. According to definition 5, we can obtain

$$ {\left({p}_{\sigma (j)}\right)}^{n{\delta}_j}=\left\{\varDelta \left(t{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{n{\delta}_j}\right),\varDelta \left(t\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}}\right)\right\} $$
(48)

Then,

$$ {\lambda}_j{\left({p}_{\sigma (j)}\right)}^{n{\delta}_j}=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}}\right),\\ {}\varDelta \left(t{\left(\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}}\right)}^{\lambda_j}\right)\end{array}\right\} $$
(49)

Thus,

$$ \overset{n}{\underset{j=1}{\oplus }}\left({\lambda}_j{\left({p}_{\sigma (j)}\right)}^{n{\delta}_j}\right)=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}}\right),\\ {}\varDelta \left(t\prod \limits_{j=1}^n{\left(\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}}\right)}^{\lambda_j}\right)\end{array}\right\} $$
(50)

Therefore,

$$ {\displaystyle \begin{array}{c}\underset{\sigma \in {S}_n}{\otimes}\left(\overset{n}{\underset{j=1}{\oplus }}\left({\lambda}_j{\left({p}_{\sigma (j)}\right)}^{n{\delta}_j}\right)\right)\\ {}=\left\{\begin{array}{c}\varDelta \left(t\prod \limits_{\sigma \in {S}_n}\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}}\right),\\ {}\varDelta \left(t\sqrt{1-\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)}\right)\end{array}\right\}\end{array}} $$
(51)

Furthermore,

$$ {\displaystyle \begin{array}{c}{\left(\underset{\sigma \in {S}_n}{\otimes}\left(\overset{n}{\underset{j=1}{\oplus }}\left({\lambda}_j{\left({p}_{\sigma (j)}\right)}^{n{\delta}_j}\right)\right)\right)}^{\frac{1}{n!}}\\ {}=\left\{\begin{array}{c}\varDelta \left(t{\left(\prod \limits_{\sigma \in {S}_n}\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}}\right)}^{\frac{1}{n!}}\right),\\ {}\varDelta \left(t\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)\end{array}\right\}\end{array}} $$
(52)

Therefore,

$$ {\displaystyle \begin{array}{c}2{\mathrm{TLPFPDMM}}^{\lambda}\left({p}_1,{p}_2,\cdots, {p}_n\right)=\frac{1}{\sum_{j=1}^n{\lambda}_j}{\left(\underset{\sigma \in {S}_n}{\otimes}\left(\overset{n}{\underset{j=1}{\oplus }}\left({\lambda}_j{\left({p}_{\sigma (j)}\right)}^{n{\delta}_j}\right)\right)\right)}^{\frac{1}{n!}}\\ {}=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\right),\\ {}\varDelta \left(t{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\right)\end{array}\right\}\end{array}} $$
(53)

Appendix 7

The proof of Eq. (21) is a 2TLPFN. Let

$$ {\displaystyle \begin{array}{c}\frac{\varDelta^{-1}\left({s}_{\phi_j},{\varphi}_j\right)}{t}=\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\\ {}\frac{\varDelta^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)}{t}={\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\end{array}} $$

① Since \( 0\le \frac{\Delta^{-1}\left({s}_{\phi_j},{\varphi}_j\right)}{t}\le 1, \) we get

$$ 0\le {\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\le 1\kern0.5em and\kern0.5em 0\le 1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\le 1 $$
(54)

Then

$$ \kern2.31em 0\le {\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\le 1 $$
(55)
$$ 0\le \sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\le 1 $$
(56)

That means \( 0\le {\Delta}^{-1}\left({s}_{\phi_j},{\varphi}_j\right)\le t \), so ① is maintained, similarly, we can get \( 0\le {\Delta}^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)\le t \).

  1. Since\( {\left(\frac{\Delta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\Delta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\le 1 \), we can get the following inequality:

    $$ {\displaystyle \begin{array}{c}{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\\ {}=\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{2n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\\ {}+{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}\le \sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\\ {}+{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{n{\delta}_j}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}=1\end{array}} $$

That means \( 0\le {\left({\Delta}^{-1}\left({s}_{\phi_j},{\varphi}_j\right)\right)}^2+{\left({\Delta}^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)\right)}^2\le {t}^2 \), so ② is maintained.

