Skip to main content
Log in

Developed Optimization Algorithms Based on Natural Taxis Behavior of Bacteria

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Bio-inspired optimization algorithms are capable of resolving a wide variety of challenges in science and technology, including cognitive science. The principles used by the smallest living organisms in the world could be adopted in the decision-based algorithms for artificial intelligence purposes. Bacterial biological functions and behaviors have been the most effective strategies, which have evolved in these single-cell organisms. The bacteria live based on cognitive and social sensing in nature. Using cognitive processing in bacterial populations enables them to perceive the dynamic surrounding ecosystem and explore their environment. Recently, the behavioral pattern of bacterial foraging has been recruited for resolving optimization issues. This paper reviews 22 developed optimization algorithms based on the bacterial life cycle of motile bacteria. The solicitation of these algorithms applies to a wide range of topics, including cognitive analysis, engineering, medicine, and industry. Following a comparison between different algorithms, we summarize the application of the algorithms in these areas. Eventually, some points are suggested for developing and employing the algorithms in future practical applications of cognitive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang XS. Metaheuristic optimization: nature-inspired algorithms and applications. In: Yang XS, editor. Artificial intelligence, evolutionary computing, and metaheuristics. Studies in computational intelligence, vol. 427. Berlin: Springer; 2013. p. 405–20.

    Google Scholar 

  2. Sajedi H, Mohammadipanah F, Pashaei A. Automated identification of myxobacterial genera using convolutional neural network. Sci Rep. 9:18238. https://doi.org/10.1038/s41598-019-54341-5.

  3. Sajedi H, Mohammadipanah F, Rahimi SAH. Actinobacterial strains recognition by machine learning methods. Multimed Tools Appl. 2019;16(50):1–23.

    Google Scholar 

  4. Dasgupta S, Das S, Abraham A, Biswas A. Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput. 2009;13(4):919–41.

    Google Scholar 

  5. Kennedy J. The particle swarm as collaborative sampling of the search space. Adv Complex Syst. 2007;10:191–213.

    MATH  Google Scholar 

  6. Nemati F, Sajedi H, Khanbabaie M. A Hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring. J Retail Consum Serv. 2015;27(10):11–23.

    Google Scholar 

  7. Mohammadi FG, Sajedi H. Region based image steganalysis using artificial bee colony. J Vis Commun Image Represent. 2017;44:1–13.

    Google Scholar 

  8. Azizi M, Sajedi H. Satellite broadcast scheduling based on a boosted binary differential evolution. N Gener Comput. 2017;35(3):225–51.

    Google Scholar 

  9. Sajedi H, Mohammadipanah F, Kazemi Shariat Panahi H. An image analysis-aided redundancy reduction method for differentiation of identical Actinobacterial strains. Future Microbiol. 2018;13(3):313–29.

    Google Scholar 

  10. Raymond C. Nature-inspired algorithms for optimisation. Berlin Heidelberg: Springer-Verlag; 2009.

    Google Scholar 

  11. Talbi EG. Metaheuristics: from design to implementation. New Jersey: John Wiley & Sons; 2009.

    MATH  Google Scholar 

  12. Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag. 2002;22(3):52–67.

    Google Scholar 

  13. Das S, Biswas A, Dasgupta S, Abraham A. Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Foundat Comput Intel. 2009;3:23–55.

    Google Scholar 

  14. Blum C, Roli A. Metaheuristics in combinatorial optimization: overview and conceptural comparision. ACM Comput Surv. 2003;35(2):268–308.

    Google Scholar 

  15. Chen H, Zhu Y, Hu K. Cooperative bacterial foraging optimization. In: Discrete Dynamics in Nature and Society, 2009. 17 pages.

  16. Srinivas M, Patnaik LM. Genetic algorithms: a survey. Computer. 1994;27(6):17–26.

    Google Scholar 

  17. Li TY, Tang WJ, Wu QH, Saunders JR. Bacterial foraging algorithm with varying population. BioSystems. 2010;100(3):185–97.

    Google Scholar 

  18. Munoz MA, Halgamuge SK, Alfonso W, Caicedo EF. Simplifying the bacteria foraging optimization algorithm. In: Proc IEEE congress on evolutionary computation, Barcelona, Spain; 18–23 July, 1–7; 2010.

    Google Scholar 

  19. Awadallah M. Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data. Energy Convers Manag. 2016;113:312–20.

    Google Scholar 

  20. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–99.

    Google Scholar 

  21. Chen H, Niu B, Ma L, Su W, Zhu Y. Bacterial colony foraging optimization. Neurocomputing. 2014;137:268–84.

    Google Scholar 

  22. Yan X, Zhu Y, Zhang H, Chen H, Niu B. An adaptive bacterial foraging optimization algorithm with lifecycle and social learning. In: Discrete Dynamics in Nature and Society; 2012. Article ID 409478.

    Google Scholar 

  23. Niu B, Fan Y, Zhao P, Xue B, Li L, Chai Y 2010 A novel bacterial foraging optimizer with linear decreasing chemotaxis step, 2nd International Workshop on Intelligent Systems and Applications.

  24. Chen YP, Li Y, Wang G, Zheng YF, Xu Q, Fan JH, et al. A novel bacterial foraging optimization algorithm for feature selection. Expert Syst Appl. 2017;83(C):1–17.

    Google Scholar 

  25. Liu C, Wang J, Leung J. Integrated bacteria foraging algorithm for cellular manufacturing in supply chain considering facility transfer and production planning. Appl Soft Comput. 2018;62:602–18 ISSN 1568-4946.

    Google Scholar 

  26. Panda A. Automatic generation control of two area power system using modified bacteria foraging algorithm. Int J Emerg Technol Eng Res. 2018;6(3):27–30.

    Google Scholar 

  27. Socha K, Dorigo M. Ant colony optimization for continuous domains. Eur J Oper Res. 2008;185(3):1155–73.

    MathSciNet  MATH  Google Scholar 

  28. Dasgupta S, Biswas A, Das S, Panigrahi BK, Abraham A 2009 A micro-bacterial foraging algorithm for high-dimensional optimization. IEEE Congress on Evolutionary Computatio.

  29. Rani, Ranjani R, Ramyachitra D. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm. Biosystems. 2016;150:177–89.

    Google Scholar 

  30. Sur C, Shukla A. Discrete bacteria foraging optimization algorithm for graph based problems – a transition from continuous to discrete. J Exper Theoretic Artific Intellig. 2018;30(2):345–65.

    Google Scholar 

  31. Müller SD, Marchetto J, Airaghi S, Koumoutsakos P. Optimization based on bacterial chemotaxis. IEEE Trans Evol Comput. 2002;6:16–29.

    Google Scholar 

  32. Mishra S. A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans Evol Comput. 2005;9(1):61–73.

    Google Scholar 

  33. Biswas A, Dasgupta S, Das S, Abraham A. Synergy of PSO and bacterial foraging optimization: a comparative study on numerical benchmarks. In: Proc. 2nd Int Symp. Hybrid Artificial Intell. Syst. (HAIS) Advances Soft Computing Ser, vol. 44. Germany: Springer-Verlag, Innovations in Hybrid Intelligent Systems, ASC; 2007. p. 255–63.

    Google Scholar 

  34. Tang WJ, Wu QH, Saunders JR. A bacterial swarming algorithm for global optimization. In: 2007 IEEE Congress on Evolutionary Computation, Singapore; 2007. p. 1207–12.

    Google Scholar 

  35. Pan Y, Zhou T, Xia Y. Bacterial Foraging based edge detection for cell image segmentation. In: Proc Eng Med Biol Soc, vol. 2015; 2015. p. 3873–6.

    Google Scholar 

  36. Turanoğlu B, Akkaya G. A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem. Expert Syst Appl. 2018;98:93–104.

    Google Scholar 

  37. Fu YW, Chen HL, Chen SJ, et al. A new evolutionary support vector machine with application to Parkinson’s disease diagnosis. In: Advances in Swarm Intelligence: Springer International Publishing; 2014. p. 42–9.

  38. Jin Q, Chi M, Zhang Y, Wang H, Zhang H, Cai W. A novel bacterial algorithm for parameter optimization of support vector machine, 2018 37th Chinese Control Conference(CCC),Wuhan; 2018. p. 3252–7.

    Google Scholar 

  39. Buche D, Schraudolph NN, Koumoutsakos P. Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Trans Syst Man Cybern Part C. 2005;35(2):183–94.

  40. Yang XS. Swarm intelligence based algorithms: a critical analysis. Evol Intell. 2014;7(1):17–28.

    Google Scholar 

  41. Akay B. Synchronous and asynchronous Pareto-based multiobjective artificial bee colony algorithms. J Glob Optim. 2013;57(2):415–45.

    MathSciNet  MATH  Google Scholar 

  42. Gong M, Jiao L, Du H. Multiobjective immune algorithm with non-dominated neighbor-based selection. Evol Comput. 2008;16(2):225–55.

    Google Scholar 

  43. Yuan C, Hanning C, Shen J, Lin N, Su W, Liu F, et al. Indicator-based multi-objective adaptive bacterial foraging algorithm for RFID network planning. Clust Comput. 2018;22:12649–57. https://doi.org/10.1007/s10586-018-1715-0.

    Article  Google Scholar 

  44. Al-Kheraif AA, Hashem M, Al Esawy MSS. Developing Charcot-Marie-Tooth disease recognition system using bacterial foraging optimization algorithm based spiking neural network. J Med Syst. 2018;42(10):192. https://doi.org/10.1007/s10916-018-1049-8.

    Article  Google Scholar 

  45. Mo H, Liu L, Zhao J. A new magnetotactic bacteria optimization algorithm based on moment migration. IEEE/ACM Transact Comput Biol Bioinform. 2017;14(1):15–26.