Appendix 8

The proof of Theorem 4. According to definition 5, we can obtain

$$ {\displaystyle \begin{array}{c}{\left({p}_{\sigma (j)}\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\\ {}=\left\{\varDelta \left(t{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right),\varDelta \left(t\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}}\right)\right\}\end{array}} $$
(57)

Then,

$$ {\lambda}_j{\left({p}_{\sigma (j)}\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}}\right),\\ {}\varDelta \left(t{\left(\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}}\right)}^{\lambda_j}\right)\end{array}\right\} $$
(58)

Thus,

$$ \overset{n}{\underset{j=1}{\oplus }}\left({\lambda}_j{\left({p}_{\sigma (j)}\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}}\right),\\ {}\varDelta \left(t\prod \limits_{j=1}^n{\left(\sqrt{1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}}\right)}^{\lambda_j}\right)\end{array}\right\} $$
(59)

Therefore,

$$ {\displaystyle \begin{array}{c}\underset{\sigma \in {S}_n}{\otimes}\left(\overset{n}{\underset{j=1}{\oplus }}\left({\lambda}_j{\left({p}_{\sigma (j)}\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)\right)\\ {}=\left\{\begin{array}{c}\varDelta \left(t\prod \limits_{\sigma \in {S}_n}\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}}\right),\\ {}\varDelta \left(t\sqrt{1-\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}\right)\end{array}\right\}\end{array}} $$
(60)

Furthermore,

$$ {\displaystyle \begin{array}{c}{\left(\underset{\sigma \in {S}_n}{\otimes}\left(\overset{n}{\underset{j=1}{\oplus }}\left({\lambda}_j{\left({p}_{\sigma (j)}\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)\right)\right)}^{\frac{1}{n!}}\\ {}=\left\{\begin{array}{c}\varDelta \left(t{\left(\prod \limits_{\sigma \in {S}_n}\sqrt{1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}}\right)}^{\frac{1}{n!}}\right),\\ {}\varDelta \left(t\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)\end{array}\right\}\end{array}} $$
(61)

Therefore,

$$ {\displaystyle \begin{array}{c}2{\mathrm{TLPFPWDMM}}^{\lambda}\left({p}_1,{p}_2,\cdots, {p}_n\right)=\frac{1}{\sum_{j=1}^n{\lambda}_j}{\left(\underset{\sigma \in {S}_n}{\otimes}\left(\overset{n}{\underset{j=1}{\oplus }}\left({\lambda}_j{\left({p}_{\sigma (j)}\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)\right)\right)}^{\frac{1}{n!}}\\ {}=\left\{\begin{array}{c}\varDelta \left(t\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\right),\\ {}\varDelta \left(t{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\right)\end{array}\right\}\end{array}} $$
(62)

Appendix 9

The proof of Eq. (25) is a 2TLPFN. Let

$$ {\displaystyle \begin{array}{c}\frac{\varDelta^{-1}\left({s}_{\phi_j},{\varphi}_j\right)}{t}=\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\\ {}\frac{\varDelta^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)}{t}={\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\end{array}} $$

① Since\( 0\le \frac{\Delta^{-1}\left({s}_{\phi_j},{\varphi}_j\right)}{t}\le 1, \)we get.

$$ 0\le {\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\le 1\kern0.5em and\kern0.5em 0\le 1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\le 1 $$
(63)

Then

$$ \kern2.31em 0\le {\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\le 1 $$
(64)
$$ 0\le \sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\le 1 $$
(65)

That means \( 0\le {\Delta}^{-1}\left({s}_{\phi_j},{\varphi}_j\right)\le t \), so ① is maintained, similarly, we can get \( 0\le {\Delta}^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)\le t \).

② Since\( {\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\le 1 \), we can get the following inequality:

$$ {\displaystyle \begin{array}{c}{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^2+{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\\ {}=\sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\phi_{\sigma (j)}},{\varphi}_{\sigma (j)}\right)}{t}\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\\ {}+{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}\\ {}\le \sqrt{1-{\left(1-\prod \limits_{\sigma \in {S}_n}{\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)}^{\frac{1}{n!}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}}\\ {}+{\left(\sqrt{1-{\left(\prod \limits_{\sigma \in {S}_n}\left(1-\prod \limits_{j=1}^n{\left(1-{\left(1-{\left(\frac{\varDelta^{-1}\left({s}_{\theta_{\sigma (j)}},{\vartheta}_{\sigma (j)}\right)}{t}\right)}^2\right)}^{\frac{2n{\delta}_j{w}_{\sigma (j)}}{\sum_{t=1}^n{\delta}_t{w}_t}}\right)}^{\lambda_j}\right)\right)}^{\frac{1}{n!}}}\right)}^{\frac{1}{\sum_{j=1}^n{\lambda}_j}}=1\end{array}} $$

That means\( 0\le {\left({\varDelta}^{-1}\left({s}_{\phi_j},{\varphi}_j\right)\right)}^2+{\left({\varDelta}^{-1}\left({s}_{\theta_j},{\vartheta}_j\right)\right)}^2\le {t}^2 \), so ② is maintained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Wang, J. & Wei, G. Multiple Attribute Decision Making Based on Power Muirhead Mean Operators Under 2-Tuple Linguistic Pythagorean Fuzzy Environment. Cogn Comput 12, 1276–1298 (2020). https://doi.org/10.1007/s12559-020-09756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-020-09756-y

Keywords

Navigation