    Google Scholar 

  46. Tripathy M, Mishra S, Lair LL, Zhang QP. Transmission loss reduction based on FACTS and bacteria foraging algorithm. In: Parallel Problem Solving from Nature-PPSN IX. Berlin, Heidelberg: Springer; 2006. p. 222–31.

    Google Scholar 

  47. Nanda J, Mishra S, Saikia LC. Maiden application of bacterial foraging-based optimization technique in multiarea automatic generation control. IEEE Trans Power Syst. 2009;24(2):602–6.

    Google Scholar 

  48. Bhushan B, Madhusudan S. Adaptive control of DC motor using bacterial foraging algorithm. Appl Soft Comput. 2011;11(8):4913–20.

    Google Scholar 

  49. Kumar K, Jayabarathi T. Power system reconfiguration and loss minimization for an distribution systems using bacterial foraging optimization algorithm. Int J Electr Power Energy Syst. 2012;36(1):13–7.

    Google Scholar 

  50. Verma OP, Rishabh S, Deepak K. Binarization based image edge detection using bacterial foraging algorithm. Procedia Technol. 2012;6:315–23.

    Google Scholar 

  51. Lee CY, Lee ZJ. A novel algorithm applied to classify unbalanced data. Appl Soft Comput J. 2012;12(8):2481–5.

    Google Scholar 

  52. Chen H, Zhu Y, Hu K. Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Appl Soft Comput. 2010;10(2):539–47.

    Google Scholar 

  53. Sanyal N, Chatterjee A, Munshi S. Bacterial foraging optimization algorithm with varying population for entropy maximization based image segmentation. In: Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), India; 2014.

    Google Scholar 

  54. Atasagun Y, Kara Y. Bacterial foraging optimization algorithm for assembly line balancing. Neural Comput & Applic. 2014;25(1):237–50.

    Google Scholar 

  55. Arunkumar GI, Gnanambal PC, Karthik SN. Proportional and integral constants optimization using bacterial foraging algorithm for boost inverter. Energy Procedia. 2016;90:535–9.

    Google Scholar 

  56. Goel K, Sehrawat M, Agarwal A 2017 Finding the optimal threshold values for edge detection of digital images & comparing among Bacterial Foraging Algorithm, canny and Sobel Edge Detector, 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, 1076-1080.

  57. Kim D, Abraham A, Cho J. A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf Sci. 2007;177(18):3918–37.

    Google Scholar 

  58. Yang C, Ji J, Liu J, Liu J, Yin B. Structural learning of Bayesian networks by bacterial foraging optimization. Int J Approx Reason. 2016;69:147–67.

    MathSciNet  MATH  Google Scholar 

  59. B. Bhushan and M. Singh, 2011, Adaptive control of DC motor using bacterial foraging algorithm, Appl Soft Comput, vol. 11, no. 8, pp. 4913–4920, 2011.

  60. Han F, Jiang J, Ling Q, Su B. A survey on metaheuristic optimization for random single-hidden layer feedforward neural network. Neurocomputing. 2019;335(28):261–73.

    Google Scholar 

  61. Yu J, Tan M, Zhang H, Tao D, Rui Y. Hierarchical deep click feature prediction for fine-grained image recognition; 2019. https://doi.org/10.1109/TPAMI.2019.2932058.

    Book  Google Scholar 

  62. Yu J., Zhu C. , Zhang J., Huang Q. ,Tao D. Spatial pyramid-enhanced NetVLAD with and weighted triplet loss for place recognition, IEEE Transactions on Neural Networks and Learning Systems (2020) : 31(2).

    Google Scholar 

  63. Zhang J, Yu J, Tao D. Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process. 2018;27(5):2420–32.

    MathSciNet  MATH  Google Scholar 

  64. Yu J, Tao D, Wang M, Rui Y. Learning to rank using user clicks and visual features for image retrieval. IEEE Transact Cybernet. 2015;45(4):2015.

    Google Scholar 

  65. Hong C, Yu J, Zhang J, Jin X, Lee K-H. Multimodal face-pose estimation with multitask manifold deep learning. IEEE Transact Indust Inform. 2019;15(7):3952–61.

    Google Scholar 

  66. Mavrovouniotis M, Li C, Yang S 2017 A survey of swarm intelligence for dynamic optimization: algorithms and applications, Swarm and Evolutionary Computation 33 1–17.

  67. Zou F, Chen D, Xu Q 2019 A survey of teaching–learning-based optimization, Neurocomputing, In press.

    Google Scholar 

  68. Rakshit P, Konar A, Das S. Noisy evolutionary optimization algorithms – a comprehensive survey. Swarm Evol Comput. 2017;33:18–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hedieh Sajedi or Fatemeh Mohammadipanah.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajedi, H., Mohammadipanah, F. Developed Optimization Algorithms Based on Natural Taxis Behavior of Bacteria. Cogn Comput 12, 1187–1204 (2020). https://doi.org/10.1007/s12559-020-09760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-020-09760-2

Keywords

Navigation